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I. Intraduction

In this paper we will clear up some of the confusion and mystery surcounding the LIN-
PACE Benchmark, We will examine whart i3 measured and degeribe how o intecprer the
reselis of the programs. But frst a bit of histary.

The LINPACK Benchmark ig, in some sense, an zccident. [o was originally dezizned 1o
assist uscrs of the LINPACK package [9] by providing information on execution fimes
required o solve a sysiem of lincar equations. The Grst "LINPACE Beachmark™ report
appeared a2 an appendiz in the LINPACK Users® Guide (9] in 1979, The appendix comprised
data for one commenly used path in LINPACK for a matrix prablem of size 100, an 2 collec-
tign of widely wsed compuaters (23 in all), so wsers could estumats he hme fequred 10 solve
their matnz problem,

Over the years other data was added, more 23 3 hobby than anything elze, and today the
collection incledes 200 different computsr systems. In addition the scops of the benchmoark
hias also expanded, The benchmark report describes the performance at three levels of prob-
lem size and optimization oppostuniy: 100x 100 prablem - inner loop optimization, 300 300
problem - two loop optimizatien, and 1000w 1000 problem - three loop optimization (whole
problzm ).

1. The LINPACK Package

The LINFACK package i5 a collection of Fortran subroutines for selving various systems
of lnear eguarions. The softwsre in LINPACK i3 based on a decempesitional approach (o
numerical linesr algebra. The general idea s the followang, Given a problem involving 2
mairix, A, one fEcrors or decomposes A4 into a produest of simple, well-structured matrices
which can be easily manipelaced 1o solve the original problem. The package has the capability
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of handling many different matrix types and different data types, and provides a range of
oplions.

The package itszlf is based on another package, called the Basic Linear Algebra Zubrou-
tines (BLAS)[25]. The BLAS address simple vector operations, such as adding a mulriple of
a wvector to another vector {SAXPY) or forming an inner product (3DOT). Most of the
foating-point work within the LINPACEK algorithms is carried gut by the BLAS, which makes
it possible 1o take sdvantage of special computer hardware without having Lo modify the
underlying algerithm. This approzch thus achieves transpostabilivy and clarity of soltware
without sacrificing relizbilicy.

1. Selection of the Alporithm

Solving a system of equations requires O {n*y floming-point cperations, more specifically,
2ie® + 2nt+ O(n) floating-point additions and muliplications. Thus, the ume required to
solve such problems on a given maching is simply

n?

100°
In the LINPACE Benchmark, & matrix of size 100 is used as the base gince il répresents a
“large cnough™ problem. That s Lhe ©(a™ term in the operation count does nol have a
major effect on the time for large A, Another reason for choosing the mareix size 2z 100 is
that it requires only &{100%) feaing-point clements and can be accommodated in most

fee, = {ime g ¥

environments.

The algorithm used in the tmings is based on LU decomposition with parrial pivating,
The matrix type is real, general, and dense, with matrix elements randamly disteibeted in the
range {—1.0, 1.0, (The random number gencrator ussd in the benchmark 35 o sophisti-
cated: rather its major atteibute is its compaciness. The generator produces pseudo-random
slements and has a period that is rather sherl. 2!+ Asg g resull, if one uses this generator for
4 matrix of order 200, the matrix will be singular te werking precision.]

4, The LINPACK Benchmark

4.1 Dperations

The LINPACK benchmark featurss twg routines: SGEFA and SGESL {these zre the
single-precision versions of the routines: DGEFA and DGESL are the double-precision coun-
terparts), SGEFA performs the decompositien with partial pivoting, and SGESL uses that
decomposition e solve the given system of lincar squations. Maost of the time - Qi)
fAcating-point operations - is speat in SGEFA. Once the marrix has been decompased, SGESL
i¢ ysed 1o find the solution; this Tequires & (n® floating-peint operations.
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SCEFA and 3GESL in wen call thres BLAS routines: SAXPY, I3AMAX, and S5CAL
By far the major portion of time - over 90% ar order 100 - i3 spent in SAXPY. SAXPY is
wged oo muelliply 4 scalar, o, times a vector, 2, and add the resulis to znother vector, Y. Itis
called approximately %2 times by SGEFA and 2 limes by SOESL with vectors of varying
length. The statement y; ¢ y + twy, which forms an element of the SAXPY operation, is

o

i

executed zpproximately = g% times, which gives rise o roughly kT Aoating-pain:

operations in the solution. Thus, the benchmark requires roughly 2/3 million Moming-poing
Operations.

