
New Security Enhancements
in Red Hat Enterprise Linux
v.3, update 3

By Arjan van de Ven

 Abstract
This whitepaper describes the new security features that
have been added to update 3 of Red Hat Enterprise Linux
v.3: ExecShield and support for NX technology.

August 2004

Table of Contents

Introduction 2
Types of Security Holes 2
Buffer Overflows 3
Countering Buffer Overflows 4
Randomization 6
Remaining Randomization: PIE Binaries 7
Compatibility 8
How Well Does it Work? 9
Future Work 10

��������� 	
�����
�������������������� ��� ���! ����������!� �"�����������$#!	 ��%�&���� �������������!��'���������(*)+���-, ��
������.�!�+� �!����� ����%��/� 01, 	 02� ���"�.� �+� � �����.)+�.� 3�01�.�4� ��
.	 02� �.� ���+� � �����.)+�.� 3�01��54���������!� �.� �!�! !	 �
� ����6�'7�.�!�"��� ���.�.�8�.%���� � 	 ��0� �#�	 ��%8&9	 0:��� ��
�	 02� �.� ���+� � �����.)+��� 3;�!54#!	 ��%!0;<=�.� >!��, ��0� �?@�BA$������C.6B'ED8F �!�

Introduction

The world of computer security has changed dramatically in the last few years.
Network security used to be about one dedicated hacker trying to get into one
government computer, but now it is often about automated mass attacks. The
SQL Slammer and Code Red worms were the first wide-scale computer
security incidents to get mainstream press coverage. Linux has had similar,
less-invasive worms in the past, such as the Slapper worm of 2002.

Another relatively new phenomenon is that compromised computers are
primarily being used for other purposes, including sending spam or
participating in Distributed Denial of Service (DDOS) attacks.

A contributing factor to the mass-compromise problem is that a large portion1

of users and system administrators generally do not apply the security fixes
that are provided by the operating system vendor. This leaves a significant
number of vulnerable machines connected to the Internet at all times.

Providing security updates after the fact, however, is not sufficient. Operating
system providers need to be more proactive in combating security problems.

This paper describes the ExecShield technology that Red Hat developed and
included in update 3 of Red Hat Enterprise Linux v.3. This technology makes
automated security exploits by malicious individuals more difficult or even
impossible, thus reducing the impact of security vulnerabilities.

Types of Security Holes

There are numerous types of security vulnerabilities which can lead to
problems. Security problems can be separated into two classes: social
engineering and programming defects.

Social engineering vulnerabilities are best countered by a combination of user
education and simple technical measures, such as making sure anti-virus
software is installed and updated regularly. Viruses and phishing2 are the
most widespread forms of social engineering.

The most well-known programming defects are buffer overflows. Buffer
overflows are common mistakes found in programs written in the C or C++
programming languages and are generally very easy to exploit. In fact, there
are semi-automated exploit-creation kits available on the Internet.

In 2002, fixes for buffer overflows comprised about 22.5% of the security fixes
provided by vendors3, while the percentage based on availability of exploits is
much higher (about 75% over the last year).

1 For example, refer to Eric Rescorla's paper for the 12th USENIX Security Symposium: http://www.rtfm.com/upgrade.pdf
2 Phishing attacks use spoofed e-mails and fraudulent websites designed to fool recipients into divulging personal financial
data such as credit card numbers, account usernames and passwords, social security numbers, etc.
3 Based on data from: http://cve.mitre.org/board/archives/2002-10/msg00005.html

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 2

Buffer overflows are not the only type of programming flaw that lead to security
breaches. Problems such as cross-site scripting, temp-file races, format-string
and flawed permission checks can also lead to vulnerable systems. It is
beyond the scope of this text to go into detail on these types of exploits.

The rest of this whitepaper will focus on buffer overflows and ways to limit the
damage they can do.

Buffer Overflows

In order to explain what Red Hat has done to counter buffer overflow exploits,
we must first explain how a typical buffer overflow exploit operates.

Figure 1. Typical stack layout

The stack frame image above shows the memory layout of a typical function
(or subroutine) that uses a fixed size buffer. This buffer is stored on the stack
and is located before the memory buffer containing the address of the the
program code that invoked the subroutine. When the subroutine is finished,
this address is used to resume the program at the point of the subroutine
invocation.

