Skip to main content

Evolution, Morphology and Development of the Centipede Venom System

  • Living reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

With approximately 3,500 species distributed across five extant orders, centipedes (class Chilopoda) make the second most speciose class among the subphylum Myriapoda. The most conspicuous synapomorphic character of centipedes is certainly the modification of the first pair of legs into powerful venomous forceps (the forcipules). The venom gland encased in each forcipule produces a potent cocktail of paralytic toxins delivered into prey and opponents via a cuticular duct which opens on the subterminal part of the apical claw. It has been hypothesized that this modification, unique in the animal world, results from the folding of the outer cuticle of the walking legs and the transformation of related subepidermal gland units into venom-producing cells as an adaptation to a new terrestrial predatory niche over 430 million years ago, thus making centipedes one of the most ancient known clade of terrestrial venomous organisms. However, despite their global distribution, synanthropic habits, and reputation for inflicting painful stings, little is known about centipedes and their venom system. This chapter reviews the current knowledge on the development, the evolutionary trajectory, the anatomy, the physiology, and the predatory ecology of centipedes, with a strong emphasis on the forcipular apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almond JE. The Silurian-Devonian fossil record of the Myriapoda. Phil Trans R Soc Lond. 1985;309:227–38.

    Article  Google Scholar 

  • Anderson LI, Trewin NH. An early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland. Palaeontology. 2003;46:457–509.

    Article  Google Scholar 

  • Antoniazzi MM, Pedroso CM, Knysak I, Martins R, Guizze SPG, Jared C, Barbaro KC. Comparative morphological study of the venom glands of the centipede Cryptops iheringi, Otostigmus pradoi and Scolopendra viridicornis. Toxicon. 2009;53:367–74.

    Article  CAS  PubMed  Google Scholar 

  • Barth R. Histologische Studien an der Giftdrusen von Scolopendra viridicornis Newsp. Acad Bras Ciências. 1967;37:179–93.

    Google Scholar 

  • Bonato L, Minelli A, Spungis V. Geophilomorph centipedes of Latvia (Chilopoda, Geophilomorpha). Latvijas Entomologs. 2005;42:5–17.

    Google Scholar 

  • Brena C, Chipman AD, Minelli A, Akam M. Expression of trunk Hox genes in the centipede Strigamia maritima: sense and anti-sense transcripts. Evol Dev. 2006;8:252–65.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CC, Gillingham JC. Giant centipede (Scolopendra alternans) attacks marine toad (Bufo marinus). Caribb J Sci. 1984;20:71–2.

    Google Scholar 

  • Clark D. A centipede preying on a nestling rice rat (Oryzomys bauri). J Mammal. 1979;60:654.

    Article  Google Scholar 

  • Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipede Scolopendra polymorpha and Scolopendra subspinipes. Toxicon. 2014;82:30–51.

    Article  CAS  PubMed  Google Scholar 

  • Dass CMS, Jangi BS. Ultrastructural organization of the poison gland of the centipede Scolopendra morsitans Linn. Indian J Exp Biol. 1978;16:748–57.

    Google Scholar 

  • Duboscq O. Recherches sur les chilopodes. Arch Zool Exp Gén. 1898;6:481–650.

    Google Scholar 

  • Dugon MM, Arthur W. Comparative studies on the venom duct structure of centipedes (Arthropoda: Chilopoda) and a hypothesis on the evolutionary origin of the centipede venom apparatus. Evol Dev. 2012a;14:128–37.

    Article  PubMed  Google Scholar 

  • Dugon MM, Arthur W. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J Insect Physiol. 2012b;58:874–80.

    Article  CAS  PubMed  Google Scholar 

  • Dugon MM, Black A, Arthur W. Variation and specialisation of the forcipular apparatus of centipedes (Arthropoda: Chilopoda): a comparative morphometric and microscopic investigation of an evolutionary novelty. Arthropod Struct Dev. 2012a;41:231–43.