The stalement ¥ = ¥, + ox;, besides the Agating-point addition and Moating-point muld.
plication, involves a few gne-dimensional index operations and storage references. While the
LINFACK routines SGEFA and SGESL involve two-dimensional arrays references, the BLAS
refer to one-dimensional arrays, The LINPACK routines in general have been organized 1o
iccess two-dimensional arrays by column. In SGEFA, the call to SAXPY passes an address
into the two-dimengional array A, which is then rreated as o one-dimensional reference within
SAXPY, Since the indexing is down 2 column of the twe-dimensional areay, the refersnces o
the one-dimensionzl array are sequential with unit stride. This is 2 performanes snhancement
over, say, addressing across the column of a vwo-dimensional array., Since Fortran dictares
that two-dimensional arrays be stored by column in memory, acoosses 1o conseculive ole-
ments of 2 colemn lead o simple index caleulations. References 1o conseculive clements
differ by one word instead of by the leading dimension of the (wo-dimensional array.

4,3 Precision

In discussions of scientific compudng, one normaly assumes that Aoating-point com pig-
tations will be carried our w0 84-bir precision, that is, single precision on COC o CREAY and
double precision on [BM or UMIVAC, In the benchmark there are two zels of numbers
repocted, one for full precision and the other for half precision, Full pracizion refers o G4-hit
arithmetic or the cguivalent, and half precision i5 32-bit floating-poinc arithmetic or the
cruivalent.

4.3 Timing Information

The results in the report reflect only one problem area: solving dense svstems of equa-
lions using the LINFPACK programs in a Forrran envisonment, In porticelar, since most of
the time i3 spent in SAXPY, the benchmark is really measuring the performance of SAXPY.
The average vector length for the algorithm used to compute LU decomposition with partial
pivoting is 2/3x[15]. Thus in the benchmark with 2 = 100, the averags vestor lengeh is 66,
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5, Loop Unrolling

It iz frequently observed that the bulk of the central processor time for a program is
localized in 3% or Iess of the source code [27]. Qften the critical code (from a liming per-
spootive) consists of one or a few short inner loops oypified, for instance, by 1he scalar pro-
dect of two vecrors, On salzr compulers & simple technigue for optimizing of such loops
should then be most welcome. "'Loop wnrolling® €2 generalization of “lasp doubling')
applied seizsctively (o time-consuming loops is just such a rechniquelid, 17],

When a loop is unrolled, its contents are repliczsted one or more times, with appropeiage
afjusiments to array indices and loop increments,  Consider, for instangs, the S5AXPY
sequence, which adds 2 muliiple of one vector 1o a second yecior:

310 i= 1l.a
¥(i) = y(i) + zlpha*x{i)

10 ONTINUE
Unrgbled 1o a depth af Tour, it would assume Lthe [ollowing form:

m= 0 - MINn.4)

Lo 10 i= 1l.m.4
yOi) = y(i) + alpha®ce(i)
yrell = y(wel) + alpha*x{i+l)
yiH 2} yiH2) &+ alpha*x{i+Z)
y(H3) = y(H3) £ alpha*x{ i+ 3)

10 INTIMUE
I this recoding, four terms are computed per loop iteration, with the loop increment
modified o count by fours. Addidonal code has o be added 19 process the WODIN 4] ela-
ments remaining upon completion of the wnreled loop, should the vector length not Be a
multiple of the Ioop ncrement. The choite of four was for illustration. with the generaliza-
tion to other orders obvious from the example. Actoal choice of vnrelling depth in a2 given
instance would be guided by the contribution of the loop o el program execution lme and
by consideration of architecneiral consiraings,

Why does unrolling enhance loop performanee?  First, there is the direcr reduction in
logp overhead -- the ingrement, 1est, and branch function -- which, for shorl loops, may aciu-
ally dominare execution pme per itgration, Unrolling simply divides the overhead by a Dactor
equil to the unrolling depth, although additbonal code required to handle “lefiovers' will
reduce this gain somewhat. Clearly, savings should increase with increasing unrolling depth,
but the marginal savings fall off rapidly after a few terms. The reduction in overhead is the
primary source of improvement on 'simple” computers.

