
SPLATTING:
A Parallel, Feed-Forward

Volume Rendering Algorithm

TR91-029

July, 1991

Lee Alan Westover

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

SPLATTING:
A Parallel, Feed-Forward

Volume Rendering Algorithm

by

Lee Alan Westover

A dissertation submitted to the faculty of The University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill

1991

Approved by:

Advisor: Turner Whitted

Reader: Frederick P. Brooks, J .

© 1991

Lee Alan Westover

ALL RIGHTS RESERVED

ii

ill

LEE ALAN WESTOVER. SPLATTING: A Parallel, Feed-Forward Volume Rendering

Algorithm (Under the direction of TURNER WHITTED.)

Abstract

Volume rendering is the generation of images from discrete samples of volume data. The

volume data is sampled in at least three dimensions and comes in three basic classes: the

rectilinear mesh-for example, a stack of computed tomography scans; the curvilinear

mesh-for example, computational fluid dynamic data sets of the flow of air over an

airplane wing; and the unstructured mesh-for example, a collection of ozone density

readings at multiple elevations from a set of collection stations in the United States.

Previous methods coerced the volumetric data into line and surface primitives that

were viewed on conventional computer graphics displays. This coercion process has

two fundamental flaws: viewers are never sure whether they are viewing a feature of the

data or an artifact of the coercion process; and the insertion of a geometric modeling

procedure into the middle of the display pipeline hampers interactive viewing.

New direct rendering approaches that operate on the original data are replacing coercion

approaches. These new methods, which avoid the artifacts introduced by conventional

graphics primitives, fall into two basic categories: feed-backward methods that attempt

to map the image plane onto the data, and feed-forward methods that attempt to map

each volume element onto the image plane.

This thesis presents a feed-forward algorithm, called splatting, that directly renders

rectilinear volume meshes. The method achieves interactive speed through parallel

execution, successive refinement, table-driven shading, and table-driven filtering. The

method achieves high image quality by paying careful attention to signal processing

principles during the process of reconstructing a continuous volume from the sampled

input.

This thesis' major contribution to computer graphics is the splatting algorithm. It is

a naturally parallel algorithm that adheres well to the requirements imposed by signal

processing theory. The algorithm has uncommon features. First, it can render volumes

as either clouds or surfaces by changing the shading functions. Second, it can smoothly

trade rendering time for image quality at several stages of the rendering pipeline. In

addition this thesis presents a theoretical framework for volume rendering.

iv

Acknowledgements

Thanks to

Turner Whitted for being my advisor, my boss and my friend.

Turner Whitted, Frederick P. Brooks Jr., James Coggins, Henry Fuchs, and

Stephen Pizer for serving a.s my committee.

Apple Computer Incorporated, GRlP molecular modeling project, Numerical De­

sign Limited, Schlumberger-Doll Research, and Sun Microsystems Incorporated

for supporting portions of this research.

Leonard McMillan for his careful proofreading of this thesis.

Robert Whitton for helping me understand some of the more obscure mathemat­

ics.

Gary Bishop, John Zimmerman, and Mark Harris for their sometimes not so

gentle pushes for me to finish.

Melvin Billik, who introduced me to computers and started this quest.

Guinness, BooBoo, Vanna., and Remote for blindiy putting up with my la.te hours

and my mood swings.

Mother and Father for their love, for answering my oh-so-many questions

throughout growing up and for their belief that I could actually finish.

Rebekah, my wife and best friend, who knew when to a.sk how things were going

and when not to a.sk.

v

TABLE OF CONTENTS

Page
LIST OF TABLES vii

LIST OF FIGURES viii

Chapter Page

I Introduction 1
1.1 Description of the Problem 1
1.2 Thesis 2
1.3 Definition of Terms 2
1.4 Other Work 4

1.4.1 Data-Coercion Method 6
1.4.2 Ray-Casting Method 8
1.4.3 Affine-Transformations Method 9
1.4.4 Element-Tossing Method 11

1.5 Thesis Overview 12

n Volume Data Sampling and Reconstruction 13
2.1 Introduction 13
2.2 Sampling and Reconstruction 14

2.2.1 Sampling 15
2.2.2 Reconstruction 17
2.2.3 Ideal Reconstruction 19

2.3 Sampling and Reconstruction Errors 20
2.3.1 Sampling Errors 20
2.3.2 Reconstruction Errors 23

2.4 Volume Rendering Assumptions and Artifacts 25
2.5 Convolution 30
2.6 Interpolation 34
2.7 Interpolation Methods 35

2.7.1 Ideal Kernel 36
2.7.2 Nearest-Neighbor Interpolation 40
2.7.3 Linear Interpolation 41
2.7.4 Quadratic and Even-Order Interpolation 42
2.7.5 Cubic Interpolation 43
2.7.6 Gaussian Interpolation 45

2.8 Multi-Dimensional Interpolation 47
2.9 Interpolation In Current Methods 47

m Splatting Method 50
3.1 Introduction 50
3.2 Design Trade-offs 51
3.3 Rendering Algorithm 53
3.4 Pipeline Structure 53
3.5 View Transformation 54

3.5.1 Method 54

3.6 CRlO Process
3.6.1 Method
3.6.2 Application of Shading Rules Examples

3. 7 Reconstruction
3.7.1 Footprint Function
3.7.2 Method
3.7.3 Using the Approximation Function
3.7.4 Extents a.nd Mappings

3.8 Visibility
3.8.1 Method

vi

56
56
59
62
62
63
66
67
72
73

N Enhancements 75
4.1 Introduction 75
4.2 Successive Refinement 75

4.2.1 Incremental Updates 75
4.2.2 Footprint Extent: Speed vs. Quality 76
4.2.3 Subsa.mpled Rendering: Speed vs. Quality 79
4.2.4 Rendering Computation Comparison 80

4.3 Parallel Execution 81
4.3.1 Pipeline Balance in the Initial Parallel Implementation 81
4.3.2 Multiple Independent Sheet Buffers 87
4.3.3 Proposed Parallel Implementation 88

V Judicious Compromises . 90
5.1 Introduction 90
5.2 Efficient Process Ordering: Shade First 91
5.3 Reconstruction a.nd Visibility 91
5.4 Footprint Approximations 95

VI Conclusions 98
6.1 Introduction 98
6.2 Conclusions 98
6.3 Contributions 99
6.4 Derivative a.nd Future Work 100