    Article  PubMed  Google Scholar 

  • Dugon MM, Hayden L, Black A, Arthur W. Development of the venom ducts in the centipede Scolopendra: an example of recapitulation. Evol Dev. 2012b;14:515–21.

    Article  PubMed  Google Scholar 

  • Edgecombe GD. Chilopoda – fossil history. In: Minelli A, editor. The Myriapoda, vol. 1. Leiden: Brill; 2011. p. 355–61.

    Google Scholar 

  • Edgecombe GD, Minelli A, Bonato L. A geophilomorph centipede (Chilopoda) from La Buzinie amber (Late Cretaceous, Cenomanian), SW France. Geodiversitas. 2009;31:29–39.

    Article  Google Scholar 

  • Enghoff H. Notes on Lamyctes coeculus (Brölemann), a cosmopolitic, parthenogenetic centipede (Chilopoda: Henicopidae). Entomol Scand. 1975;6:45–6.

    Article  Google Scholar 

  • Ernst A, Rosenberg J. Structure and distribution of sensilla coeloconica on the maxillipedes of Chilopoda. Afr Invertebr. 2003;44:155–68.

    Google Scholar 

  • Hayden L, Arthur W. Expression patterns of Wnt genes in the venom claws of centipedes. Evol Dev. 2013;15:365–72.

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC. Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol. 2002;247:47–61.

    Article  CAS  PubMed  Google Scholar 

  • Iorio E, Ythier E. Quelques observations concernant la reproduction d’ Ethmostigmus trigonopodus (Leach, 1817) (Chilopoda, Scolopendromorpha, Scolopendridae, Otostigminae). Bull Arthropoda. 2007;33:3–12.

    Google Scholar 

  • Lewis JGE. The life history and ecology of the littoral centipede Strigamia maritima (Leach). PhD thesis, University of London; 1960.

    Google Scholar 

  • Lewis JGE. The biology of centipedes. Cambridge: Cambridge University Press; 1981.

    Book  Google Scholar 

  • Linnæus C. Systema naturÌ per regna tria naturÌ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. pp. [1–4], 1–824. HolmiÌ. (Salvius); 1758.

    Google Scholar 

  • MacLeod J. Recherches sur l’appareil venimeux des myriapodes. Bull Acad R Belg. 1878;44:781–98.

    Google Scholar 

  • Manton SM. The Arthropoda. Habits, functional morphology and evolution. Oxford: Clarendon Press; 1977.

    Google Scholar 

  • Martill DM, Barker MJ. A new centipede (Arthropoda, Chilopoda) from the Crato Formation (Lower Cretaceous, Aptian) of N.E Brazil. N Jahrb Geol Palaontol Abh. 1998;207:395–404.

    Google Scholar 

  • Menez A, Zimmerman K, Zimmerman S, Heatwole H. Venom apparatus and toxicity of the centipede Ethmostigmus rubripes (Chilopoda, Scolopendridae). J Morphol. 1990;206:303–12.

    Article  CAS  PubMed  Google Scholar 

  • Minelli A. Chilopoda – reproduction. In: Minelli A, editor. The Myriapoda, vol. 1. Leiden: Brill; 2011. p. 279–94.

    Google Scholar 

  • Minelli A, Sombke A. Chilopoda – development. In: Minelli A, editor. The Myriapoda, vol. 1. Leiden: Brill; 2011. p. 295–308.

    Google Scholar 

  • Minelli A, Foddai D, Pereira Lages C, Lewis JGE. The evolution of segmentation of centipede trunk and appendages. J Zool Syst Evol Res. 2000;38:103–17.

    Article  Google Scholar 

  • Molinari J, Gutierrez EE, De Ascencao JMN, Arends A, Marquez RJ. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribb J Sci. 2005;41:340–6.

    Google Scholar 

  • Mundel P. The centipedes (Chilopoda) of the Mazon Creek. In: Nitecki MF, editor. Mazon Creek fossils. New York: Academic; 1979. p. 361–378.