Second, for advanced architeciures employing segmented functional units, the preater
density of non-overhead operations permits higher levels of concurrency within 2 particular
segmented unit. Thus, in the SAXFY example, unrolling would allow more than one mueli-
plicagion 10 be concusfently active on 2 segmented maching such as the CDC 7a00 or [BM



Al

3TV 123, Opumal unrelling depth on such machines might well be related to the degree of
Tunctionad unit sepmentation,

Third, and related to the zbove, unrolling often increases concuseensy berween indepen.
dent funclional units on computers 0 equipped. Thus, in oue SAXPY example, a CDNC
7800, with independent multiplier and adder units, could obtain concerrency between addition
for one element and multiplication for the following element, hesides the SEOMEnalion con-
currency obtainable within ezch wait,

Howeves, with vecior computers and [heip compilars rying o delect vecior operations,
the unroling techniqee had the opposite effect. The unrolling inhibited vectorization of the
loop. the resulting vector code became scalar, and the performancs suffered. Az a result, the
Forrran implementation of the BLAS when run on vector machines should not be unrolled,
The LINFACE benchmark notes this by a reference in the 1able to rolled Farcran.

5. Performance

The performance of a computer is 2 complicated issue, a function of many interrelated
quantities, These guantities include the application, the algorithm, the size of the problem,
the high-level language, the implementation, the human level of effort used to optimize the
program, the compiler's ability to optimize, the age of the compiler, the operating system, the
architecture of the computer, and the hardware characteristics. The results presented for
benghmark suites should not be exiolied as measures of toral system performance {unless
cnough enalysis has been performed to indicare a reliable ¢orrclation of the benchmarks to
the workload of inlersst) but, rather, as reference points for further evaluations.

Performance is oftén measured in terms of Megaflops, millions of floating point apera-
tiong per second (MFLOPS). We usually include both additions and multiplications in the
epunt of MFLOPS, and the reference (o an operation is assumed to be on $4-bit operands.

The manufacturer usually refers to peak performance when describing a system. This
peak performance is arrived ar by counting the number of Roating-point zdditiens and mult-
phicaiions thal <an be 2 pericd of tme, usuzlly the cyele time of the machine, As an example,
the CRAY-1 has a cycle time of 125 nsec. During a oycle the resulis of Lotk the sdder and
multiplier can be com plated

-

un-:rr::_fams n ]-::r'n:.’s — 1S0MELEES,
| crcie 12 5ngec

Table 1 displays the peak performance for a number of high-performanse oom pulers,
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Table T
Theorerical Peak Performance

Machine Cycle  Mumber of Peak
fime, Frocessors, Performance,
nseg MFLOPS

Cuelles PSC 200 | ]

Multiflow TEACE 7/200 120 I L5

COMVEX C-1 100 | 20

SC5-40 45 | A4

FP3 264 it 1 34

Alliant FX/8 170 g R

Amdzhl 500 T 1 133

" CRAY-1 ' 12.5 1 150

CRAY H-MP-1 0.5 1 210

1BM 30590/ VE-200 18.5 2 216

Amdahl 1100 1.3 | 267

HNEC 3X-1E T | 325

-2 CYEBER 205 20 i 400

CRAY X-MP-2 Q.5 2 420

TBM 3090/ VE-400 18.5 1 432

Amdahl 1200 T.5 I 533

MEC 5X-1 7 L GE0

CRAY X-bP-4 9.5 4 240

Hitachi 3-8104/20 Ld 1 g40

WEC 8X-2 & 1 1300

CRAY-2 4.1 4 2000

By peak theoretical performance we mean only that the manufacturer guaranisss that pro-
gram i will nor exceed these rates, soro of a fpeed of lghr for a given compuier. At one time, &
progrommer had (0 go oul of hiz way 10 code a matrix rouning that would not run ac nearly
top efficizncy on any system with an optimizing compiler, Owing to the proliferation of exolic
compuaier architectures, this situation is no lGnger true,

