Problems in Object-Oriented Software Reuse

David Taenzer, Murthy Ganti, Sunil Podar

U S WEST Advanced Technologies
6200 S. Quebec St.
Englewood, CO 80111

ABSTRACT

This paper discusses problems in object-oriented software reuse and tools that
can be used to help alleviate these problems. Two approaches to software reuse
in object-oriented programming environments are presented: construction and
subclassing. Previous papers on inheritance have centered on maintenance is-
sues and the problems of subclasses directly referencing instance variables of
their superclasses. We have identified another inter-class dependency which
seems to cause more problems during the creation of new subclasses. This is-
sue, which we call the yoyo problem, is related to objects sending themselves
messages which may cause the execution of methods up and down the class
hierarchy. Tools we have built to help with these problems are described.

1. INTRODUCTION

This paper describes some problems we have faced using subclassing as a mechanism
for software reuse in object-oriented programming and tools that we feel help solve
some of these problems. Our specific experiences are with the Objective-C language,
but we believe that these issues are generally applicable.

We review two basic approaches to software reuse in object-oriented systems, construc-
tion and inheritance, and explain the advantages and disadvantages of each. Our experi-
ences indicate that reuse is more straight forward using the construction approach. This
observation has not been documented in the literature. Object-oriented programming is a
very useful and promising technique, but there are many open issues that need to be
addressed. We hope this paper will generate more interest regarding practical issues in
object-oriented programming and software reuse.

2. OBJECT-ORIENTED SOFTWARE REUSE

Object-oriented programming is advertised as being much more productive than conven-
tional programming [Cox86]). The main reason cited is the reusability of the code. The
major features of object-oriented languages which enhance reusability are encapsulation
and inheritance.

Objective-C is a registered trademark of The Step G

P

26 Taenzer, Ganti & Podar: Software Reuse

Encapsulation means that objects can be treated as black boxes. All that must be known
about an object is its protocol or interface, namely, what messages it responds to and
what they mean in terms of the object’s behavior.

Inheritance refers to the ability to describe new objects or classes of objects by specify-
ing how they differ from other objects. In theory, this can be done without understand-
ing the implementation details of the parent object. A user should be able to define new
classes via subclassing by simply understanding the protocol of the parent class.

These two features lead to two different styles for the reuse of objects: construction and
subclassing. Construction is the approach of defining new classes which create instances
of other classes and use them in their standard form. This style of programming relies
only on the encapsulation features of the object-oriented approach. The subclassing
approach means that new classes of objects are defined by inheriting and modifying the

behavior of an existing class. Subclassing uses both the encapsulation and inheritance
features of object-oriented languages.

2.1. An Example

A simple example is building a string oriented symbol table. This is a list of strings
(keys), each of which has a corresponding value (also a string in this simple case). This
can be built in Objective-C by reusing a library class called Dictionary. Dictionary
objects maintain a list of key/value pairs where both the key and value are objects. The
library also has a String class for character strings.

The basic behavior we would like the symbol table class objects to have are:
lookup: aKey
add: aKey value: aValue

The lookup: message is used to get the value string for a key string. It returns the value
or NULL (a special value which cannot be a string) if the key is not in the table. Sym-

bols are added with the add:value: method which takes the key and value strings as
parameters.

Object
/\
Cltn String
X
Dlictionary

Figure 1: Class Hierarchy for String and Dictionary

Taenzer, Ganti & Podar: Software Reuse 27

As shown in Figure 1, the Dictionary class is a subclass of the Ser class which, in turn,
is a subclass of the Cltn class. The Cltn class supports collections of objects. The Set
class supports collections with no duplicate members. The Dictionary class is a set of
associations (key/value pairs). The associations are modeled with Association objects.
Although the Dictionary class only defines one new class method and seven new
instance methods, because it is a subclass of Set, its protocol is quite complex. Diction-
ary objects respond to ninety-nine messages and the Dictionary class object (called the
Factory Object in Objective-C) responds to sixteen messages.