VII References 101

LIST OF TABLES

Table 4.01: Rendering Times During Successive Refinement

Table 4.02: Stage Rendering Times for Three Kernels

vii

so
87

vili

LIST OF FIGURES

Figure 1.01: Example Classifiers. 4

Figure 1.02: Taxonomy with some Current Methods. 5

Figure 1.03: Data-Coercion Method. 6

Figure 1.04: Ray-Casting Method. 8

Figure 1.05: Affine-Transformations Method. 10

Figure 1.06: Element-Tossing Method. 11

Figure 2.01: Idealized Volume-Rendering Process. 14

Figure 2.02: Sampling in the Spatial Domain. 15

Figure 2.03: Sampling in the Frequency Domain. 16

Figure 2.04: The Baseband and the High Frequency Components. 16

Figure 2.05: Initial Sampling Rate. 17

Figure 2.06: Double the Initial Sampling Rate. 17

Figure 2.07: Reconstruction in the Spatial Domain. 18

Figure 2.08: Reconstruction in the Frequency Domain. 19

Figure 2.09: Ideal Low-Pass Filter. 20

Figure 2.10: Initial Sampling Rate allows Replica Overlap. 21

Figure 2.11: Doubling Sampling Rate removes Replica Overlap. 22

Figure 2.12: Bartlett Wmdow as a Low-Pass Filter. 23

Figure 2.13: Spectrum has No Replica Overlap, but Baseband is Distorted. 23

Figure 2.14: Distortion due to a Triangle Reconstruction Kernel. 24

Figure 2.15: Distortion due to a Bartlett Reconstruction Kernel. 25

Figure 2.16: Classifying Process. 26

Figure 2.17: Band-limited Example Signal. 27

Figure 2.18: Binary Classifier. . 27

Figure 2.19: Non-binary Classifier. 28

Figure 2.20: Result of Binary Classification. 28

Figure 2.21: Result of Non-binary Classification. 29

Figure 2.22: Gradient of Input. 29

Figure 2.23: Gradient of Input raised to the 32nd Power. 30

Figure 2.24: Result of Multipling Original by Gradient.

Figure 2.25: Feed-Backward Reconstruction.

Figure 2.26: Feed-Forward Reconstruction.

Figure 2.27: Four Example Reconstruction Inputs.

Figure 2.28: Spatial Domain Sine Kernel in One Dimension.

Figure 2.29: Spatial Domain Sine Kernel Example. .

Figure 2.30: Spatial Domain Truncated Sine Kernel in One Dimension.

Figure 2.31: Spatial Domain Truncated Sine Kernel Example.

Figure 2.32: Spatial Domain Windowed Sine Kernel in One Dimension.

Figure 2.33: Spatial Domain Windowed Sine Kernel Example.

Figure 2.34: Nearest-Neighbor Interpolation in One Dimension.

Figure 2.35: Nearest-Neighbor Interpolation Example.

Figure 2.36: Linear Interpolation in One Dimension.

Figure 2.37: Linear Interpolation Example.

Figure 2.38: Sample Frequency Rlpple.

Figure 2.39: Cubic B-spline Interpolation in One Dimension.

Figure 2.40: Cubic B-spline Interpolation Example.

Figure 2.41: Cubic Catmull-Rom Interpolation in One Dimension.

Figure 2.42: Cubic Catmull-Rom Interpolation Example.

Figure 2.43: Gaussian Interpolation in One Dimension.

Figure 2.44: Gaussian Interpolation Example.

Figure 3.01: Block Diagram of the Splatting Pipeline.

Figure 3.02: View Transformation.

Figure 3.03: Block Diagram of the CRIO Process.

Figure 3.04: Using the Opacity-Variation Table for Surfaces.

Figure 3.05: Using the Opacity-Variation Table for Depth Cueing.

Figure 3.06: Gradient Shading.

Figure 3.07: Block Diagram of the Reconstruction Process.

Figure 3.08: Use of Footprint Function.

Figure 3.09: Unit Region Kernel.

Figure 3.10: View-Transformed Kernel.

Figure 3.11: Ellipse to Circle Mapping.

Figure 4.01: The Three Kernels.

Figure 4.02: Image from the Three Classes of Kernels.

ix

30

32

33

35

36

37

37

38

39

39

40

41

42

42

43

44

44

45

45

46

46

53

54

56

59

60

61

62

65

66

67

70

77

78

Figure 4.03: Image from the Three Resolutions.

Figure 4.04: Functional Parallelism.

Figure 4.05: Trivial Parallel Implementation.

Figure 4.06: Initial Parallel Implementation with N = 2.

Figure 4.07: Data Set Collision with N = 3.

Figure 4.08: Parallel Data Distribution with N = 3.

Figure 4.09: Multiple Independent Sheet Buffers with M = 4.

Figure 4.10: Proposed Parallel Implementation with N = 3.

Figure 5.01: Ideal Splatting Method. .

Figure 5.02: Composite-Every-Sample Problem.

Figure 5.03: Rotated Elliptical Kernels.