    Google Scholar 

  • Murienne J, Edgecombe GD, Giribet G. Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol. 2010;57:301–13.

    Article  PubMed  Google Scholar 

  • Newport G. Monograph of the class Myriapoda, order Chilopoda; with observations on the general arrangement of Articulata. Trans Linn Soc Lond. 1844;19:265–302. and 349–439 (1845).

    Article  Google Scholar 

  • Okeden WP. A centipede eating a snake. J Bombay Nat Hist Soc. 1903;15:1.

    Google Scholar 

  • Rosenberg J, Brenner M, Greven H. Putzverhalten und Trinken bei Scutigera coleoptrata L. (Chilopoda, Scutigeromorpha). Entomologie Heute. 2004;16:83–92.

    Google Scholar 

  • Rosenberg J, Hilken G. Fine structural organization of the poison gland of Lithobius forficatus (Chilopoda: Lithobiomorpha). Nor J Entomol. 2006;53:119–27.

    Google Scholar 

  • Schweigert VG, Dietl G. Ein fossiler Hunderfüssler (Chilopoda, Geophilida) aus dem Nusplinger Plattenkalk (Oberjura, Sudwestdeutschland). Stuttg Beitr Natürkunde B (Geol Palaontol). 1997;254:1–11.

    Google Scholar 

  • Shear WA. The fossil record and evolution of the Myriapoda. Arthropod Relationsh Syst Assoc Spec. 1997;55:211–9.

    Google Scholar 

  • Shear WA, Bonamo PM. Devonobiomorpha, a new order of centipedes (Chilopoda) from the middle Devonian of Gilboa, New York State, USA, and the phylogeny of centipede orders. Am Mus Novit. 1988;2927:1–30.

    Google Scholar 

  • Shear WA, Edgecombe GD. The geological record and phylogeny of the Myriapoda. Arthropod Struct Dev. 2010;39:174–90.

    Article  PubMed  Google Scholar 

  • Shear WA, Jeram AJ, Selden PA. Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. Am Mus Novit. 1998;3231:1–16.

    Google Scholar 

  • Siriwut W, Edgecombe GD, Sutcharit C, Panha S. Brooding behavior of the centipede Otostigmus spinosus Porat, 1876 (Chilopoda: Scolopendromorpha: Scolopendridae) and its morphological variability in Thailand. Raffles Bull Zool. 2014;62:339–51.

    Google Scholar 

  • Undheim EAB, King GF. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon. 2011;57:512–24.

    Article  CAS  PubMed  Google Scholar 

  • Undheim EA, Jones A, Clauser KR, Holland JW, Pineda SS, King GF, Fry BG. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes). Mol Biol Evol. 2014;31:2124–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Leeuwenhoek A. Epistolae ad societatem regiam anglicam, et alios illustres viros: Epistola 124. Lugduni Batavorum: Arnold Langerak; 1719.

    Google Scholar 

  • Voigtländer K. The life cycle of Lithobius mutabilis L. Koch, 1862 (Myriapoda: Chilopoda). Bonner Zool Beitr. 2006;55:9–25.

    Google Scholar 

  • Voigtländer K. Chilopoda – ecology. In: Minelli A, editor. The Myriapoda, vol. 1. Leiden: Brill; 2011. p. 309–25.

    Google Scholar 

  • Wilson HM. First mesozoic scutigeromorph centipede from the lower Cretaceous of Brazil. Paleontology. 2001;44:489–95.

    Article  Google Scholar 

  • Wilson HM. A new scolopendromorph centipede (Myriapoda: Chilopoda) from the lower Cretaceous (Aptian) of Brazil. J Paleontol. 2003;77:73–7.

    Article  Google Scholar 

  • Wilson HM. Juliformian millipedes from the lower Devonian or Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic. J Paleontol. 2006;80:638–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Dugon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dugon, M.M. (2015). Evolution, Morphology and Development of the Centipede Venom System. In: Gopalakrishnakone, P., Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6727-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6727-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6727-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics