
Four UNIX Programs in Four UNIX Collections:
Seeking Consistency in an Open Source Icon

Doug Thayer and Keith Miller

Dept. of Computer Science
University of Illinois at Springfield

miller.keith@uis.edu

Abstract

An important claim for Open Source Software (OSS) is that it will, over time, improve
(Martin, 2003 and Cingely, 2003). Critics of OSS make an opposite claim: that OSS will
tend to degrade because its development is unplanned and chaotic (McKendrick, 2003).
Although there is much passion in these arguments, there is often little hard data
presented to back up either of these claims.

In this paper, we present a modest amount of data on a leading Open Source initiative.
Using N-version testing techniques (Grissom and Miller, 1999), we explore four UNIX
utility programs in four different UNIX implementations in two separate releases. We
then compare and contrast this software, examining their agreements and disagreements,
the progress between the two versions, the lines of code, and their execution speed.

OSS proponents would like for UNIX utilities to, over time, converge to the same
(“correct”) behavior. Some of our results indicate a high degree of agreement among the
four implementations for many UNIX calls, especially those that don’t use optional
parameters. However, there is more variation in the number of options supported by the
four implementations. These variations were also visible in the amount of code required
in the four different implementations. There was a wide range in the number of lines of
code used to implement the utilities. For example, the lines of code to implement grep
varied from a low of 167 to a high of 23141 lines.

The range in performance statistics was also striking. For example, for one popular utility
program, cat, the performance measures ranged from a best of 5.4 milliseconds to a worst
of 109.1 milliseconds. On an optimistic note, the worst performer in its first version
improved its performance to 6.2 milliseconds in the second version tested.

Like so much in the messy world of empirical software engineering research, our results
were mixed. However, our overall impression is that these UNIX utilities largely agreed
on the correct behavior for those options that all implementations included. Their
behavior (both the similarities and differences between the different implementations)
appeared to be stable between the two versions.

Introduction

An important claim for Open Source Software (OSS) is that it will, over time, improve
(Martin, 2003 and Cingely, 2003). Critics of OSS make an opposite claim, that OSS will
tend to degrade because its development is unplanned and chaotic (McKendrick, 2003).
Although there is much passion in these arguments, there is often little hard data
presented to back up either of these claims.

In this paper, we present a modest amount of data on a leading Open Source initiative.
Using N-version testing techniques (Grissom and Miller, 1999), we explore four UNIX
utility programs in four different UNIX implementations in two separate releases. We
then compare and contrast this software, examining their agreements and disagreements,
the progress between the two versions, the lines of code, and their execution speed.

UNIX Utilities

The UNIX Utilities are simple programs used with the UNIX operating system to provide
a basic level of functionality to users and administrators. There exists a broad diversity of
many similar implementations, collections of programs that go by the same name and
perform similar tasks, but were developed by different developer groups, sometimes for
very different purposes using different implementation strategies and different
programming languages.

The UNIX operating system has been evolving since 1975, and may persist for a long
time hence. The time-honored UNIX Utilities will be part of this computing legacy; this
justifies investment in improving reliability and performance of the UNIX Utilities.

Because of the modularity of the individual UNIX Utilities, it is within the reach of a
single programmer working informally to replicate the programs one by one. Thus it is
not surprising that there are currently multiple open-source implementations available for
use with open-source UNIX variants. Whereas we cannot compare the UNIX Utilities
implementations with a standardized requirements document, we can inter-compare the
various implementations to discover where they differ in their behavior.

Previous Related Research

Previous experiments have discovered faults in several commercial implementations of
the UNIX Utilities. (Miller et al., 1990) found program-crash errors when the utilities
were subjected to random input streams. Miller et al. (1995) revisited the experiments
five years later and found little to no improvement in the studied UNIX Utilities
implementations.
In general, there is an issue as to whether reliability problems reflect genuine user
concerns (likely inputs). The research in both studies cited above used random strings
with an equally-weighted probability of occurrence of each character in the ASCII

character set (0-255). Also there is the general issue of program control flow changes
controlled by command line options. These studies tested only the default control flow of
the tested utilities. The research reported in this paper extends this previous research by
using a different set of tests, different implementations, and more recent versions than the
1990 and 1995 work.