The LINPACK Benchmark illestrazes this point quite well. In practice, as Table 2
shows, thers may be a significant difference berween pesk theoretical and actual performance

[2]:
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Table 2
LINPACK Bemchmark
Sodving o J08) x 100 M awrtx Problem

Machine Fenk Aetual System
Perfermance, Perfurmance,  Efficiency
MFLOPS MFLODS

Culler BSC > 2 Al
Multiflow TEACE 7/ 200 15 a A1
CONYEX C-1 20 3.0 13
20540 44 3.0 18
FFS 264 54 5.6 A0
Alliant FX/8 ) 7.6 {8 proc) M3
Amdahl 500 133 14 1
CRAY-] L0 12 A7
CRAY X.MP-] 210 Z4 A1
IBM 30800 VE-200 216 12 {1 proc) J10.055)
Amdahl 1100 257 ] L0
NEC S5X-1E 323 35 1
CDC CYRER 205 400 17 A3
CRAY X-MP-2 420 24 {1 proc) A00.057%
[BM 3090 VF-£00 432 12 (1 proch A 1CO2E)
Amdahl 1200 533 18 HHES:
MEC 3¥-1 L] 39 i
CRAY X-MP-4 840 241 proc) gz
Hitachi 5810720 240 17 20
NEC SX-2 1500 a4 M35
CRAY-2 2000 15 (1 prach L200.0075)

If we examine the algorithm used in LINPACK and look at how the data are referencsd,
we sce thar ar each step of the factorization process there are vectar aperations that modify a
full sebmatrix of data. This vpdate causes a block of data to Be read, updated, and written

back to ceniral memory. The number of floating-point operations is -%n * and the number of

el
dasa references, both loads and stores, is =a. Thus, for every addimultiply pir we must par-
=

form a load and store of the elements, unfortunacely obtaming no reuse of data. Ewven
though the operations are fully vestorized, there is a siznificant bortleneck iy data mevement.
rezulting in poor performance. On veclor computers this translaces inte twa vector operations
and three vecter-memory references, usually limiting the performance to well below peak



rares, To achieve high-performance races, this operator-re-memary-reference ratg musy be
higher.

In spme fense (hiz is a problem with doing vecor operations on a vecror machine, The
bottlensck is in moving daia and the rate of execution are limited by these quantities. We
can sce this by examining the rate of data transfers and the peak pecformancs.
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M ermory Bandwidhh and Peek Fegormancs

To vnderstand why the performancs i 30 poor. considering the basic operation per-
formed, 3 SAXPY, There are two parameters, Ay and r.., that reflecy the hardware perfor-
mance of the idealized generic computer and give 2 first-order description of any real com-
puter, These characreristic parameters are defined as follews:

Ny - e kalf-penformance length - the vector length required to achieve half the maximum



erform ngs;

T = bhe mazimum or spmpleic pegormance - the maximum rate of computation in units of
equivalent scalar operattons performed per second (MFLOPS).[Z2].

SAXPY

Machine Hie T peak
Alliznt FX/S 1 a0 3 12
CORVEX C-1 3l ] 20
SCE-40 20 1% 4

Alliznt FXSE {for § processors) | 150 14 G4
[BM 3050/ VE (per processor) 34 53 108
CRAY 1-8 20 45 160
CRAY X-MP (per processor) 37 1ol 210
Fujitsu WE-100 200 140 260
MEC 3X-1E 20 120 325
CYEBEER 205 {Z-pipa) 258 170 400
CRAY-Z {per processor) 30 53 S00
Fujitsu W EP-200 120 1%0 533
HMEC 3¥-1 30 240 G50
NEC ZX-2 B0 575 1300
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sDoT
Mashine iy r— peak
Alliant FXE/ ] 150 K] 12
COMYEX C-1 56 o 20
BCE-40 300 30 44

Alliant FX/ 8 {for § processors) | 220 0 o4
[EM 3090VFE {per processor) =1 S5E 104

CRAY 1.8 200 T0 160
CRAY X-MP (per processor) 23 120 210
Fujitsu ¥P-100 .| 200 130 260
MEC SX-1E 00 Rk 325
CYBER 205 (2-pipe) 135 90 400
CRAY-Z (par procassar) Bl 45 200
Fujirsu VWP-200 320 550 533
NEC 5X.1 380 350 630
MNEC 5X-2 480 575 1300

The information presented on SAXPY and SDOT was gensrated by running the fallowing
loops a5 in-line code and melsuring the tme o perform the operations.

