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Abstract:

In the present study, we investigated the role of 5-hydroxytryptamine type 3 (5-HT�) receptors in hypnosis and analgesia induced by

emulsified sevoflurane. A mouse model of hypnosis and analgesia was established by an intraperitoneal or subcutaneous injection of

emulsified sevoflurane. We intracerebroventricularly (icv) or intrathecally (it) administered YM-31636, a 5-HT� receptor agonist, to

mice and observed sleep time during hypnosis. In addition, the tail withdrawal latency was measured using the tail withdrawal test,

and the writhing time was determined using the acetic acid writhing test. In the hypnosis test, YM-31636 (5, 10 and 15 µg, icv) treat-

ment significantly decreased emulsified sevoflurane-induced mouse sleep time (p < 0.05 or p < 0.01). YM-31636 (2.5, 5 and 10 µg,

it) treatment significantly and dose-dependently decreased the tail withdrawal latency (p < 0.05 or p < 0.01) and increased the writh-

ing time (p < 0.01) of mice treated with emulsified sevoflurane. These results suggest that 5-HT� receptors may modulate the hyp-

notic and analgesic effects induced by emulsified sevoflurane.
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Introduction

One hundred and sixty years after inhalation anesthet-

ics were adopted into clinical practice, the underlying

mechanism of action remains unknown. Recently,

ligand-gated ion channels have emerged as the most

promising molecular target for inhalation anesthetics

[8, 15, 23, 30]. Various in vitro studies have reported

that enhancement of inhibitory neurotransmitter func-

tion or inhibition of excitatory neurotransmitter func-

tion is a plausible method to induce anesthesia [1, 30,

32, 33].

5-Hydroxytryptamine (5-HT) is a biogenic amine

that mediates a variety of physiological actions. 5-HT

receptors are classified into seven major groups [9].

Of these subtypes, the 5-HT3 receptor is a member of

the superfamily of ligand-gated ion channel receptors.

This family shares structural similarities with the

nicotinic acetylcholine, glycine, and �-aminobutyric

acid type A (GABAA) receptors [3, 11, 12]. The 5-HT3

receptors are widely distributed in both the central

and peripheral nervous system and are involved in the

physiologic and pathologic processes that mediate

nausea, vomiting, peripheral nociception, and central
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antinociception [5, 20]. Previous studies have shown

that inhalation anesthetics modulate 5-HT3 receptors

[25, 26]. Sevoflurane is a halogenated inhalation an-

esthetic. In vitro electrophysiological studies have

demonstrated that sevoflurane inhibits 5-HT3 recep-

tors [16, 28]. Therefore, 5-HT3 receptors may confer

sevoflurane-dependent anesthesia. Inhalation anes-

thetics have two main effects, hypnosis and analgesia

[19, 24]. However, whether the 5-HT3 receptors are

involved in sevoflurane-induced hypnotic or analge-

sic effects has not been determined in an in vivo be-

havioral study.

We hypothesized that if 5-HT3 receptors contribute

to the hypnotic and the analgesic effects of sevo-

flurane, the application of the 5-HT3 receptor agonist

YM-31636 (2-(1H-imidazol-4-ylmethyl)-8H-indeno[1,2-

d]thiazole monofumarate) should decrease the hyp-

notic and analgesic effects of sevoflurane. We ad-

dressed this hypothesis by using the hypnosis test, tail

withdrawal test and acetic acid writhing test.

Materials and Methods

Animals

Kunming mice (22 ± 3 g) were obtained from the Ex-

perimental Animal Center of Jiangsu University. Mice

were housed in a 12-hour light/dark cycle at room

temperature (22 ± 2°C). Food and water were pro-

vided ad libitum. All experiments were performed be-

tween 8:00 and 12:00 to avoid diurnal variation dur-

ing behavioral testing. The experimental protocols

were approved by the Animal Care and Use Commit-

tee of Jiangsu University and complied with the Na-

tional Institutes of Health Guide for Care and Use of

Laboratory Animals (Publication No. 85-23, revised

1985).

Formulation of emulsified sevoflurane

Sevoflurane was emulsified using the method of Chi-

ari et al. [4]. Sevoflurane was dissolved in soy bean

oil containing dispersed egg lecithin, which com-

prised the oil phase of the emulsion. Dissolution of

egg lecithin in soy bean oil was facilitated with heat.