X

79

81

83

84

85

86

88

89

92

93

97

Chapter 1

Introduction

1.1 Description of the Problem
A co=on question in scientific research is how does one interpret the large amounts
of data generated by experiments and computations. A key to interpretation is the
ability to visualize and explore the data, which often take the form of scalar and vector
quantities sampled at discrete points in a space. Volume data sets are three- or more
dimensional data sets, where the dimensions can be three spatia.! dimensions or another
combination such as two spatia.! dimensions and one frequency dimension. These data
typica.lly fa.ll into one of three genera.! classes. Rectilinear meshes have samples with
topologica.lly and geometrica.lly regular intervals such as a stack of computed tomography
scans. Curvilinear meshes have samples with topologica.lly regular but geometrica.lly
irregular intervals such as those commonly used in simulations of velocity and pressure
of air flow over an airplane wing. Unstructured meshes have samples with topologica.lly
and geometrica.lly irregular intervals such as a collection of ozone density readings at
multiple elevations from a set of collection stations in the United States.

Researchers co=only view volumetric data with conventional line and surface rendering
methods. They coerce the sampled data into lines or surfaces, and then view these prim­
itives on conventional computer graphics displays (Levintha.! 66], (Wright 72], (Fuchs 77],
(Ganapathy 82], [Williams 82]. Engines for the interactive display of large collections of
display primitives are readily ava.ilable and widely used in scientific applications. This
approach has two fundamental problems. First, the coercion process is prone to errors in
the form of geometric artifacts. In the coercion process, the system must decide whether
each sample is part of a display primitive or the system must fit a display primitive to
each sample. There are many situations for which this decision may not yield satisfactory
results as in the case of an isova.lue surface that both enters and exits a single face of a

volume element. Once the coercion process finishes, the renderer displays the primitives
instead of the original data. As a result, the viewers often do not know if they are looking
at a feature of the data or false features introduced by the coercion process.

Second, the insertion of a geometric modeling procedure into the middle of the display
pipeline hampers interactive viewing. Since many of these surface generation processes
are compute-intensive and some methods require human intervention during a set of
tria.! and error attempts to accurately fit the data (Williams 82], the coercion process
is usua.lly run as a preprocess. H the coercion process did not select the proper surface

2

or the user selects a different isovalue surface to view, the preprocessor must be rerun.
Alternatively, the preprocessor can generate a set of contour surfaces for the data set
and the user can interactively change which subset of the contours he wishes to see. In
order for the user to arbitrarily view any contour or set of contours, the preprocess must
generate all possible contours,_ which slows the coercion process further. In addition,
many of the resulting contour surfaces may never be viewed, as the user can only view
a few at a time or the image becomes too busy.

This thesis addresses the problem of direct display of volumetric rectilinear meshes. My
original investigations attempted to display an artliicially generated cloud model. The
cloud generator produced a density function sampled regularly along the three spatial
dimensions, generating a rectilinear mesh. This data format is similar to that used in
medical imaging, seismology, computational fluid dynamics, and molecular modeling.
Data from these disciplines are frequently rectilinear meshes. This similarity illustrates
the importance of finding a technique to directly display the three-dimensional data with
minimal artifacts, at interactive rates, and without a signliicant loss of information.

The result of this effort is an algorithm for volume rendering that has many features not
commonly found in a single algorithm. First, it is a feed-forward algorithm that maps
the data elements into the image plane rather than mapping the image plane into the
data set. Because it uses a feed-forward approach, the algorithm is easily parallelizable
to run on a multiprocessor without having to replicate the entire data set at each node.
Second, it applies signal processing principles to the reconstruction of the discrete input
samples into a continuous volume before the the renderer samples the volume, yielding
an accurate image relatively free of sampling artifacts. Third, it introduces ways of using
table-driven processes for both the shading and the reconstruction processes to reduce
the computational requirements of the renderer. Lastly, it uses non-binary classifiers to
soften boundaries between classified regions (as do most direct volume renderers).

1.2 Thesis
My thesis is:

"Volume rendering can be described within the frame­
work of linear systems theory."