N-Version Testing

Because the UNIX Utilities lack a standard specification document, the programs cannot
be tested against their specifications. However, they can be tested against each other
using “N-version testing,” (Grissom and Miller, 1999) a technique based on N-version
programming (Knight and Leveson, 1986). In N-version testing, all N versions (in this
paper, four versions) are executed with the same input and the outputs are compared.
Where the outputs match, the programs agree. Interesting cases arise where the outputs
differ. In some cases it is a spurious element of program output (a usage message or
program identification) but in some cases the difference reflects a genuine disagreement
between at least two of the programs. A difference might reveal a fault (an unintended
difference) in one of the implementations, or it might reveal a different interpretation of
the desired functionality (an intentional difference). It is important to note that our testing
procedure tests the sameness, not the correctness, of the programs being tested.

The Experiment

We chose four collections of OSS UNIX Utilities to test: the GNU utilities
(http://www.gnu.org), Busybox (http://busybox.net/), asmutils
(http://linuxassembly.org/asmutils.html), and Perl Power Tools (PPT)
(http://www.perl.com/language/ppt/). All of the collections were available for download
as of this writing. Table 1 lists the four collections, their intended use, and the
programming language used in the implementation.

Table 1. The four collections of UNIX Utilities used in our experiment.

Collection Intended Use Language

asmutils embedded assembler code i386 assembler
Busybox embedded C

GNU general software applications C

Perl Power Tools portability to any Perl platform Perl

For our tests, we chose the four programs available in each of these collections: cat, wc,
md5sum, and grep. We ran tests on two versions of each implementation. Table 2 shows
the lines of code for the 31 programs under test. (The Perl Power Tools collection did not
include md5sum, and so a Perl implementation of that program was from the CSPAN

http://www.gnu.org/
http://busybox.net/
http://linuxassembly.org/asmutils.html
http://www.perl.com/language/ppt/

collection, and thus did not change between versions of PPT.) Program size increased
between versions for most of the implementations. In 2 cases, program size decreased
slightly. The GNU versions of grep were much larger than the corresponding versions in
other collections, at least in part because GNU implements far more options for grep.
Table 3 shows the number of options supported for all the programs. The number of
option supported was determined during the testing experiments.

Table 2: Lines of Code in the programs being tested.

 asmutil GNU Busybox PPT

 grep 2.3, grep 2.5,
 textutils textutils
Program 0.14 0.17 2.0 2.1 0.50.3 0.60.4 ppt-1 ppt-0.12

cat 72 70 823 839 53 53 173 185

wc 255 264 371 371 156 169 342 342

md5sum 550 550 635 635 957 1074 624

grep 167 305 16045 23141 289 372 621 612

261 297 4468 6246 363 417 440 440 mean

279 5357 390 440

Table 3: The Number of options supported

 asmutil GNU Busybox PPT

 grep 2.3, grep 2.5,
 textutils textutils

Program 0.14 0.17 2.0 2.1 0.50.3 0.60.4 1 0.12

cat 0 0 10 10 0 0 7 7

wc 3 3 4 5 4 4 6 6

md5sum 0 0 4 4 6 6 0

grep 1 4 35 45 8 10 21 21

1 1.75 13.25 16 4.5 5 8.75 8.75 mean

1.37 14.6 4.75 8.75

Tests were run with 21 different input files as input. The input files used were called
zerolength (an empty file), onechar (containing only the character “m”), , paper1, paper2,
paper3, paper4, paper5, paper6, (all 6 are ASCI text files), 50lines (contained 50 lines of
paper1),obj1, obj2, (executable files) progc, progl, progp, (source code in the languages

C, Lisp, and Pascal) trans (a transcript of a terminal session containing terminal control
characters), geo (GIS data), bib (bibliographic data), news (an archive of USENET news
messages), pic (image data), book1, and book2 (two full length books). Most of these
files came from the Canterbury text compression corpus available at
http://corpus.canterbury.ac.za/.

