The Limits of Quantum Computers (DRAFT)
Scott Aaronson

For the published version—which differs significantly from this one—gpleas the
March 2008 issue of Scientific American.

“Haggar Physicists Develop ‘Quantum Slacks,” read a leadh the satirical weekly
The Onion By exploiting a bizarre “Schrodinger’'s Pants” dualifyese non-Newtonian
pants could paradoxically behave like formal wear and tasee at the same time. The
Onion writers were apparently spoofing the breathless accaingsiantum computing
that have filled the popular press for years. If seythicked an obvious target: many of
those articles were ripe for parody. “Unlike a claddidd’ the typical article might read,
“a quantum bit—or ‘qubit'—can be 0 and 1 at the same timga Aesult, such a machine
could instantly break ‘unbreakable’ codes by trying all giedieys at once.”

It doesn’t take an Einstein to smell something fishy it thssertion. After all, what

would the world be like if there were a machine ablextnméne all possible solutions to
a problem in parallel, and then immediately zero in lo@ tight one like a falcon

swooping down on its prey? To say that airlines couldddbetheir flights better, or

that engineers could find ways to shoehorn more s#osi onto a chip, is to miss the
point entirely. For one thing, if such a machine existedthematicians would be
permanently out of a job.

Why? Take your favorite conjecture that’'s remained unglofee centuries—Ilike
Goldbach’s Conjecture, that every even number 4 or greatebe written a sum of two
prime numbers. Now program the machine to search, nomhgeverypurported proof
of that assertion, but “merely” among every proof vathmost (say) a million symbols.
The number of such proofs is finite, and each one—assuiti;gvritten out in
hairsplitting detail—can be rapidly checked by compubesde whether it's correct. So
if quantum computers were really as powerful as the wsradature suggests, then they
could instantly find a correct proof, assuming there was olnd if there wasn’t such a
proof? Well then, try all proofs with ten million symbplor a billion. Perhaps the
logician Kurt GOdel said it best, in a 1956 letter to Jodwm Neumann that first raised the
possibility of such a hyperfast theorem-proving machine: “@oeld indeed have to
simply select a [number of symbols] so large thathé machine yields no result, there
would then also be no reason to think further abouptbblem.”

But if you had such a machine, the implications would g@béyure mathematics. For
example, you could ask a computer to search, among aibpparameter settings of a
neural network, for the ones that do the best at gredibistorical stock market data. Of
course, there’s no guarantee that those settings waoedicpthefuture prices better than
the market, but it's a decent bet—as long as you wereothe one who knew the
settings! Or you could search for the shortest proghamoutput the complete works of
Shakespeare, after at most (say) 100 million operatidwggin, it's possible that such a
program would work in a boring way, by applying some soupedxipcompression to
the plays and sonnets. But if it were mathematicalhgsible to create a shorter

program—~by, say, by starting out from a simulation bél&speare’s brain—then that
shorter program is what you would find.

In short, it sounds like science fiction. So if a quamtcomputer would let us do all
these things, then it's not surprising that, to hearatfsome researchers, quantum
computingis science fiction. Take, for example, the physicist Alobel laureate Robert
B. Laughlin, in his bookA Different Universe“l wish those who invest in quantum
computing the best of luck. | also ask that anyone anxioumsvégt in a bridge in lower
Manhattan contact me right away, for there will Imdunts for a limited time only.” Or
the renowned computer scientist Leonid M. Levin: “The presdtitude [of quantum
computing researchers] is analogous to, say, Maxweihgete Daemon of his famous
thought experiment as a path to cheaper electricity frean.”

So what’s going on? Will guantum computers let us tramstes human condition and
become as powerful as gods? Or will the whole concepexposed as a physical
absurdity, as the twenty-first century’s perpetual-motiachine? Over the past decade,
while the early experimental steps toward building a quantomputer made the
headlines, theoretical computer scientists were quistiyking to figure out what a
quantum computer, if we had one, would actually be ablertgpate. This research has
revealed that even a quantum computer would face significaitations.

Contrary to the popular image, their work has revealesh @/quantum computer would
face significant limitations. In particular, whilegaantum computer could quickly factor
large numbers, and thereby break most of the cryptograptescused on the Internet
today, there’s reason to think that not even a quantunpeter could solve the crucial
class of NP-complete problems efficiently. This clesdudes the problems mentioned
above. Limitations of quantum computers have also fmemd for games of strategy
like chess, as well as for breaking cryptographic hashi@ms All of these limitations
apply to a class of algorithms known as “black-box athars,” which encompasses all
quantum algorithms known today. Giving a complete proof tlmtfast quantum
algorithm can solve these problems is out of the quesiince we can’t even prove that
no fast quantum algorithm can solve them.

Ironically, by revealing that quantum computers would fageificant limitations, this
understanding makes quantum computing less of an affrontuibian. This article is
about the new understanding we’ve achieved, and what itsrieathe limits of efficient
computation in the physical universe.