2.1.1. The Construction Approach

We can define a new class (SymTab) for symbol table objects via either construction or
subclassing. The construction approach would be to define a new class as a subclass of
the Object class (the root of the class hierarchy) with an instance variable that contains
the object identifier of a Dictionary object. The SymTab class must refine the new class

method (which is used to create new objects) and the free class method (which is used
to free objects). The code looks like:

/////////l//ll///l/////////////////////////////////
// SymTab: symbol table class based on the construction approach
////////I///////I//////////////I/l///

@requires String, Dictionary; // uses the String and Dictionary classes

= SymTab : Object (Demo, Primitive) // SymTab a subclass of Object
{

id i_dictionary; // Dictionary object which stores the symbol table

+ new

{
// Creates SymTab object by sending "new" message to superclass.
// Creates i_dictionary instance variable by sending "new" message
// 1o the Dictionary class. Returns the SymTab object.

self = [super new];
i_dictionary = [Dictionary new];
return self;

)

- free
{

#/ Frees Dictionary object before sending its superclass the "free”
// message to frce the SymTab object.

li_dictionary free);
[super free];
return self;

28 Taenzer, Ganti & Podar: Software Reuse

- (char *) lookup: (char *) symbol
{

// Convert key to a String object and get value via the atKey: method
/ in the Dictionary. Returns value object converted to a C string.

retumn [[i_dictionary atKey: [String str: symbol]] str];

- (char *) add: (char *) symbol value: (char *) value
// Convert key and value to String objects and add to Dictionary

return ([i_dictionary atKey: [String str: symbol] put: [String str: value]] str);

Objective-C is a superset of the C language with the addition of messages which are put
into square brackets. Comments start with "//". The class definition line starts with "=",

Class method definition lines start with a "+" and instance method definition lines start
with a "-",

The new method creates the Dictionary object (by sending the new message to the Dic-
tionary class object) and stores the new object identifier in the instance variable for the
new SymTab object. The free method must send the free message to the Dictionary
object so that both the SymTab and Dictionary objects are freed.

The lookup: method converts the key into a String object and then sends this object to

the Dictionary object for this SymTab object. It converts the value to a C string (via the
"str" message) before returning it.

The add:value: method converts the key and value strings into String objects and then
sends these to the Dictionary object. It uses the atKey:put: method in the Dictionary

object, which will return the old value object for the key (if there was one). It returns
the old value as a C string.

2.1.2. The Subclassing Approach

The SymTab class can also be defined via subclassing. In this case, SymTab is defined
as a subclass of Dictionary rather than Object. It does not have to define a new or Jree
method. The lookup: and add:value: methods are similar to the construction approach,
but after the strings are converted into String objects, the SymTab object send messages
to itself to access the Dictionary methods, rather than sending the messages to another

Taenzer, Ganti & Podar: Softwére Reuse 29

object. The code looks like:

T T IR T T TR T
// SymTab: symbol table class based on the subclassing approach
W T TR T i
‘@requires String; // uses the String class

= SymTab : Dictionary (Demo, Primitive) // SymTab is a subclass of Dictionary
{

}

// no extra instance variables

- (char *) lookup: (char *) symbot
{

// Convert key to String and sends itself the atKey: Dictionary
// message. Retumns value object converted to a C string.

return [[self atKey: [String str: symbol]] str];

- (char *) add: (char *) symbol value: (char *) value
(

// Convert key and value to String objects and sends them to itself
// via the atKey:put: message to add the objects to the Dictionary.

return [[self atKey: [String str: symbol] put: [String str: value]] sir];

This code is not perfect because it does not free the String object which represents the
key. Some similar languages (like Smalltalk) use automatic garbage collection so that
the programmer does not have to worry about freeing objects.

In this example, both the construction and subclassing approaches are reusing the Dic-
tionary class and slightly modifying its behavior. The subclassing approach requires less
code since there is no need for special methods for creating and freeing the symbol table
objects.

Another advantage of the subclassing approach is that the new class will automatically
inherit a wide range of useful behavior. For example, Dictionary objects know how to
print themselves out for debugging. They respond to messages which will send a mes-
sage to all the objects in the Dictionary. They respond to messages which will return
the number of objects in the Dictionary, a list of keys, a list of values, etc. The SymTab
class which is based on construction could implement any of these by sending the
corresponding messages to the Dictionary object (the instance variable), but this requires
explicit coding.