SAXPY SDOT
DO 10i= ln DO Wi= 1,n
¥i) = ywi) + alpha * x(i) s= 5+ x{i} *¥i
10 CONTINUE 10 CONTINUE

The BLAS operate only on wectors. The algorithms as implemenied tead o do more
data movement than s necessary, Az 2 result, the performance of the routines in LINPACK
suffers on high-performance computers where data movement is as costly as Aeating-peint
OPEraLions.

In Figurs Z we display a graph comparing the price-performancs of various compueter
s¥siems based on the resulis from the frst LINFPACK penchmark (an example of applications
program s whers (here are short veczors end many references 10 memaory, hoth of which limic
performance on teday's high-performance computers). The performance data are taken from
the first table in the benchmark repert, solving & matrix of order 100 using the LINFACK
software in full precision, in a Fortran environment. The price information is based on the
best available information for che list price of a system. Singe the graph i3 log-log, small
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The machines depicied in Figure 2 fall into four broad CACEOries: Supercom puler, mini-
supercomputer, super-minicomputer, and workstation, The supercom puters cosl between 31
million and $10 million and have a performance between 10 and 100 MFLOPE o the LIM-
PACK benchmark. The mini-supercomputers cost berween $100 thousand and 51 million
and are in the range of 1 to 10 MFLOPS. The super-minis, like the AN -5 percom pu lers,
cost between 3100 thousand and 31 million; however, their perfoemancs on this benchmark
is an order of magnimde Jess (.1 to 1 MFLOPS). The workstations cost berween £10
thougand and $100 theusand and are in the same range 25 the super-minis for performance.

As plotted, the best price-psrformance computers (for the LINPACEK routines) will be
those furthest to the left of the line that represents $100K/MFLOPS. In terms of these dara,
the best price-performance machines appear to be Sun-3 workstations, the Multiflow, and the
Culler IPSC. Bear in mind that this price-performance benefit will be of lle use 1o scientisls
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who require the large memory or full power of a supercomputer. Heverthalass, it does raiss
an interesting question concerning the radeoffs between having many wsers share the largest
and most powerful machine available, and having the same number of vsers distribured
among @ larger number o less poweriul Syslems.

7. Hestructuring Algorithms

Advancad-architzcture computers are usually based on memaory hierarchiss, By restruc-
ering algarithms o exploit this hierarchical organization, one can gain high performance.

A hisrarchical memory structurs involves a sequence of compuier memoriss ranging
from a small, but very fast memory ar the bottom 12 2 large, bul slow memory at the top.
Since 3 particelar myemory in the hierarchy (eall it &) is not as big as the memaory 21 the next
level (M), only part of the information in M will be contzined in A . IF 2 reference is made
1y information that is in M, then it is recrieved a8 uswal. Howewver, il the information is not
in M, then it must be rercleved from A7, with a loss of time. To aveid repeaced recrieval,
information is transferred from M* to A in blocks, the suppesition being thar if 2 program
references an ilem in a particular Block, the next refercnce is likely to be In the zame hiock,
Programs having thiz property are said to have lseality of rgference. Typically, Lthers is a cer-
tain startup time sssociated with gelting the first memory reference in a block. This starmup is
amortized over the hlock move,

Machines such as the CRAY-Z, FPS 1604w MAX boards, Alliant FXS8, MAS ASXL 40,
sperry LIOVEO w/I5F, Star Technology's ST-100, and [BM 30807 ¥F zall have an additienal
level of memory between the main memory and the vector registers of the processar, (For 3
description of many advanced computer architecoures see [ 13].) This memeory, referred to as
cache, or Ipeal memary, i3 relatively small (on the order of 16K words in some cases) and may
nat be under the contrel of the programmer, Meverthelsss, the issue is the same: to come
clase @ gaining peak pecformancs, one must optimize the use of this level of memory {ie,,
retain information a3 long as possible before the next access o main memory), oblaning as
much reuse 25 possihle.