Firstly, we've learned, at least in principle, how tokeaguantum computers fault-
tolerant—that is, resistant to unwanted interactiorih ¥ie outside world, as long as the
rate of those interactions is below a certain thrieskdepending on the assumptions,
perhaps one interaction per qubit per 100 clock cycles).dBeevery of fault-tolerance

put the ball firmly back in the skeptics’ court, by answgrwhat at the time was their
central technical objection.

The consensus today is that, if quantum computing is showe impossible, this will be
much more interesting from a fundamental physics standpbem if it's shown to be
possible. For it would mean that quantum mechanics,atebk theory of physics for
the past 80 years, is wrong or incomplete.

But how could quantum computers offer such a dramatic speedumné problem but
not for another? And what do we mean by “speedup,” anywé&xactly how much
faster are we talking? To even ask these questiomsctiyy let alone answer them,
requires knowing something about one of great scientiias of the past fifty years: the
theory of computational complexity. Unfortunately, evaany scientists still don’t
understand this idea—but, after reading the next segianyvill.

Complexity

Computational complexity theory deals with the resoureesied to solve problems, in
the limit as the problems get arbitrarily large. So it's not ssirng that the theory
emerged in the aftermath of World War Il, the winning of ehhiook the largest
industrial effort the world had ever seen.

Let's start with P: the class of all problems solvahlgolynomial time by a computer
program. Some examples of problems in P are multigicadivision, searching mazes,
sorting lists, and in general, almost all of the humdthings that fill a computer’s
workday. | should point out that, for us computer scientiss the whole infiniteset of
mazes (or lists, etc.) that constitutes a “problem”—aayticular maze is merely an
“instance.” The “size” of the instance is the amoaininformation needed to specify it:
for example, the number of corridors in a maze oitglig a number. To be polynomial-
time, a procedure has to soleeryinstance of size n using a number of steps that grows
like n raised to a fixed power.

The Library of Babel, wrote Jorge Luis Borges, is cosgutiof “an indefinite and
perhaps infinite number of hexagonal galleries,” contaimingintold number of copies
of every possible book—or rather, every possible boofowf hundred and ten pages,
forty lines to a page, and eighty letters to a line. sivif the books consist entirely of
gibberish. But somewhere in the Library, a patientugho searcher could find
“everything: the minutely detailed history of the future, #nehangels’ autobiographies,
the faithful catalogues of the Library, thousands amdighnds of false catalogues, the
demonstration of the fallacy of those catalogues, thes@c gospel of Basilides, the
commentary on that gospel, the commentary on themamtary on that gospel...”

Borges was especially struck by the rarity of truth he tLibrary, as compared to
meaninglessness and falsehood. Even if you stumbled osedhet of the universe in
some forgotten tome, how could you ever distinguistoifthe thousands of treacherous
variations? But surely, some of the books would congaims that a knowledgeable
seeker would quickly recognize as such: proofs of Goldbamingecture, the Riemann
hypothesis, and other statements that have eluded nwtibms for centuries; the

design for a controlled fusion reactor; a computer @nogthat predicted the stock
market better than any analyst; plays that Shakespeat@ have written but didn't.

Part of what makes Borges’ fantasy so compelling isithen’t a fantasy: the Library of
Babel exists. You enter it every time you start yaard processor and face a blank
screen and blinking cursor, the combinatorial cosmos laidnouont of you. But then
why are so many of the books we’'d most like to retrisgeinaccessible? What is it
about our world that makes it easier to recognize a goaadl than to write one, easier to
be a critic than an artist?

One answer will be plunkingly obvious, at least to rem@érthis magazine: exponential
growth. If there are 26 possibilities for the firsttée of a book, then there are 676
possibilities for the first two letters, and 141,167,095,653,376@herfirst ten. By the
time we reach 100 letters, there are already more lplitgss than there are atoms in a
vat of 26% atoms.

But if our goal were to find, say, a proof of the Riemann kiyggis at most a million
symbols long, then we wouldn’t need to examine litgrallery sequence of symbols.
For example, if the beginning part of a sequence comtdaggcal errors, or nonsense, or
car ads, then we could eliminate every sequence withstttae beginning from further
consideration. But is a more dramatic improvement pessi In particular, could there
be a procedure to find a proof with n symbols, using a numbsteps that increased
only linearly with n, or as n raised to a fixed power such as 2 ofSB8@h a procedure
would be calledpolynomial-time since the time it used would be bounded by a
polynomial function of the problem size [see figure bdlo@omputer scientists like to
call a procedure “efficient” if it runs in polynomial timea criterion that works
surprisingly well in practice, though it would admittedlgcbme strained if a procedure
took ' steps.