30 Taenzer, Ganti & Podar: Software Reuse

The advantage of the construction approach is that some of the behavior inherited from
the superclass may not be appropriate for the subclass. The protocol for the subclass
will therefore be much simpler using the construction approach. This reduces the com-
plexity of the class and makes it easier to reuse. In this example, the SymTab class
defines two new messages. In the construction approach these are added to the 46 mes-
sages that are defined in the Object class. In the subclassing approach these two new
messages are added to the 99 messages that Dictionary objects respond to. The protocol

for SymTab objects is twice as large (101 messages vs. 48) when subclassing is used
instead of construction. ’

Looking at this issue of construction versus subclassing from the perspective of a
strongly typed language, subclassing should be used when the new class is a subtype of
the old class. This is true if objects of the new class could be used wherever objects of
the old class are valid. This criteria also makes sense in weakly typed languages like

Objective-C. The issue is whether objects of the new class should respond to the com-
plete protocol of the old class.

3. PROBLEMS IN OBJECT-ORIENTED REUSE

Most object-oriented programs use a combination of the construction and subclassing
styles of software reuse. Each approach is applicable in certain cases. In our experi-
ence, construction is much easier than subclassing. When you are working on very sim-
ple problems (such as the example in the previous section), both approaches seem to
work well. As you progress to more complex tasks which are reusing more complex
classes, construction remains relatively easy while the subclassing approach can become
extremely difficult. The difficulty of subclassing seems directly related to the complex-
ity of the superclass being reused.

There are several reasons for this, but all are related to encapsulation. In our work to
this point we have been able to use the construction approach without breaking the
encapsulation of the classes we are using. We have not had to look at the code for the
classes when we use this approach. The documentation on the message protocols seems
sufficient in most cases. The major reason for looking at the implementation of a class
would be to evaluate space/time performance tradeoffs if there are several classes avail-
able which can solve a particular problem. This type of information is sometimes avail-
able in the documentation, which makes looking at the code unnecessary.

This has not been our experience with subclassing. We have been forced into looking at
the code for the classes we wish to subclass, and usually the code for their superclasses
as well. This radically increases the complexity of the task.

One of the major reasons for these problems, is that complex behavior is often imple-
mented by a set of methods in a class. Specifically, many methods cause objects to send
themselves messages to implement parts of the required behavior. Objective-C also sup-
ports the Smalltalk feature of letting a method refine its inherited behavior using special

super messages. The combination of self and super messages makes it very difficult to
follow the flow of control in many classes.

Taenzer, Ganti & Podar: Software Reuse 31

For example, an object in many classes is created with the new message. The method
for this often sends itself the initialize message. The initialize method is responsible for
initializing the instance variables in the new object. Many classes in the hierarchy
define only the initialize method and inherit the new method. This makes it hard to
understand when this initialize method will be used. In this case, you must find the new
method in the superclass (or its super-superclass or its super-super-superclass, etc.) and
discover that it sends itself the initialize message. Furthermore, in writing an initialize
method, you have to remember to send the initialize message to super.,

A related problem can occur if a class redefines the new method and does not send itself
the initialize message. In this case, the initialize method in the superclasses will never
be executed. This will destroy the behavior that the new class expects to inherit. The
new method may be implemented several levels up the hierarchy.

In general we have run into the situation where there is a fairly complex control tree
where the nodes in the tree are messages. For example, let’s say we have five classes,
C1 to CS and four methods, A, B, C and D. The classes form a linear subclass hierar-

chy (C2 is a subclass of C1, C3 is a subclass of C2, etc.). Each class implements or
refines some of the four methods:

Class Method A Method B Method C Method D
Cl1 implements
sends self B & C
C2 implements implements implements
sends self D
C3 refines refines
sends super A sends super B
C4 refines refines
sends super A sends super C
Cs refines
sends super D

A class implements a message if it defines a method for the message which does not use
inherited behavior. A class refines a method if it defines a method for a message and
then sends the message to super which executes the inherited method. In this case, class
C1 is an abstract class that defines the A method which sends itself the B and C mes-
sages. These methods are implemented in the subclasses of Cl. The C2 working
implements methods B, C and D. Method B sends itself the D message. The other
classes simply refine their inherited behavior.