After dissolution of lecithin, the oil phase was cooled

to approximately 10°C before addition of sevoflurane.

The aqueous phase of the emulsion contained glyc-

erin. The aqueous phase was cooled to 10°C. The oil

phase was then added to the aqueous phase under vig-

orous stirring to form the initial emulsion. The initial

emulsion was homogenized at high pressure to form

the final emulsion. After homogenization, the emulsi-

fied sevoflurane was stored in glass vials. Vials were

capped and refrigerated (2–5°C) until further experi-

mentation. Vials of emulsion were warmed to 37°C

for 2 h before administration. The target concentration

of anesthetics in emulsion was approximately 8%. Af-

ter warming the emulsion for 2 h at 37°C, the actual

concentration of sevoflurane in the emulsion was

7.5%, as determined by gas chromatography.

Intracerebroventricular injection

Intracerebroventricular (icv) administration was per-

formed following the method of Laursen and Belknap

[14]. Briefly, animals were injected at the bregma

with a 50-µl Hamilton syringe fitted with a 26-gauge

needle, which had a tip that was adjusted for 2.4-mm

penetration. The icv injection volume was 5 µl, and

injection sites were verified by injecting an equal vol-

ume of 1% methylene blue. Dye distribution into the

ventricular space was observed. The dye seeped into

the ventricular space, ventral surface of the brain, and

the upper cervical portion of the spinal cord.

Intrathecal injection

Conscious mice were injected intrathecally (it) using

the method of Hylden and Wilcox [10]. At the 5th

lumbar vertebra a 26-gauge needle fitted with a mi-

crosyringe was inserted into the spinal canal at a 30°

angle. Transient tail extension indicated a successful

injection. The solution was injected in a volume of

5 µl over 5 s. Lidocaine (2%) was injected it into

10 mice, which immediately exhibited hindlimb pa-

ralysis that lasted for approximately 10 min in the pre-

liminary experiments.

Drug administration

The hypnotic dose of sevoflurane (20 ml/kg) was de-

termined in preliminary experiments [6]. Sevoflurane

was injected intraperitoneally (ip) to produce hypno-

sis in mice. Sevoflurane was injected ip (10 ml/kg) or

subcutaneously (sc) (25 ml/kg) to produce analgesia

in mice.
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Hypnosis test

Forty Kunming mice (male or female) were randomly

divided into 4 groups (n = 10): the emulsified sevo-

flurane + artificial cerebral spinal fluid (aCSF) groups

and the emulsified sevoflurane + YM-31636 (5, 10 and

15 µg) groups.

Every group was injected ip with a hypnotic dose

of emulsified sevoflurane. One minute after loss of

the righting reflex (animal remain on their back for at

least 30 s) the mice were injected icv with aCSF or

YM-31636. Sleep time (duration of the loss of right-

ing reflex) was observed [2].

Tail withdrawal test

All experiments were started at 10:00 a.m. and per-

formed according to the method of Kayser et al. [13].

Briefly, each mouse was placed in a plastic tube

(50 ml polypropylene conical tube) such that the tail

protruded from an opening in the bottom of the tube.

The distal half of the tail was dipped into a bath of cir-

culating water that was thermostatically controlled at

48.0 ± 0.5°C. The tail withdrawal latency (TWL) was

measured by an experienced observer in a single blind

manner. A cut off time of 20 s was used to avoid tissue

damage.

Eighty Kunming mice (male or female) were ran-

domly divided into 8 groups (n = 10): aCSF group;

YM-31636 (2.5, 5 and 10 µg) groups; the emulsified

sevoflurane + aCSF groups, and the emulsified sevo-

flurane + YM-31636 (2.5, 5 and 10 µg) groups. The

aCSF and YM-31636 groups were injected it with

aCSF and YM-31636, respectively. Groups that re-

ceived emulsified sevoflurane were injected ip with

an analgesic dose. After 5 min, each group was in-

jected it with aCSF or YM-31636. Baseline TWL and

TWL at 5, 10, 15, 20 and 25 min after injection was

observed.