600

500 A

400 -
—n

300 A n"2
2"n

200 -

100 -

OIIIIIIIII
0 1 2 3 4 5 6 7 8 9

So, is there an efficient procedure to search the bylwaBabel? If the very possibility
strikes you as absurd, then consider some problems that seem equally hopeless.
Say you're given the names of a thousand men and waatweng with a list of who's
willing to marry whom, and want to pair everyone oftftwan agreeable spouse. Or—an
example that arises in cryptography—say you're given asinud-digit number, and you

want to decide whether it's prime or composite. Irhbmases, it's “obvious” that there’s
no way to avoid “brute-force” search, among all possgairings in the one case and all
possible divisors in the other. But in 1965, Jack Edmonds ga ingenious method to
pair everyone off whenever this is possible, in an amaofiime that increases only
polynomially with the number of people. (Interestingif we allow gay or lesbian
pairings, then the problem becomes harder, but is shabte in polynomial time.) A
decade later, Robert Solovay and Volker Strassen, atepemdently Michael Rabin,
found procedures to decide whether a number is prime goasita (although not to find
the divisors of a composite number), using time that grasughly as the number of
digits cubed. The one defect of these procedures washimatproduced the correct
answer not with certainty, but only with overwhelming lmbility. However, in a
dramatic advance three years ago, Manindra Agrawal, NiKagal, and Nitin Saxena
gave a polynomial-time primality test that succeedh watrtainty.

So, if we can eliminate “brute-force search” in the sasematchmaking and primality
testing, then why not footherproblems, like proving theorems, breaking cryptographic
codes, or writing a computer program to ace the S.A.TIfs, in essence, is the “P
versus NP” question, whose place among the loftiggtenies ever to try the human
intellect has been confirmed by its cameo roles onaat kevo TV showsThe Simpsons
and NUMB3RS$. The question was first raised by the logician Kurd@&@gof “This
sentence is not provable” fame, in a remarkable 1956 tettée computer pioneer John
von Neumann. Gdodel wanted to know whether there vgasiaral method to find proofs
of size n, using time that increased only as n?r ki such a method existed, Gédel
argued that this
“would have consequences of the greatest magnitude. Fhatsay, it would
clearly indicate that the mental effort of the math&amn in the case of yes-or-
no questions could be completely replaced by machines.wOulel indeed have
to simply select an n so large that, if the machireddgi no result, there would
then also be no reason to think further about the problem.
Von Neumann was dying of cancer at the time, and appgneexnker answered Godel's
letter. The question wouldn’t become widely known umiié discovery of “NP-
completeness” in the 1970’s, about which more later. Tdélayersus NP heads the list
of seven “Millennium Problems” for which the Clay Mathesims Institute is offering
million-dollar prizes. One measure of its importansethat, depending on how you
solved it, you could also program a computer to solve the sth@roblems.

But there’s a further wrinkle. According to quantum heaucs, the bizarre tale that
physicists have been telling since the 1920’s, if you measoeam of photons polarized
at 45° angles to the measurement axis, the outcomebwilh random sequence of
horizontal and vertical polarizations: a random book fitben Library of Babel written
out in binary code. But until you measure the photons,gan’'t say that they encode
somedefinite book, the only problem being that you don’t knowcltone. For if you
said that, then you'd make the wrong predictions for whatlldvhappen were you to
measure the photons at a different angle. Instesxhuse of the quantum effect called
interferenceall possibilities can in general influence a measurementt rédttiether that
means that the possibilities literally constitute “flafainiverses” is a question eagerly

debated by philosophers and stoners alike. But thergettiog around a basic fact: that
in order to describe a state of ten million particlesr best-confirmed theory of the
physical world requires us to specify an “amplitude” éwery oneof the ~2°0000%
possible outcomes of measuring the particles.

So you might wonder: if Nature is going to all thabetffthen why not take advantage of
it to perform enormous computations—perhaps even to tse¢laecLibrary of Babel in
polynomial time? And indeed, in the 1980’s, Richard Feynriamvid Deutsch, and a
few other physicists proposed building “quantum computerst wWauld outperform
classical ones by an exponential amount. But supposindiavbuild such computers,
how powerful would they actually be? For that mattehat about “relativity
computers,” or “superstring computers™ More generalhat are the limits of efficient
computation in Nature?

This is at once a philosophical, scientific, and pratteguaestion, with implications
ranging from the knowability of mathematical truth e thature of the physical world to
the future of the computer industry. Indeed, it's almastaadacious a question as
anyone could ask—which makes it all the more surprising thaipater scientists,
physicists, and mathematicians have learned a greatlbeat it over the past fifteen
years. But while the recent discoveries have beenapsdat, they've also been difficult
for outsiders to follow—phrased as they are in terimsxotic beasts called “complexity
classes,” with inscrutable names like BQP, NP, and PEPABecause of this, the
understanding we've achieved has barely filtered into gbpular press, and has
remained all but absent even from books dealing with “contgleguch as Stephen
Wolfram’s erroneously-titled New Kind of Scienge

This article is intended as a guide to the current fronfieomputational complexity and
physics. But before we get there, we need to revisigtiestion that started it all: P
versus NP.