On Intel and compatible processors,4 the stack grows in a downward direction
over time (as seen at left in the stack frame image). This is why the buffer is
stored before the return address.

A buffer overflow exploit operates by virtue of a defect in an application. For
example, an exploit can trick a subroutine to put more data into the buffer than
there is space available. This surplus of data is stored beyond the fixed size
buffer, including the memory location that has the return address stored. By
overwriting the return address (which holds the address of the memory location
of the code to execute when the subroutine is complete), the exploit has the
ability to control which code is executed when the subroutine finishes. The
simplest and most common approach is to make the return address point back
to the buffer.

4 Some other, less frequently used, architectures use different mechanisms than the one in the diagram.

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 3

Figure 2. Making the return address point to inside the buffer

After all, the exploit has just filled the buffer. Typical exploits fill the buffer with
program code to be executed; code that may execute another program or
otherwise damage or compromise the machine.

Countering Buffer Overflows

As described in the previous section, most buffer overflow exploits manipulate
the return address on the stack to set it to a desirable value. Return addresses
are a fundamental property of how computer programs operate with
subroutines and cannot realistically be removed. The first logical step in
countering buffer overflows is to ensure that return addresses only point to
trusted program code and not to hostile externally injected program code. This
is the approach that ExecShield, NX technology provided by AMD and Intel,
and Microsoft's Data Execution PreventionTM all take.

The casual observer might wonder why these specific technologies are needed
to create this behavior and why they are not there from the start. The reasons
go to the roots of the 80x86 architecture. In the 80x86 architecture, there is no
distinction between having permission to read from or execute program code
from a certain part of memory. While this was done for full compatibility with
the Intel 8086 processor from the 1980s, clearly this behavior is suboptimal.

The Segment Limit Approach

 ExecShield (and similar technologies such as PaX5 approximate a separation
of read and execute permissions by segment limits (an obscure feature from
the Intel 80386 line of processors). The effect of applying segment limits is
that the first N megabytes of the virtual memory of a process are executable
while the remaining virtual memory is not. The operating system kernel selects
the value of N.

5 The PaX homepage is at http://pax.grsecurity.net/

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 4

Figure 3. Example of a process memory layout

With such a segment limit in place, the operating system must make sure that
all program code is located below this limit (seen at left in the Virtual Address
space image) while data, especially the stack, should be located in the higher
virtual memory addresses (the right side of the picture). When a violation of the
execution permission happens, the program triggers a segmentation fault and
terminates, this behavior is identical to when a program tries to violate read or
write memory permissions.

Segment limits achieve a reasonable approximation of separated read and
execute permissions with this divide-in-two approach. For virtually all
applications, the kernel places the program code in the lower part of virtual
memory while keeping the data mostly separate from this part. In some rare
and special circumstances (for example with the XFree86TM server which takes
care of the graphics in Linux) there may be less than optimal protection due to
this approximation.

Intel and AMD NX Technology

Both AMD and Intel have recognized the lack of ability in separating read and
execute permissions in the x86 architecture. In the AMD64 processor line,
AMD extended the architecture in a backward compatible way by adding a No
eXecute permission to the set of existing memory permissions. As with the
existing read and write memory permissions, the kernel can control No
eXecute permissions of the programs' virtual memory with a 4 KB granularity.
Intel and other x86 processor manufacturers have announced their support for
this NX technology in future product releases as well.

Using NX technology is a more fine-grained approach than the previously
mentioned segment limits approximation. Therefore, ExecShield in the Red
Hat Enterprise Linux v.3, update 3 kernels will use NX technology instead of
segment limits when available in the hardware. In addition, NX technology also
works for kernel mode unlike the segment limit approach.

There is one caveat concerning NX technology. As more permission
bookkeeping information is required, this only works in the PAE 64 bit
pagetable format (the PAE technology allows 32-bit x86 processors to use
more than 4 GB of physical memory). PAE pagetables are not supported by all

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 5

variations of x86 processors. They also incur a 6% overhead (approximately)
on the systems performance. As a result of these restrictions, PAE and NX
technology in Red Hat Enterprise Linux v.3 are only used in the kernel-smp
and kernel-hugemem kernels (which already enable PAE for supporting more
than 4 GB of memory), not in the uniprocessor kernel.