If we look at the messages that an object of class C5 sends itself in response to an A
message, the overall structure looks like:

32 Taenzer, Ganti & Podar: Software Reuse

B—D

C

Figure 2: The Message Control Tree for the A Method in Class C5

Method A is implemented by methods B and C. Method B is implemented with method
D. This seems simple enough, but if we look in detail at the control flow of messages
that an object of class CS sends itself in response to the A message, it looks like:

C1

C2

A v

C5

Figure 3: Control Flow Trace for Message A in Class C5

When an object of class C5 receives the A message, the method in the C4 class in exe-
cuted. This method sends itself the super A message which causes the A method in the
C3 class to be executed. This method also refines its inherited behavior, so the A
method in the C1 class is executed. This method sends itself the B and C messages.
When the B message is sent, it is interpreted from the standpoint of self (the CS class).
Since C5 does not implement B, the hierarchy is searched for a superclass which does
respond to this message. In this case, the B method in the C3 class is executed. It
sends the B message to super which causes the B method in C2 to be executed. This
sends itself the D message and we go back down to class CS5.

In a conventional language the nodes in the control tree (as shown in Figure 2) would be
subroutines. There would be exactly one subroutine for each node in the tree. Object-
oriented languages support polymorphism which means that the implementation for a

Taenzer, Ganti & Podar: Software Reuse 33

message (i.c., the method) is dependent on the class of the object which receives the
message; the shape of the message control tree (for a particular message) can vary from
one class to another in the class hierarchy. In our example, the message control tree for
message A in class C1 does not include method D.

The combination of polymorphism and method refinement (methods which use their
inherited behavior) makes it very difficult to understand the behavior of the lower level
classes and how they work. The problem is that a class several levels down in the
hierarchy may need to implement only one or two of the methods. In our example, C§
only refines method D. The important behavior (from the standpoint of construction)

may only be A. It is very difficult to visualize the entire message tree and understand
what a particular method is supposed to do.

3.1. The Yoyo Problem

Often we get the feeling of riding a yoyo when we try to understand one these message
trees. This is because in Objective-C (and Smalltalk) the object self remains the same
during the execution of a message. Every time a method sends itself a message, the
interpretation of that message is evaluated from the standpoint of the original class (the
class of the object). This is like a yoyo going down to the bottom of its string. If the
original class does not implement a method for the message, the hierarchy is searched
(going up the superclass chain) looking for a class which does implement the message.

This is like the yoyo going back up. Super messages also cause evaluation to £0 up the
class hierarchy.

The example presented in the previous section may seem contrived, but it is actually
much simpler than many methods we have examined in the past few months. The
Objective-C library has many levels, and some classes have seven or eight superclasses
instead of the two used in this example. These leaf classes often define only a few
methods but inherit more than three hundred methods from their superclasses! This
leads to tremendous complexity in analyzing their behavior, how they get their behavior
and what should be done in a subclass to modify their behavior. Figure 4 shows a

diagram of the execution of the origin:extent: message in the StdSysLayer class in the
Objective C hierarchy.

34 Taenzer, Ganti & Podar: Software Reuse

Object
DepObject
Quad
DispObject
DispMedium
LayerMedium
Layer
BorderLayer
StdLayer
StdSysLayer

Figure 4: Control Flow Trace for SysSysLayer origin:extent:

Another potential problem with inheritance and encapsulation in Objective-C is that each
class inherits the instance variables of its superclasses and the right to access them. This
can lead to readability problems in the code since the definition for the variable may be
several classes up in the class hierarchy. In practice, this has not been as severe a prob-
lem as methods for two reasons. First, there are far fewer instance variables than

instance methods. A leaf class in the library may have three hundred and fifty instance
methods, but only ten to twenty instance variables.

The second reason is that instance variable definition is additive in Objective-C. Each
class inherits instance variables and can add more to the list, but classes cannot change
the type of inherited instance variables. James Alexander has suggested applying a simi-
lar approach to methods where possible [Ale88].

3.2. Discussion

Several papers in the literature have discussed the potential conflict between encapsula-
tion and inheritance [Sny86], [Mic88]. The papers have been concerned about the fact
that if a subclass has access to the internal structure of a superclass (its instance vari-
ables in Objective-C), it may be difficult, if not impossible, to change the superclass
implementation without breaking the subclasses.