P versus NP

All right then, let's start with P: the class of ptoblems solvable in polynomial time by
a computer program. Some examples of problems in P altgplination, division,
searching mazes, sorting lists, the matchmaking and ptymatoblems mentioned
earlier, and in general, almost all of the humdrum thihgsfill a computer’s workday. |
should point out that, for us computer scientists,th&s whole infinitesetof mazes (or
lists, etc.) that constitutes a “problem™—any particulaaize is merely an “instance.”
The “size” of the instance is the amount of informatheeded to specify it: for example,
the number of corridors in a maze or digits in a numb&o be polynomial-time, a
procedure has to soleveryinstance of size n using a number of steps that gr&esli
raised to a fixed power.

You might interject, “The number of steps in Java & @nder Windows, Mac, or
Linux?” The answer is that it doesn’t matter. As Ridhiéeynman once said, computers
today, like people today, are all fundamentally the sa®eme are faster or have more

RAM than others, but they all hew to the rules laidvddoy Alan Turing in 1936. In

particular, if you can solve a problem in polynomial tim&Vindows, then you can solve
it in polynomial time on a Mac—for example, by just runnthg Windows program on
an emulator. Indeed, the reason people are so exdimat guantum computers is
precisely that they seem violate this polynomial eglence.

But what about NP? Contrary to widespread belief, NBsdoot stand for “Non
Polynomial-Time,” but for a technical concept calledofideterministic Polynomial-
Time.” (Yes, | know: when it comes to weird acronyrosmputer scientists could put
any Pentagon office to shame.) You can think of NP@glass of problems for which a
valid solution can beecognizedn polynomial time. For example, let’'s say you wainte
to color a map with three colors, so that no two tees sharing a border were colored
the same [see Figure]. With only a few countries, igh&asy to do by trial and error, but
as more countries are added, the number of possiblengddrecomes astronomical. On
the other hand, if you simply gave the coloring job to yguad student, then when the
answer came back after the end of eternity, you could lguiek whether or not your
student had succeeded: you'd just have to look at the mdp;heck whether any two
neighboring countries were colored the same. This istiwaynap-coloring problem is
in NP.

It's clear that P is a subset of NP, since if yon salve a problem on your own, then you
can certainly be persuaded thahaisa solution. The question that keeps many of us up
at night is whether RqualsNP: in other words, can every NP problem be solved in
polynomial time?

One thing we do know is that, instead of asking abfdUtIP problems, we might as well
ask about the map-coloring problem. Or the Maximum Cliqudlpm (given which
students in a high-school cafeteria will talk to whomdfthe largest set of students who
will all talk to each other). Or the problem of whet a given configuration can ever
arise in the computer game Minesweeper. For it turnshatititese problems, as well as
thousands of othersye all basically the same problerand are all at least as hard as
any other NP problem We know this because of the remarkable theory of “NP-
completeness,” which was created in the early 1970’sdph®n Cook and Richard Karp
in the United States, and independently by Leonid Levin in tveeSUnion. A problem
iIs NP-complete if it's among the “hardest” problemaNiR. This means, first, that the
problem is in NP, and second, that if a “black box” fowisg the problem somehow
washed up on the beach, then by using that black box, wd soldeany otherNP
problem in polynomial time. In particular, if P=NP thevery NP-complete problem is
solvable in polynomial time, while ifANP then none of them are.

It wasn’t cleara priori that any natural NP-complete problems even existed;smhat
Cook and Levin showed. Today, if you want to prove your risa'goroblem is NP-
complete, what you do is first find a problem that wasaaly proved NP-complete, and
then show that any instance of that problem can beiaifly “encoded as,” or
“transformed into,” an instance of the problem you @eut. For example, while you
probably wouldn’t guess by looking at it, the map in tH®¥ang figure

actually encodes the Boolean expression
(x ory) and (x or not(y)) and (not(x) ory),

and from any valid coloring of the map you could read tb# unique satisfying
assignment, x=y=TRUE.

So why is it so hard to provezRP? One answer is that any proof would need to
distinguish the problems thaeemhard but actually admit subtle algorithms (such as
matchmaking and primality testing), from the “genuinelydhdNP-complete ones. A
second answer comes from a 1975 theorem of Theodore Baker,Gill, and Robert
Solovay, who showed that “diagonalization”™—the technigsed by Gddel and Turing to
prove their incompleteness and undecidability theoremsietisstrong enough by itself
to separate P from NP. A third answer has to do thétbizarre self-referential nature of
P£ZNP, a conjecture that all but asserts the difficukyirading its own proof. In 1993,
Steven Rudich and Alexander Razborov showed that mdseadpproaches then being
tried on ENP and related conjectures would, if they worked, yieldieffit algorithms to
solve some of the very problems that they were supposawvte intractable!

On the other hand, all it would take to show P=NP wd@do solveany NP-complete
problem in polynomial time. Since this hasn’t happenedigdgy it's almost universally
believed that NP, even if we’re not yet smart enough to understand whwe grant

that assumption, then only one hope remains for evabitg the Library of Babel in
polynomial time by computer: namely, to change what wanrby “computer.”