Acetic acid writhing test

Eighty Kunming mice (male or female) were ran-

domly divided into 8 groups (n = 10): aCSF group;

YM-31636 (2.5, 5 and 10 µg) groups; the emulsified

sevoflurane + aCSF groups, and the emulsified sevo-

flurane + YM-31636 (2.5, 5 and 10 µg) groups. The

aCSF and YM-31636 groups were injected it with

aCSF and YM-31636, respectively. The emulsified

sevoflurane groups were injected sc with an analgesic

dose. After 10 min, each group was injected it with

aCSF or YM-31636. One minute after it administra-

tion, mice were injected ip with 0.6% acetic acid

(10 ml/kg). Each mouse was then placed into an indi-

vidual Plexiglas observation cylinder (14 cm diame-

ter; 30 cm in height). The writhing time (arching of

the back, development of tension in the abdominal

muscles, elongation of the body and extension of the

forelimbs) within 15 min was recorded after the final

injection [31].

Statistics

Results are expressed as the mean ± SEM. Data were

statistically analyzed using SPSS16.0 software (SPSS

Inc., Chicago, IL, USA). Multiple group comparisons

were performed by one-way ANOVA followed by the

Dunnett’s post-hoc test. For the tail withdrawal test,

the difference between baseline and drug treatment

was analyzed using a paired Student’s t-test; p < 0.05

was considered statistically significant.

Results

Hypnosis test

Icv injection of YM-31636 (5, 10 and 15 µg) signifi-

cantly decreased the sleep time of the mice treated with

emulsified sevoflurane (p < 0.05 and 0.01; Tab. 1).

Tail withdrawal test

The TWL of conscious mice was not affected by an it

injection of YM-31636 (2.5, 5 and 10 µg; p > 0.05
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Tab. 1. Effects of YM-31636 treatment on the sleep time of mice
treated with emulsified sevoflurane in the hypnosis test.

Group N Dose (µg) Sleep time (min)

aCSF 10 — 58.7 ± 2.2

YM-31636 10 5 53.6 ± 2.3

10 10 50.3 ± 2.4*

10 15 43.1 ± 1.8**

Data represent the mean ± SEM (* p < 0.05, ** p < 0.01 vs. aCSF
group using one-way ANOVA and Dunnett’s test)



compared to the aCSF treatment, Fig. 1A). YM-31636

(2.5, 5 and 10 µg, it) treatment significantly and dose

dependently decreased the TWL (p < 0.05 and 0.01

compared to the aCSF treatment) of mice that re-

ceived an ip injection of emulsified sevoflurane.

YM-31636 (2.5, 5 and 10 µg, it) treatment decreased

the TWL by 18.8 (p < 0.05), 37.5 and 50.0% (p < 0.01),

respectively, 10 min after emulsified sevoflurane in-

jection (Fig. 1B).

Acetic acid writhing test

YM-31636 (2.5, 5 and 10 µg, it) treatment did not af-

fect mouse behavior and the writhing time in com-

parison to the effects of aCSF administration in con-

scious mice (p > 0.05). In the groups receiving an sc

injection of emulsified sevoflurane, YM-31636 (2.5 µg,

it) treatment did not affect the writhing time. How-

ever, YM-31636 (5 and 10 µg, it) treatment markedly

increased writhing time in comparison to mice treated

with aCSF (p < 0.01, Fig. 2).

Discussion

Inhalation anesthetics are often administrated through

the airway. Administration needs specific types of

equipment. Therefore, some inhalation experiments

cannot be performed. Novel formulations of inhala-

tion anesthetics have been developed to facilitate drug

administration in vivo. These formulations are com-

posed of a drug emulsification in a lipid vehicle. This

preparation may be clinically useful to produce anes-

thesia [4]. Previous studies support the efficacy and

safety of the iv administration of emulsified inhalation

anesthetics in animals [34, 35]. According to drug

pharmacokinetics and our preliminary experiments [6,

7], we confirmed that ip and sc injection of emulsified

inhalation anesthetics can achieve hypnosis and anal-

gesia similar to that produced by inhalation. In the

hypnosis test, hypnotic doses of emulsified sevo-

flurane induced the loss of mouse righting reflex.