We have discovered that a more important inter-class implementation dependency is the
message control tree. A writer of a new subclass must understand how its superclasses
are implemented in order to understand what messages an object sends itself and which
of these methods should be refined. This not only makes it hard to create new subc-
lasses, it also make the subclasses dependent on the implementation of their superc-

lasses. This leads to greater difficulty in modifying the implementation of classes in the
middle of the class hierarchy.

Some languages use "delegation” instead of inheritance [Lie86]. In these systems, an
object is also defined by its differences from an existing object. When an object
receives a message that it does not understand, it delegates it by sending the message to

Taenzer, Ganti & Podar: Software Reuse 35

another object or set of objects. The approach may help solve the yoyo problem
although we have no personal experience to back up that speculation. We also don’t
know if the delegation approach introduces other problems which are just as serious.

There seem to be several easy solutions to parts of the reuse problems we have encoun-
tered. The instance variable problems seem the easiest to resolve. We use a special
naming convention to make it easier to distinguish instance variables from other vari-
ables (local variables in methods, class variables, globals, etc.). We have also adopted a
coding style of not directly using inherited instance variables, but instead using messag-
ing to access them. This is done by having an object send itself a message to get or set
the value of an inherited instance variable.

The method (yoyo) problem seems harder to solve. One solution is to try to reduce the
complexity of the message control trees. Another is to clearly document them, indicat-

ing exactly what each method should be doing in the context of the overall object
behavior.

Snyder {Sny86] points out that each class has two interface protocols: the one use by
other classes (via construction reuse) and the additional methods which are intended for
use by subclasses. The C++ language [Str86) makes this distinction explicit via its pub-
lic, private, or protected classifications of methods and instance variables. This should
make it easier to understand how to make subclasses.

4. TOOLS FOR SOFTWARE REUSE

The construction approach to software reuse relies on the external protocol of the classes
being reused. Tools which let the user examine these interfaces, such as the Smalltalk
browser [Gol84], are very effective in aiding this type of reuse. We have built a similar
browser for Objective-C which supports a simple pattern match query mechanism for
classes, methods and instance variables. This tool has been very helpful in our reuse of
both library classes and classes that we have developed.

Solving the yoyo problem requires tools that help the programmer understand the control
structure of class or set of classes. This can be done using either static or dynamic
analysis. Static approaches look at the code for the methods in the classes to determine

the control flow while dynamic analysis looks at the messages that are sent by a running
system,

There have been several papers on doing dynamic analysis of control flow in object-
oriented systems. Cunningham and Beck [CuB86] describe a technique for making
diagrams of messages used in an object-oriented computation. Kleyn and Gingrich
[KIG88] have developed a systems for visualizing the dynamic behavior of object-
oriented programs. The major problem with dynamic analysis is that the number o
messages sent can be very large even for apparently simple object behaviors. :

The system described by Cunningham and Beck makes message diagrams using a
modified version of the Smalltalk debugger. Human intervention is required to deter-
mine which parts of the message trace are important and should be included in the
diagrams and which messages should be excluded. The tool is really intended as a

36 Taenzer, Ganti & Podar: Software Reuse

documentation aid which lets an expert explain the messages used by objects in a sys-
tem.

The GraphTrace system developed by Kleyn and Gingrich displays the dynamic
behavior of object-oriented systems and shows how the messages relate to a structural
view of the system. Animation is used to help visualize the messages and the objects
receiving them. These tools are used for understanding complex object systems rather
than just explaining them. The main problem with the dynamic approaches is that there
is an enormous amount of data which must be visualized and it only shows control paths

which were used during the execution being viewed. Other possible control paths are
not available.

Static analysis is very limited in typeless systems like Objective-C and Smalltalk, When
a message is sent to self or super, it is possible to follow the control flow based on
knowledge of the inheritance hierarchy. When messages are sent to other objects, the
type of the receiving object can not, in general, be automatically determined by static
analysis and it therefore not possible to show the complete control tree. Strongly typed
languages, such as C++, Trellis/Owl and Eiffel could support more in depth analysis.

In many cases the ability to follow the message control flow inside a single class is very
useful. We have developed a system for Objective-C which does this and can produce
diagrams similar to the figures used in the last example. This has proved very useful in

understanding classes which use method decomposition (self messages) and method
refinement (super messages).