Enter the Quantum Computer
The problem is that an ordinary computer is confined to abipgr on bits, which are

always either 0 or 1, on or off. By contrast, a “quamtcomputer” could operate on
quantum bits or ‘qubits,” which can be 0 and 1 at the san® tiinfollows, of course,

that such a machine could examine all possible solutiors pooblem at once, and
instantly zero in on the correct one like a needle naystack.

Did that sound like aon sequitutto you? If it did, you're right. Over the past decade,
we’ve learned that, even if experimentalists managaitmount the staggering obstacles
involved in building a quantum computer—and they might—we wexetctly transcend
the human condition or become as powerful as godsit &ons out that, while quantum
computers would offer enormous speedups for a few problbegdtalso be subject to
many of the same limitations as today’'s computers. pdriicular, there’s reason to
believe that not even a quantum computer could solve dviplete problems in
polynomial time.

To understand why requires knowing something about what quangehanics actually
says. But don't let that alarm you. For I'll let yauon a secret: despite claims to the
contrary, quantum mechanics is easy! The only complicpairt isapplyingthe theory
to electrons, photons, and other real particles. tBuinderstand quantum computing,
you don't need to worry about any of that, any more ty@und have to worry about
transistors and voltage potentials when writing a Jaegrpm. All you need to know
about are certain numbers called “amplitudes,” which do¢ Bke probabilities, except
with minus signs.

In ordinary life, you might say there’s a 50% or 20%na®aof rain tomorrow, but you'd
never say there’s minus20% chance. In quantum mechanics, however, any event is
assigned a number called an “amplitude,” which could beipesir negative. (Actually,
amplitudes could also be complex numbers, but that's ail dee’ll ignore.) For
example, a cat might have a/2/amplitude of being alive, and a ¥2/ amplitude of
being dead. Physicists would write this as follows, usieg‘fhrac ket notation” (which

one gets used to with time):

|Cab = 1N2 |Alive) - 1N2 |Dead.

To find the probability of a given measurement outcomey tgke its amplitude and
square it. In this case, the cat would be found “alivith probability (1#2)? or 1/2, and
“dead” with probability (-¥2)?, or again 1/2. Also, the cat “snaps” to whichever
outcome we see. For example, if we measure théocheé alive and then measure it
again, nothing having happened in the interim, we’ll stiltlfit to be alive. Of course,
the probability of finding the cat alive and of findingdead should sum to 100%.
(Quantum mechanics is crazy, but tiwt crazy.) This means that the sum of the squares
of the amplitudes should be 1, which leads to a set sdiple states that forms a circle
[see Figure].

But what’s the point of talking in such a roundabout wayRy\Wot just say that the cat
is alive with probability 50% and dead with probability 50%, Wwetdon’'t know which
until we measure it? This question takes us to the béguantum mechanics: the way
the amplitudes change if we do something to the catthdary, we could perform any
operation that rotates or reflects the circle of gmktses in the figure below.

For example, we could perform a 45° counterclockwisetioostawhich maps the state
|Alive) to 1M2 |Alive) + 1N2 |Dead, and |Deaglto -1~/2 |Alive) + 1N2 |Deadl. (In
practice, this sort of thing is a lot easier with elecs and photons than with cats.)

If we apply a 45° rotation to the |Aliyestate, we get a cat in an equal superposition of
|Alive) and |Dead If we then measure, we find the cat alive with 50% poiba and
dead with 50% probability. But what happens if we rotate byad&€cond time, without
measuring the cat in between rotations? We get are}Alat rotated by 90° toward the
|Dead axis: in other words, a dead cat! So applying a “randagiizoperation to a
‘random” state produces a “deterministic” outcome. Ong wwaunderstand this is that,
while there are two paths (or if you like, “parallel wanses”) that lead to the cat being
alive (namely, |Alive—>|Alive)—>|Alive) and |Alive—>|Dead->|Alive)), one of these
paths has amplitude Y2 and the other has amplitude %%a r&sult, the paths interfere
destructively and cancel each other out, so all theffsre the paths that lead to the cat
being dead [see Figure]. Whenever physicists or scientersvrefer to the “bizarre laws
of the quantum world,” this sort of interference betwpesitive and negative amplitudes
is ultimately what they're talking about.

The above applied to a single quantum bit or “qubit,” witb measurable states: |Alive
and |Deay |1) and |0. But eventually we hope to build quantum computers involving
many thousands of these qubits: not cats, but maybe abhoeiiei that can spin either up
or down, or electrons that can be in either a ground staan excited state. To describe
such a computer, we’d have to specify an amplitude foryepessible result of
measuring the qubits in order. For example, if thereev#@®,000 qubits, then we’'d need

10

210990 amplitudes—which, if you think about it, is a pretty staggeramount of
information for Nature to keep track of at once. Thalgd quantum computing is to
exploit this strange sort of parallelism that is ininéren the laws of physics as we
currently understand them.