Randomization

Earlier in this document we described that a typical buffer overflow works by
overwriting the return address on the stack to point into the buffer. For
example:

Figure 4. Buffer overflow

To make this work, the attacker must know the approximate address of the
buffer on the stack so that the return address can be filled with the correct
address of the exploit code. While it may sound difficult to find this address, in
practice it is quite easy to obtain. Each system running Red Hat Enterprise
Linux v.3 basically has the same applications, binaries, and libraries. As a
result of these similarities, the sought-after address is very similar or identical
for many of the Red Hat Enterprise Linux v.3 systems. A person who is writing
an exploit only has to examine his own system to determine the address that
will be similar on all other such systems. This is not unique to Red Hat
Enterprise Linux v.3--every operating system with a significant installed base
will have this "same environment" problem.

Another approach in exploiting buffer overflows also involves overwriting the
return address6. However, rather than overwriting it with the address of code in
the buffer, it overwrites it with the address of a subroutine that is already
present in the application, quite often the system() function from the glibc
library. Since this type of attack does not depend on executing code in a
data/stack area but does depend on executing previously present and
legitimate code, it defeats the ExecShield approach of making the stack non-
executable. Note, however, that this approach also depends on knowing the
exact address of the function that is to be called.

Based on the observation that both ways of exploiting buffer overflows requires
knowledge of exact memory addresses, the ExecShield technology in Red Hat
Enterprise Linux v.3, update 3 gives randomized offsets to the addresses of

6 This class of exploitation technique is described in more detail at http://www.phrack.org/show.php?p=58&;a=4

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 6

several key components. This randomization offers more system security by
making it nearly impossible to find the exact address needed for these exploits;
the address is now different for every machine as well as being different each
time a program starts.

In Red Hat Enterprise Linux v.3, update 3, ExecShield randomizes the
following components of a program automatically:

G The stack itself
G Locations of shared libraries
G Start of the programs heap

Remaining Randomization: PIE Binaries

Until now, we have not discussed the randomization of the address in memory
of the application code itself. In Linux, the application is traditionally compiled
in such a way as to only work at a preselected address that has been selected
when the binary was created. As such, this address cannot be reasonably
randomized by the kernel. This randomization omission is a weak spot in the
protection against buffer overflows.

Red Hat has developed, as well as contributed to the GNU Compiler Collection
toolchain, a technique called Position Independent Executable, or PIE. This
PIE technology is designed to overcome this limitation. PIE binaries are
compiled in a special way, in that they are freely locatable throughout the
entire address space of the program. In kernels with ExecShield technology,
the addresses at which these binaries are loaded is randomized, yet in kernels
without ExecShield and PIE support, these binaries are loaded at a generally
predictable location. Not all programs are suitable to be compiled as PIE;
because PIE binaries must be relocatable, they are compiled to become
Position Independent Code (PIC). PIC has a small but measurable runtime
overhead which is the same as the overhead of a shared library (since shared
libraries are also compiled as PIC).

To compile a binary as PIE, the command line arguments -fpie and -pie
must be passed to the compiler and linker respectively.

Since PIE is a new technology, not all programs in Red Hat Enterprise Linux
v.3 use it yet. Red Hat expects to increase the usage of PIE in future updates
of Red Hat Enterprise Linux v.3. In update 3, several highly visible programs
are already compiled as PIE, including:

G The Bind DNS nameserver
G The Samba SMB/CIFS fileserver
G The Squid HTTP proxy
G The vsftpd FTP server

Additionally, several lower profile programs have been compiled as PIE
(rusers and cron, the NFS RPC daemons).

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 7

To check if a binary is compiled as PIE, use this command:

readelf -h -d /usr/sbin/smbd | grep 'Type:.*DYN'
Type: DYN (Shared object file)

Compatibility

During the design and implementation of the new security features in Red Hat
Enterprise Linux v.3, update 3, compatibility with existing setups and
applications was a high priority in making the changes non-disruptive.

The main compatibility issue with making the stack non-executable centers
around applications that need the stack or heap to be executable. This
behavior may be needed for a variety of reasons, including cases of incorrect
assumptions in the application (certain JVM's suffer this), or in cases where
they are written using certain programming constructs or programming
languages that in practice require the stack to be executable.