An extension to this system which we are considering is to allow the user to make
queries about the control graph. This would answer questions like, "if I send the X mes-
sage to an object of class C, which methods in that class (or its superclasses) may be
invoked?", This is basically going down the control flow tree. Another type of query
would be "which messages could I send to an object of class C which would cause the
invocation of method X (in class C or one of its superclasses)?”. These are basically
queries on the transitive closure on the complete message control graph for a class.
These queries would allow the user to understand the connections between the external
protocol for a class and its internal methods and should make it much easier to under-
stand the implications of refining a method in a subclass.

5. CONCLUSIONS

We have only been using Objective-C for a about a year. At this point it appears that
the construction approach to building new classes works very well. We are able to use
existing classes without breaking the "encapsulation barrier" of the classes. Specifically,

we find that we can use the library classes without having to understand their implemen-
tation details.

The Objective-C library classes are very powerful and support complex behavior in a
typeless way. This weakly typed approach seems very useful when constructing new
classes. For example, dynamic arrays are supported by a single class. This class
(OrdCin) can be used for arrays of any type of object. We were able to switch between
using simple arrays and sorted arrays (SortCltn) by simply implementing a comparison

Taenzer, Ganti & Podar: Software Reuse 37

method in the objects being sorted in the array.

The reuse of classes via construction seems simple and much more powerful than the
use of library subroutines in conventional languages like C. This means that object-
oriented code is much easier to reuse than conventional code and this should lead to
greater software productivity in object-oriented environments.

Reuse through subclassing, on the other hand, seems much more difficult. The yoyo
problem, in particular, seems like it may be a general problem with inheritance based
languages that support the concept of an object sending itself messages. In particular,
we suspect that Smalltalk users encounter similar problems. The yoyo problem may get

even worse when multiple inheritance is added to these languages, depending on the
algorithms used.

Both methods of object-oriented reuse are useful in practice. Subclassing makes more
sense when the new class wants to inherit the complete protocol of the existing class.
Construction makes more sense when the new class is not a specialization of the old
class and therefore should not accept its complete protocol.

The tools we have built to browse Objective-C class hierarchies and to display message
control trees have proved very useful. We feel that extensions which support graph
queries make it much easier to understand the design of classes which we are trying to
subclass. Object-oriented software reuse in much more powerful than reuse in tradi-
tional languages. Classes are often extended and reused in ways that were not antici-

pated by the designer of the classes. Powerful tools are required to make this type of
reuse more feasible.

References

[Ale88] Alexander, J. H., ‘“‘About Behaviorism: Rational Uses of Inheritance”’,
Technical Report ST 04-01, U S WEST Advanced Technologies, March
1988.

[Cox86] Cox, B. J., Object-Oriented Programming: An Evolutionary Approach,
Addison Wesley, 1986.

[CuB86] Cunningham, W. and K. Beck, ‘A Diagram for Object-Oriented Programs”’,
Proc. Conf. Object Oriented Programming Systems, Languages and
Applications, Portland, OR, Sep. 1986, 361-367.

[Gol84] Goldberg, A., Smalltalk-80: The Interactive Programming Environment,
Addison Wesley, Reading, MA, 1984,

[KIG83] Kleyn, M. F. and P. C. Gingrich, “‘GraphTrace - Understanding Object-
Oriented Systems Using Concurrently Animated Views”’, Proc. Conf. Object

Oriented Programming Systems, Languages and Applications, San Diego,
CA, Sep. 1988, 191-205

[Lie86] Lieberman, H., *‘Using Prototypical Objects to Implement Shared Behavior
in Object-Oriented Systems”, Proc. Conf. Object Oriented Programming
Systems, Languages and Applications, Portland, OR, Sep. 1986, 214-223,

38

[Mic88]

[Sny86}

[Str86)

Taenzer, Ganti & Podar: Software Reuse

Micallef, J., *‘Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages’, Jouwrnal of Object-Oriented
Programming, April/May 1988, 12-36.

Snyder, A., “‘Encapsulation and Inheritance in Object-Oriented Programming

Languages”, Proc. Conf. Object Oriented Programming Systems, Languages
and Applications, Portland, OR, Sep. 1986, 38-45.

Stroustrup, B., “‘An Overview of C++’', SIGPLAN Notices, Oct. 1986.