The trouble is that, the instant we look at our computer;collapse” it like a soufflé—
meaning that we see only one of tH&%° possible measurement outcomes. To switch
metaphors, it's as if our computer conjures into existearteexponentially-powerful
monster, who then scurries into a closet as sooneasmiich on the lights. But in that
case, why does it even matter that the monster wastex&? Because in principle, we
might be able to choreograph the interference betwesiiygoand negative paths, so
that the unwanted answers all end up with amplitudee ¢w®. If we can pull that off,
then the right answer will be observed with overwhefprobability.

A priori, it's not obvious that we can actually use this sorintdrference to solve any
interesting problem. But, building on work of Daniel Simammd other researchers, in
1994 Peter Shor gave an astonishing quantum-mechanical algtoitlactor integers in
polynomial time. The importance of the factoring probleand therefore of Shor’s
breakthrough, can be understood by anyone who’s ever ordeneetlsng over the
Internet with a credit card. To prevent your creditdcaumber from being stolen by
hackers, your web browser automatically encryptsnilnaber before sending it. But
how is it possible for your computer to encrypt a messadkets say) Amazon.com, if
you’ve never met an Amazon employee in an abandonegdigat 2AM to agree on the
key? After all, sending the key over the Internet waldébat the purpose! The solution
comes from a revolutionary system callpdblic-key cryptographywhich was first
described to the world in a 19B&ientific Americarcolumn by Martin Gardner. In this
system, first Amazon’s server generates both a “pulidé&/ and a “private” key, and
sends your computer the public key. Then, using the public key,cpmputer encrypts
your credit card number in such a way that in can oelgdrryptedby someone who
knows the private key. The most popular such systeailedcRSA, after Ronald Rivest,
Adi Shamir, and Leonard Adleman, who invented it in 197Bhough as we now know,
cryptographers at Britain’s GCHQ invented RSA several syearlier, but kept their
discovery secret.)

So what’s the catch? Well, the security of RSA depandthe assumption that factoring

large numbers is harder than multiplying them. For edxanipmight take you weeks to

figure out the prime factors of 17,197,227,206,573 by hand—»but if & gdnspered in

your ear that they're 4,333,829 and 3,968,137, then it would beteasultiply these
numbers together and see if they check out. (They dio.RSA, you can think of
17,197,227,206,573 as being the public key, and 4,333,829 and 3,968,137 as being the
private key. Then the point is that, by factoring the ijoukéy, a hacker could recover

the private key and thereby decrypt your credit card number.

On a conventional computer, the fastest known factoringodaibes an amount of time

that increases about exponentially witm, where n is the number of digits in the number
to be factored. What Shor showed is that a quantunpet@mmcould factor an n-digit

11

number using only abouf steps—an exponential improvement. His algorithm works by
first reducing the problem to a seemingly unrelated tvag: of finding theperiod of an
exponentially long sequence of numbers. As an exarti@eiollowing sequence has a
period of 7:

...9256138925613892561389256138...

To find the period of such a sequence, the algorithmdeserates a vast superposition
with one path for every element of the sequence. ,Tinensing a powerful tool called a
quantum Fourier transform, it causes these paths tdergedestructively and cancel
each other outunlessthey lead to information about the period. By repeatimg
algorithm several times and combining the measurement roagoone can then
reconstruct the period (and from that the factors) withagbitrarily small chance of
error—say, 0.0001%.

Some people mistakenly think that Shor’s algorithm wdatdus do even more than
break RSA—indeed, that it would let us solve NP-completelpms in polynomial time.
But alas, while the factoring problem is in NP, it's datown to be NP-complete.
Indeed, most computer scientists believe that factosngne of the rare problems that
are “intermediate” between P and NP-complete [sagrdm below].

PSPACE

Generalized Chess and Go

NP-complete

Map-Coloring
Theorem-Proving
Traveling Salesman

Graph Isomorphism

Multiplication
Primality Testing
Matchmaking

12

They believe this because factoring has special propénaeslon’t seem to be shared by
NP-complete problems. For example, while a map mightddorable in zero, six, or
thirty billion ways, any positive integer can be factong® primes in exactly one way.
To create his algorithm, Shor relied heavily on such spgec@derties of the factoring
problem.

So then, could quantum computers solve NP-complete probkoisrgly or not? The
answer should come as no surprise by now: we don't knaftér all, we don’t even
know if classicalcomputers can solve them—and anything a classical comauteioc a
quantum computer could do also (just as you could play Paceva Sony PlayStation
if you wanted to). What we do know is that, if thevere a fast quantum algorithm to
solve NP-complete problems, it would have to rely on ntoae@ “brute force.” To see
what this means, imagine that you're searching for a gafdididden in one of N boxes,
and that you have no clues about its location: all yooudo is pick a box, open it, and see
if the coin is inside. Then clearly you'll have to opavout half the boxes on average
before you find the coin. But what if you could om@hN boxesin superposition, then
cause the paths in the superposition to interfere, them @pé&l boxes in superposition
again, and so on? Even in that fanciful scenario, ystilldneed at leastN steps to find
the coin, according to a 1994 theorem of Charles Benk#fian Bernstein, Gilles
Brassard, and Umesh Vazirani. Shortly after this figdioov Grover showed that the
VN bound is achievable: in other words, theréstsa quantum-mechanical algorithm to
find the coin after only aboutN steps. Amusingly, Grover’s algorithm was proven to be
optimal before it was discovered to exist!