Tests were run on a Pentium-class PC running Redhat Linux 6.1. All one and two option
combinations of command-line options were tested with all the 21 input files. Our tests
produced 30,434 output files requiring about 1.7 gigabyes of disk space. Using N-
Version techniques, we were successful at eliminating almost all of these files
automatically, allowing us to focus on a few hundred files that had to be examined to
determine if substantial disagreements (not just formatting discrepancies) existed
between the programs tested.

Functional Agreement Among the Collections and Between Versions

Table 3 illustrates a fundamental problem in comparing the different implementations,
and an immediate indication of the diversity among UNIX Utilities: there is no
uniformity in the number of options supported. The grep program is a dramatic example.
On the one hand, GNU supports 35 options in its first version, and 45 in its second
version; on the other hand, the Assembler collection only supports 1 option in its first
version and 4 in its second version. This kind of variation is a dramatic illustration that
UNIX Utilities have not completely converged, and are unlikely to do so in the near
future.

However, when the implementations support a particular functionality, they often agree
to a high degree. For example, for a “basic” invocation of cat (using prinitable text only
and no options), all the collections agreed in both versions. In general, when
disagreements occurred, they were discovered during the runs that used the input files
zerolength, obj1, obj2, progc, progl, progp, or trans.
In all cases, the two versions from the same source agreed with each other during our
tests. Also, if two different implementations of the same program differed between
collections in the first version, the differences persisted in the second versions. Each of
the next paragraphs discussed differences discovered for each of the programs tested.

The program cat has an option –n that’s implemented in the GNU and Perl versions. The
intent is to number all the lines in the input file. The Perl version and the GNU version
handle the % sign differently. In the Perl version, % is processed one way by the Perl
interpreter, and in a contrary way by the cat application program, leading to somewhat
confusing results. The option –b is again supported by GNU and Perl, and again there are
disagreements. This option is supposed to number non-blank lines. In addition to the %
symbol problem, the implementations differ on whether a line containing a single tab

http://corpus.canterbury.ac.za/

character should be counted as non-blank. The combination of the two options, -nb, is
handled differently by GNU and Perl. GNU marks only non-blank lines, and Perl marks
all lines. The –e option for cat is to end each line with a $ sign. GNU and Perl usually
agree, but they disagreed on the trans file, which ends with repeated null characters. Perl
treats the repeated null characters as an additional line, and GNU doesn’t. Finally, the –v
option is supposed to show non-printing characters using Caret and M- notation. GNU
and Perl disagreed about how to handle particular characters such as tabs.

The program wc counts the number of lines, words, and characters in a file or files. The
Perl implementation accept some of the options without changing its result. As for the
actual counting, the GNU and Busybox versions always agreed on the number of words,
but the Perl version often (though not always) reported a higher number of words. The
assembler version often reported a smaller number of words. For textfiles, the difference
in the counts was within 5%, but the differences were larger for files with non-printable
characters. The implementations had several disagreements when input the file
containing the single character “m.” Although they all agreed there was a single
character, The Perl implementation had an overflow error in the line count, reporting
4,294,967,295 words; Busybox and GNU reported no lines and one word; while the
assembler reported no lines and no words.

The program md5sum calculates checksums for files and data streams. The tested
programs do not implement any of the same options, but they agreed on all inputs when
used without options.

The program grep is the largest that we tested. grep searches for occurrences of string
patterns in files. In our experiments, we used the simple pattern “a” for all our searches.
GNU and Perl implementations do not agree on several options. For example, the –C
option is interpreted by the Perl implementation as a command to count the number of
matches in a file, whereas the GNU version displays two lines of context around each
match. (The assembler and Busybox implementations do not support any options for
grep.) The GNU version did not search non-text files, terminating with an error message,
whereas Perl searched the non-text files. (The GNU version was perhaps trying to avoid
sending control characters to a screen, as this might disrupt a terminal session.) The Perl
implementation supported a –R recursion option that wasn’t supported by any of the other
implementations. This option resulted in a system crash during our automated testing, and
wasn’t investigated further.

Differences in Execution Times

Despite the exceptions noted above, we were impressed by the general agreement on
most of the tests. There were, however, dramatic differences in the time required to run
the tests. Tables 4 shows those differences. The time taken by the assembler code was
especially surprising, since assembler is often used to speed up implementations.