Mouse sleep time was approximately 60 min; how-

ever, drug treatment minimally affected breathing and

blood circulation. In the tail withdrawal test and the

acetic acid writhing test, we used an ip or sc injection

to produce analgesia. Mice not only showed the ef-

fects of analgesia but also had essentially normal be-
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Fig. 1. Effects of YM-31636 treatment on the tail withdrawal latency
(TWL) in conscious mice (A) and mice treated with emulsified sevo-
flurane (B). YM-31636 (2.5, 5 and 10 µg) was injected it. The data rep-
resent the mean ± SEM. Ten mice were used in each group (* p < 0.05,
** p < 0.01 vs. aCSF group, using one-way ANOVA and Dunnett’s test;
� p < 0.05,�� p < 0.01 vs. baseline using paired Student’s t-test)
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Fig. 2. Effects of YM-31636 treatment on the acetic acid writhing
times in mice. YM-31636 (2.5, 5 and 10 µg) was injected it. The data
represent the mean ± SEM. Ten mice were used in each group (** p <
0.01 vs. aCSF group, using one-way ANOVA and Dunnett’s test)



havior and the righting reflex was not lost. To avoid

an interaction between the ip injection of emulsified

sevoflurane and acetic acid, we chose an analgesic

model that used an sc injection of emulsified sevo-

flurane. Onset velocity measures the absorption ve-

locity from ip or sc injection. Emulsified sevoflurane

is absorbed more slowly from an sc injection than

from an ip injection. Therefore, the dose of emulsified

sevoflurane that was applied to mice in the acetic acid

writhing test was greater than that used in the hypno-

sis test.

General anaesthesia induces immobility, amnesia,

hypnosis, and analgesia and the suppression of stress

responses to noxious stimuli. To simplify our experi-

ments, individual components of general anesthesia

were observed [29]. However, there is a caveat – the

effects of anesthesia are not independent. Pain in-

creases awareness. Noxious stimuli during anesthesia

increases arousal, as indicated by increased neuronal

activity in the reticular formation and thalamus. The

spinal cord (responsible for analgesia and anesthesia-

induced immobility) interacts with the brain cortex

(responsible for awareness and hypnosis).

Inhalation anesthetics supply two essential ele-

ments of anesthesia – hypnosis and analgesia. Hypno-

sis is defined as the lack of ‘perceptive awareness’,

which is assessed by the response to non-noxious

stimuli [15]. The righting reflex test determines the

ability of an animal to regain an upright posture

within 30 s of being placed in a supine position. In the

absence of central nervous system depression or im-

pairment, maintaining an upright posture is a natural

reflex. Therefore, this assay is used to test drugs that

cause significant central nervous system depression

[17]. The tail withdrawal test and acetic acid writhing

test are methods to measure analgesia. Analgesia is

defined as the loss of pain sensation without loss of

consciousness or mobility.

YM-31636 is a novel agonist of the 5-HT3 recep-

tor. Treatment with YM-31636 agitates animals and

may even produce convulsions. In preliminary experi-

ments, we observed that YM-31636 (20 µg, icv) treat-

ment induced scratching and biting behavior. This

suggests that the dose used in the hypnosis test was

sufficient. In agreement with our hypothesis, we ob-

served that icv administration of YM-31636 attenu-

ates the hypnotic effects of emulsified sevoflurane.

This is also in agreement with the findings of Mu-

kaida et al. [16]. In this study, serotonergic activity

modulated the hypnotic effects of isoflurane.

Studies in rats and goats have demonstrated that

the spinal cord mediates the analgesic and immobility

effects of inhalation anesthetics [21, 22]. The it injec-

tion in mice is an appropriate method to study

spinally-mediated drug effects. According to a report

by Hylden and Wilcox [10], 5 µl of methylene blue

dye never diffused beyond the rostral thoracic seg-

ments. In addition, it injected [3H]morphine was not

found in significant quantities in either the midbrain

or forebrain. Therefore, we determined the behavioral

effects of drugs at the spinal level. In preliminary ex-

periments, we observed that YM-31636 (15 µg, it)

treatment increased scratching behavior. However, in

this experiment, the doses used had no effect on be-

havior. Many studies have demonstrated that 5-HT re-

leased from descending bulbospinal neurons exerts

dual (facilitatory and inhibitory) effects on spinal no-

ciceptive transmission – activation of 5-HT3 receptors

and inhibition of 5-HT1A receptors [18, 27]. Our study

showed that YM-31636 (it) treatment significantly

and dose-dependently decreased the TWL and in-

creased the writhing time of mice treated with emulsi-

fied sevoflurane. Our data suggest that sevoflurane

administration reduces current response via 5-HT3 re-

ceptors. In support of our hypothesis, we conclude

that spinal 5-HT3 receptors may modulate the analge-

sic effects of emulsified sevoflurane.
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