What Bennett et al.’s theorem means is that, in segyclor a needle in a haystack,
quantum computers would offer a small “generic” advantagewould not slay the o%re
of intractability. Where a classical computer would ch&® steps to search'®?
possible solutions, a quantum computer would need “merelysdhare root of that, or
2°%° Ultimately, the reason is that Schrédinger’s equatichich governs how quantum-
mechanical amplitudes change in time, I;aar equation. If we think of the paths in a
superposition as “parallel universes,” then this lineasityhat prevents the universe that
happened to find the answer from simply “telling all the ptheverses about it.”

By the time | came to quantum computing, in 1998, all of ¥as already old hat. The
challenge was to create a genetladory of when quantum computers outperform
classical ones and when they dont. For example, b@gvan advantage would a
quantum computer have in games of strategy such as ch&fssf? my junior year at
Cornell, I spent a summer attacking that question uesstally. My goal was to show
that, as in the case of NP-complete problems, any gomatgorithm that examined all
sequences of moves by “brute force” would need at leasighare root of the number of
steps needed by a classical algorithm.

Soon after I'd given up, a Berkeley graduate student namedsAAdrbainis succeeded
with a brilliant new approach, one based on the quapttenomenon of “entanglement.”
Instead of considering each game separately, Ambairagimad feeding the quantum
algorithm a superposition over all possible games. He sihowed that, if the algorithm

13

succeeded too quickly, then the entanglement between stiggrposition and the
algorithm’s memory would increase at an impossibly fase.r By now, Ambainis’s

approach, which he dubbed the “quantum adversary methaxie®m applied to dozens
of other problems.

But ironically, the approach failed on the one problemwibich it was originally created.

In modern cryptanalysis, one of the most basic taskslisdcollision-finding given a
function that digitally “signs” email messages, fiwdot messages that get assigned the
same signature. If a fast and general quantum algorithnteéxi® find these
“collisions,” then there'deally be no hope for secure Internet communications in &wor
with quantum computers.

If there are N possible signatures, then even a ciElssimputer only needs to examine
aboutVN messages before it finds two messages with the s@mature. The reason is
related to the well-known “birthday paradox”: if you put 2®ple in a room, then there
are better than even odds that two of the people sharéhday, since what matters is the
number ofpairs of people. In 1997, Gilles Brassard, Peter Hgyer, arnATapp
showed that a quantum computer could beat this “birthdaydybdinding a collision
after only>VN steps instead ofN. But is that the best possible? Astonishingly, after
five years of effort, researchers were still unableue out a quantum algorithm that
would use a&onstantnumber of steps, independent of N!

What made the problem so hard to analyze was its “glaizlire. In the case of NP-
complete problems, Bennett et al. were able to argueitha¢ start out with N empty
boxes, and then put a gold coin in one them, a quantumitalgowould “notice” this
change with only a tiny amplitude. But a quantum algoritiom collision-finding
wouldn’t needto notice such local changes, since there are numeadlisons, and the
algorithm only has to find one of them. Yet in late 200ferafour months of failed
attempts, | could finally show that any quantum algorithmdollision-finding would
need at leastVN steps. My proof argued, first, that a faster algorithould lead to a
certain kind of low-degree polynomial to “distinguish’tween many and few collisions;
and second, that such a polynomial would violate a thegnexwven in 1890 by the
Russian mathematician Andrei A. Markov. In a double irdhis polynomial approach
was the same one that had failed on the game-playing problefore Ambainis’s
entanglement-based approach succeeded! Thanks to subségpemtements by
Yaoyun Shi and others, we now know that any quantum #igorio find collisions
needs at leastVN steps, and therefore that Brassard, Hgyer, and Tapjgsa
algorithm was indeed optimal.

Though many other questions about the power of quantum compateain, by now a
tentative picture has emerged. By exploiting the bizah@nomenon of interference, a
quantum computer reallgould achieve dramatic speedups for a few problems, like
factoring integers. But for the problems that really itex¢he imagination—Iike
searching for mathematical proofs or programs that preéléctstock market—even a
quantum computer would quickly run up against the wall oaatability. If that wall

14

can ever be breached, it seems like we’ll need amegntiew type of computer—one
that would make quantum computers look pedestrian by compariso

Beyond Quantum Computers

If gquantum mechanics led to such a striking new modebofpuitation, then what about
that other great theory of P@entury physics, relativity? The idea of “relativity
computing” is simple: first start a computer working odifficult problem; then leave

the computer on Earth, board a spaceship, and acceleragatly the speed of light.
When you return, all of your friends will be long deadt the answer to your problem
will await you.