Subsequent examination of the assembler code for grep revealed that it fetched
characters from the file one character at a time, resulting in many more system calls and
delays than encountered by the other implementations. We had also expected execution
times for Perl that were more competitive with GNU’s C implementations, since many of
Perl’s subroutines are implemented as C code. We suspect that the simplicity of our
searches (we always searched for the single character “a”) may have biased our results
somewhat. Still, the GNU execution times are impressive.

Table 4. Time taken to execute the tests. Time was measured using a high resolution
timer with nano-second accuracy. Times listed are in milliseconds.

 Assembler GNU Busybox Perl

 grep
2.3,

grep
2.5,

 textutils textutils
Program 0.14 0.17 2.0 2.1 0.50.3 0.60.4 ppt-1 ppt-

0.12

cat 5.4 5.6 6.4 6.5 109.1 6.2 107.1 107.1

wc 13.6 14.2 13.8 15.1 62.6 61.9 331.3 330.5

md5sum 18.1 18.3 13.0 12.3 10.6 18.0 27.0

grep 609.2 619.2 8.3 8.4 79.0 78.7 113.2 113.2

161.5 164.3 10.3 10.5 65.3 41.2 144.6 144.4 mean

162.9 10.4 53.2 144.5

Conclusions

OSS proponents think that over time UNIX utilities are likely to converge to the same
(“correct”) behavior; OSS opponents think that they are likely to diverge instead.

Like so much in the messy world of empirical software engineering research, our results
were mixed. The implementations agreed on much of the functionality, especially when
options were not invoked. This agreement seems particularly notable since the different
collections do not share any centralized, formal control or documentation. Thus, among
different collections, there was some evidence that some convergence has occurred,
although no further convergence among the collections was evident between versions.
Our tests did show functional stability within each collection between the versions for
options in both versions.

However, there is wide variation in the number of options supported by the four
implementations. When the implementations supported common options, there were
some significant differences in the way files containing non-printable characters were
handled. So convergence has not be complete.

The range in performance statistics was striking. For example, for cat, the performance
measures ranged from a best of 5.4 milliseconds to a worst of 109.1 milliseconds. On an
optimistic note, the worst performer in its first version improved its performance to 6.2
milliseconds in the second version tested. There were also wide variations in the amount
of code required in the four different implementations. For example, the lines of code to
implement grep varied from a low of 167 to a high of 23141 lines.

The N-version testing techniques seemed to be an effective method for exploring these
implementations. In our opinion, our testing results give a far more detailed view of the
actual behavior of these collections than do the documentation available from the
collections themselves, or from external documentation about UNIX utilities.

References

Cingely, R. (2003). Unplugged: How Microsoft’s misunderstanding of Open Source hurts
us all. (October 23, 2003). http://www.pbs.org/cringely/pulpit/pulpit20031023.html,
retrieved December 10, 2003.

Grissom, S. and Miller, K. (1999). N version testing in the undergraduate curriculum.
Computer Science Education, Vol. 9, No. 1, 1-7.

Knight, J. and Leveson, N. (1986). An experimental evaluation of the assumption of
independence in multi-version programming. IEEE Trans. on Software Engineering, Vol.
SE-12, No. 1, 96-109.

Martin, M. (2003). New findings shake up Open-Source debate. NewsFactor Network
(September 18, 2003). http://sci.newsfactor.com/perl/story/22319.html, retrieved
December 10, 2003.

McKendrick, J. (2003) Ballmer: Open Source is not trustworthy. ENT News (October 22,
2003). http://www.entmag.com/news/article.asp?EditorialsID=6004, retrieved December
10, 2003.

Miller, B., Fredriksen, L. and So, B. (1990). An empirical study of the reliability of
UNIX utilities. Communications of the ACM, Vol. 33, No. 12, 32-45.

Miller, B., Koski,D., Lee, C., Maganty, V., Murthy, R., Natarajan, A. and Steidl, D.
(1995). Fuzz revisited: a re-examination of the reliability of UNIX utilities and services.
Technical Report CS-TR-1995-1268, Univ. of WI, Madison.

http://www.pbs.org/cringely/pulpit/pulpit20031023.html
http://sci.newsfactor.com/perl/story/22319.html
http://www.entmag.com/news/article.asp?EditorialsID=6004