7.1 Matrix-¥ector Operations

One zpproach oo restrocioring algorithms to cxploic hierarchical memaory involves
cxpressing the algorithms o terms of marriz-vecmor operations. Thease operations have the
benefit that they can reuse data and achieve 3 higher rate of execution than the vector coun-
terpart. In fact, the number of foating-point operations remains the same; only the data
reference pactern is changed. This change results in 2 operation-to-memary-reference raze an
vector computers of affectively 2 vector flosling-point operations and 1 veclor-mameory refes
EncE,

Tahle 3 shows the results when the LINPACK zlgorithm for solving dense systems of
lingar equations was recast in terms of a matriz-vector multiplication., (The table labeled
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“matrix-Yector Operations” in the benchmark report gives a more complets list of the perfor-
mance of the various competers when that software 35 run and the time measured.) This
zecond benchmark invelves a matriz of order 300 the larger marrix {3 intended 0 allow
high-pecformance computers to reflect their petential performance, In this benchmark, the
algorithm has been built on moarrix-vecor operations for Level 2 BLAS[14, 11, 12]. which ase
currently being implemented by various compuier vendors.

Table 3

Comparison with Matrix-Veclor Oparations
Solving & 100 x 100 Matrix Problem

Machine Performance Performance Sysrem
Before, Afice, Efficiency
MFLOPS MFLOPS
COMNYEX C-1 ERI 4.8 43
BC5-40 2.0 13 a0
FP3 264 5.6 24 A
Alliant FX/8 7.8 (B procs) 11 A1
CRATY- 12 38 24
CRAY X-MP-1 4 48 w2d
IBM 3000V EF-200 12 2401 proc) 22
Amdahl 1100 14 48 A8
MEC 3X-1E 35 71 22
ChoC CYBER 203 L7 24 ]
CRAY X-MP-2 28 {1 proc 37 (2 procs) JEE
TBM 3050 VF-200 12 2401 proc) 22
Amdahl 1200 L 52 ]
HEC 5X-1 i 74 g1
CRAY X-MP-4 24 (1 proc) T4 (4 procs) JEE
Flitachi S-210¢20 17 48 057
MEC 5X-1 E1] Lo 070
CRAY-Z 14 28 (1 proch 055

The Level 2 BLAS were proposed in order to support the development of software that
would be both portable and efficient acress @ wide range of machine architectures, with
e phasis on vector-prodessing machines. Many of the frequently used algorithms of numer-
cal linear algebra can be coded so that the bulk of the computation is performed by calls to
Level 2 BLAS routines: efficiency can then be obtained by utilizing tailored implementations
of the Level 2 BLAS rourines. On vector-processing machines one of the aims of such



implementations is to keep the vecior lengrhs as long as possible, and 0 most algorthms the
results are computed one veclor row or column) a2t a time. In addition, on vestor regizter
machines performance is increased by reu sing the reselts of a vector register, and not storing
the vector back inlo Ayentory.

Unfartunacely, this spproach to software construction iz aften not well suited to compult-
ers with a hierarchy of memaory (such as global memory, cache or local memory, and vector
registers) and true parallel-processing computers. For those architectures it is ¢fien prefesable
to partition the matrix or matrices into blocks and 1o perform the computation 2y matris-
matrix operations on the blocks. By organizing the computation in this fashion we provide for
full reuse of data while the block is held in the cache or local memary, This approach avoids
prooceive movement of dafa to and from memory and gives 2 sgace-ro-velume offect lor the
ratie of operations te datg movement. In addition, on architectures that provide for parallel
processing, parallelism can be #xploited in two ways: (1) operations on distiner blocks may be
performed in parallel; and (2) within the operations on each block, scalar or vector operations
may be performed in parallel

7.2 Matrix-Matrix Operations

A& zer of Level 3 BLAS have been proposed: targered ac the matric-matriz opera-
tions[10]. If the vectors and matrices involved are of order n, then the original BLAS
include operations that are of ordes 0 (a), the extended or Level 2 BLAS provide operations
of arder .::I(::l}. and the current proposal provides operations of order C'l:n:']
of the term Level 3 BLAS, Such implemeantations ¢an, we believe, be portable across o wide