What's the flaw in this proposal? Well, consider #meergy needed to accelerate to
relativistic speed. In order to achieve an exponentialpitational speedup, it turns out
that you'd have to get exponentially close to the spdeleght. But to do that, you'd
need an exponential amount of energy—so your fuel @nigyhatever else is powering
your spaceship, would have to be exponentially large. tiBsitagain means that you'd
need an exponential amount of time, just for the fuminfthe far parts of the tank to
affect you!

Similar problems have long plagued proposals for “hypercomptitorgaccelerating
computers by an unlimited amount. For example, if your'tiknow anything about
physics, it'd be easy to imagine performing the firsp gita computation in one second,
the second step in half a second, the third step in demtsmcond, and so on. As in
Zeno’s paradoxes, after two seconds you would have pegtban infinite number of
steps. Why doesn’t that work? Because most physicists thatkthere’'s a minimum
unit of time: thePlanck time or about 13° seconds. If you tried to build a clock that
ticked faster than that, you'd use so much energy teatlttk would collapse to a black
hole. Thought experiments involving black holes also ledsiplsgs to the so-called
holographic principle which states that the maximum number of bits thatbeastored

in any region of space is at most proportional to timéase area of the region, at a rate of
one bit per “Planck area,” or %20 bits per square meter. Whether these results mean
that space and time are literatliscreteat that scale is hotly debated. But it’s already
clear that, unless the results are dramatically wrasggan never achieve an exponential
speedup by means of analog or “hyper” computers.

This provides one example of how thinking about the hasdmdscomputational
problems leads us straight to the frontier of physitdeally, of course, we'd like a
“grand unified theory” that would tell us once and forwallich computations can be
efficiently performed in the physical world. So thenatvhbout the current contenders
for a quantum theory of gravity, such as string theorylaod quantum gravity? What
do they say? Unfortunately, these theories don't geinsto be mathematically rigorous
enough to be turned into models of computation. Indeedt wbuld seem to an outsider
like extremely basic questions—like “what are the poss#thtes?,” and “how do they
evolve in time?"—are still far from settled. The odear result is due to Michael
Freedman, Alexei Kitaev, and Zhenghan Wang, who shdhatdtopological quantum

15

field theories—particularly simple “toy” models of quant gravity, involving only two
space dimensions and one time dimension—are equival@awer to ordinary quantum
computers.

But if our goal is to understand what it would take to s complete problems in
polynomial time, then, why let reality get in the wafya good yarn? Why na@ssume
(say) the possibility of time travel into the pastd aee what happens? The idea was
well explained by the movi8tar Trek IV: The Voyage Homé he Enterprise crew has
traveled back in time to the present (meaning to 1986) in ¢ederd humpback whales
and transport them to the twenty-third century. The teighthat building a tank for the
whales requires a type of plexiglass that hasn’'t yehlevented. So the crew seeks out
the company thawill invent the plexiglass, and reveals its molecular fdanio that
company. The question is, who (or what) invented thaddéa in the first place?

In a 1991 paper, David Deutsch pointed out that we could useilarsdea to solve NP-
complete problems in polynomial time. We’d simply guagsossible solution; then, if
the solution didn’'t work, we’'d go back in time and guessnéxet solution, and so on,
until we found a solution that did work—at which point we'dlgaek in time and guess
that samesolution. Provided a solution exists at all, the onlj-s@nsistent outcome
(that is, the only outcome that avoids the classic paesjsuch as going back in time
and killing your own grandfather) is the one in which ybappen” to guess a solution
that works. Subsequently Dave Bacon studied these “taweltcomputers” in greater
detail, and showed that, just like ordinary quantum comgutiey could in principle
tolerate a small amount of noise. Also, | extendedt&sh's time-travel “algorithm”
beyond even NP-complete problems, to the so-called BER®mplete problems (such
as computing an optimal move in chess).

All of this requires the somewhat problematic assumyptii@at time travel is possible at
alll It's tempting to conjecture that this is not arident: indeed, thaény method for
solving NP-complete problems in polynomial time would benfl to contain some
“unphysical” element. But I'd go even further, and sugdest the intractability of NP-
complete problems might eventually be seen as a pasiciple of physics. In other
words, not only are “closed timelike curves” impossible, e reasonwhy they're
impossible is that if they weren't, then we could soN®-complete problems in
polynomial time! | know this seems circular, but w&ally no different from two other
limitations on technology that emerged from physicse t®econd Law of
Thermodynamics, and the impossibility of faster-thight communication. As with the
hardness of NP-complete problems, we believe thaktpesciples are true because
we’'ve never seen a counterexample, and we're skemticatoposed counterexamples
because we believe the principles are true.

Of course, there i®ne fast and reliable method to solve NP-complete problams i
polynomial time: first generate a random solution, tkéhyourself if the solution is
incorrect. But short of tying your own existence tmeputer’s output, | believe that the
world we inhabit contains no royal road to creativity, magic sieve to cull the
archangels’ autobiographies from the Library of Babel.

16