The solution to this compatibility problem lies in a special flag inside program
binaries and libraries. This flag indicates whether or not the program or library
in question requires the stack to be executable due to the usage of certain
programming language features or programming languages. Red Hat
contributed the code to make the the GNU Compiler Collection toolchain emit
this flag correctly automatically when such programming constructs are used.
In addition, if a binary or library does NOT have this flag, the kernel assumes
this to be a legacy binary with unknown requirements with respect to stack
executability, and will thus allow the stack to be executable to achieve
maximum compatibility.

Table 1. Overview of ELF flag behavior

This scheme provides maximum compatibility for existing applications while
providing maximum security for new known and valid applications.

For more technical details on how to create binaries with the correct setting of
the flag see http://people.redhat.com/drepper/nonselsec.pdf, appendix A. This
document also explains how existing binaries can be treated to get the
protection.

To check if a binary or library has this flag with the eu-readelf
 program, use this command

eu-readelf -l /bin/true | grep GNU_STACK
GNU_STACK 0x000000 0x00000000 0x00000000 0x000000 0x000000 RW

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 8

Flag value Resulting behavior
Flag present, RWE Stack is executable
Flag present, RW Stack is not executable
Flag absent Stack is executable

0x4

which shows that the /bin/true binary in this system has the flag with value
"RW". This binary runs with the stack set as non-executable.

An example of a binary where the source code uses programming language
features requiring an executable stack is below:

eu-readelf -l /usr/bin/eu-nm | grep GNU_STACK
GNU_STACK 0x000000 0x00000000 0x00000000 0x000000 0x000000 RWE
0x4

If a binary or library shows no "GNU_STACK" line, it does not have the flag and
runs with the stack executable.

System administrators who want to identify which processes on their live
systems run with and without stack execute protection can use the lsexec shell
script available online at http://people.redhat.com/arjanv/lsexec.

 How Well Does It Work

An early version of the ExecShield technology appeared in the first release of
the Fedora project. The second release, Fedora Core 2, has a more advanced
implementation that matches the implementation now added to Red Hat
Enterprise Linux v.3, update 3. The exploit prevention has shown to work well
on microprocessors with and without NX technology.

In the period from November 1, 2003 to August 11, 2004, there were 16
security issues published in Linux that are more severe than a Denial of
Service problem and for which an exploit was made available.

Table 2. CVE identifiers of security vulnerabilities with exploit

Out of these 16 exploits, four were for kernel security holes for which
ExecShield does not offer protection, 11 were stack buffer overflows which are
stopped by ExecShield technology, and one was a heap buffer overflow also
stopped by ExecShield. Using ExecShield technology yielded a success rate of
75%. Note that these exploits were stopped even on microprocessors without
NX technology.

It is important to note that ExecShield can only reduce the risk and impact of
buffer overflow type security issues. The presence of these technologies
should never be seen as a substitute for applying security updates provided by
the operating system vendors.

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 9

CAN-2004-0597 	 CAN-2004-0600 	 CAN-2004-0541 	 CAN-2004-0415
CAN-2004-0397 	 CAN-2004-0424 	 CAN-2004-0409 	 CAN-2004-0396
CAN-2004-0176 	 CAN-2004-0084 	 CAN-2004-0077 	 CAN-2003-0985
CAN-2003-0963 	 CAN-2003-0962 	 CAN-2003-0961 	 CAN-2003-0328

Future Work

Red Hat is planning to integrate SELinux, the security framework being
productized in cooperation with the National Security Agency, into the next
major release of Red Hat Enterprise Linux. SELinux is an advanced technology
designed to contain security breaches by being the best of breed in role based
access control, mandatory access control, and discretionary access control. By
implementing SELinux, processes are isolated from one another. Each process
is forcibly restricted to only perform the operations it is expected to perform by
a system wide security policy. While ExecShield is designed to prevent certain
types of security breaches from happening, SELinux is an invaluable
technology for the containment of security breaches in general; such layering of
security technologies is called defense in depth.

New Security Enhancements in Red Hat Enterprise Linux v.3, update 3 10