; hence the use

variety of vector and paraliel compurers and also efficient {assuming that efficient implemen-
tations of the Level 3 BLAS are available). The queston of portability has been much less
srudied bur we hope, by having a standard ser of building blocks, research into this area will
e snoourape,

[0 the cage of marrix factorization, one must perform smarrz-mobic operations racher
than matrix-vecior operations[18, 16]. There i a long history of block algorithms for such
matrix problems. Both the NAG and the IMSL libraries, for example, include such algo-
rithms (FOIBTF and FOIBXF in NAG; LEQIF and LEQOF in [IMSL). Many of the early
algorithms utilized a small main memory, with tape or disk as secondary storage!
1, 6,26, 19,5, 7]. Similar techniques were later used to exploit common page-swapping algo-
rithms in virtual-memaory machines. Indesd, such techniques are applicable wherever there
exists 2 hicrarchy of data storage (in terms of access speed). Additionally, full blocks (and
henee the multiplication of full matrices) might appear as a subproblem when handling large
sparse systems of equations (for example, [ 20,21.7]).

More recently, several workers have demanstrated the effectiveness of block algorithms

on a variety of modern computer architectures with vector-processing or parallel-processing
capabilities, on which potentally high performance can easily be degraded by crcossive
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transfer of data berween different levels of memary {vector repsters, cache, looal M emary,
main memory, o solid-state disks) [ 16, 2,23, 28, 3, 4,29, 5, 18].

Our own efforts have been rwofold: Firss, we are allempling to recast the agorithms
from lincazr algebra in terms of the Level 3 BLAS (matrix-matrix operations), This invalves
modifring (he algorithm to perform mare than one step of the decomposition process ar a
given loop iteracion.

second, (o fcilitate the transport of algorithms wo 2 wide varlery of architecturss and oo
achizve high performeance, we zre isolating the computaiionally intense parts in high-level
modules, When the architecture changes, we deal with the modules separately, rewriting
them in terms of maching-specilic operaions; however, the basic algarithm remaing the same.
By doing 20 we ¢an achieve the goal of a high cperation-to-memory-reference ragio,

Figure 3 shows the results for the third LINPACX benchmark, which solves a matriz of
order 1000, (Tables 6 in the benchmark report presents these resulis in grearer derail) For
this case, manufzoourers may mplement any algorithm they wish 10 solve the lnear equarion.
The only restrictions are that the resulls be correct and that the operation count used w
report MELOPE be 23n? + 2% independent of the actual number of cperations or merhod
used 1o ¢omputer the solution. Most of the implementations here are based on a version of
LU decomposition using marrix-marrix operations,

The groph shows three seis of numbers for various compuaters: the LINFACE bench-
mark number, the best achieved performance wsing any algoricho o solve a 1000 by 1000
system of equations, and the theoretical peak performance of the system. From the graph, it
i3 clear that the LIMPACK numbers fall far short of poak performance; in general, they are
an order of magnitede less than the peak. The second ser of pointg provides a measure af 1he
best performance attainable for this problem on the given svitems (thal is, what degree of the
moanufacturer's quoted pesk performance has been achievad).
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Concluding Remarks

Over the past several years, the LINFACK Benchmark has evolved from 2 simple listing
for one matrix problem o an #xpanded benchmark deseribing the performance a0 three levels
of problem size on several hundred competers, The benchmark today is used by scientises
worldwide o evaluate computer performance, particularly for innevative advanced-
architesture machines.

Nevertheless, a note of caution is needed. Benchmarking, whether with the LINPACK
Benchmark or some other program, must not be vsed indiscriminately o to judge the overall
performance of a computer system, Performance is 2 complex issue, dependent on a varery
of diverse quantities including the algorithm, the problem gize, and the tmplementation. The
LINFACK Benchmark provides three ssparate benchmarks that can be uged 1o evaluare com-
puter performance on a dense system of linear equations: the first for 100 x 100 matrix, the
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second for a 300 x 300 marrix, and the third for a 1000 x 1000 matrix. The third benchmark,
in particular, is dependent on the algorithm chesen by the manufacturer.
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