"Splatting: a feed-forward volume rendering algorithm
can be made to conform to this theory."

"Parallel implementations of splatting need not repli­
cate the entire volumetric data set at each processing
node."

1.3 Definition of Terms
Splatting: Splatting is the name of the feed-forward volume rendering algorithm. The
name is derived from a non-technical description of the feed-forward volume-rendering
process. Consider the input volume to be a stack of 'snowballs and the image plane to
be a brick wall. Image generation is the process of throwing each snowball, one-by-one,

3

a.t the wa.ll. As ea.ch snowba.ll hits the wa.ll, the snowba.ll flattens, ma.kes a. noise tha.t
sounds like "spla.t" and spreads its contribution a.cross the wa.ll. Snowba.lls thrown la.ter
obscure snowba.lls thrown earlier. This menta.! picture of the feed-forward rendering
process inspired the name spla.tting. In the a.ctua.l algorithm, the term splat refers to the
process of determining a. sample's ima.ge-spa.ce footprint on the ima.ge plane, and a.dding
the sample's effect over tha.t fo.otprint to the ima.ge.

Classification, Reflection, Illumination, Opacity- CRIO: Conceptua.lly, the the
feed-forward renderer trea.ts a. sample as a. reflective, light-emitting, semi-transparent
cloud. Classification, in the context of this thesis, is the process of determining the
discrete va.lues for the primary properties tha.t represent the sample. This choice ma.y
be based on the density va.lue of the sample, the gradient magnitude near the sample, or
any other feature of the sample. Emitted color, reflected color and opacity are currently
the only three primary properties. Once a. sample has been classified, it is illuminated
using an illumination model. This can be a. simple identity function, where the sample's
color is merely the primary color, or this model ma.y be more complicated as a. result
of ta.king into account directional lighting effects similar to Phong shading [Phong 75].
For the remainder of this thesis, the process of classifying a. sample to determine its
primary properties and applying an illumination model to the sample to ca.lcula.te the
illumination effects is ca.lled the CRIO process.

Opacity and Color: As sta.ted a.bove, opacity and color are primary properties of a.
da.ta. sample. The samples are treated as being semi-transparent and the percentage of
background tha.t does not show through the the semi-transparent foreground is ca.lled the
sample's opacity. An opacity of 0.0 indicates the foreground is completely transparent
.and blocks none of the light from behind it. An opacity of 1.0 indicates the foreground is
completely opa.que and blocks a.ll of the light from behind it. An opacity of 0.5 indicates
the foreground is 50% opa.que and blocks one-ha.lf of the light from behind it. The color
of a. fully opa.que sample is only dependent on tha.t sample and the light illuminating it.
My feed-forward renderer operates in the < red, green, blue > color spa.ce. This is not a.
requirement of the spla.tting method. It was chosen simply because it is a. co=on wa.y
to represent color ima.ges. Monochrome or spectra.! color could be substituted for the
current color model without significant changes to the method described in the thesis.

Compositing: Compositing is linear interpolation between a. background color and
a. semi-transparent foreground color [Porter 84]. Let Ch•••••=n• be the background
color, c, ... ,. ... nd be the foreground color, and o, ... , nd be the foreground opacity.
Compositing is defined ma.thema.tica.lly by the composite operation

Feed-forward vs. Feed-backward: The difference between a. feed-forward process a.nd
a. feed- backward process is the process's mapping direction. H the output of the process
asks for information regarding the input of the process-such as ra.ys coming from pixels
into the da.ta. in the case of a. ray-casting algorithm, the process is ca.lled feed-backward. In

4

computer graphics, these processes are often called image-order processes. If the input of
the process spreads its information to the output-such as triangles in a polygon z-buffer
algorithm changing the pixel values, the process is called feed-joMJJard. In computer
graphics, these processes are often called object-order processes.

Binary vs. non-binary classifiers: The classification process, as described above,
selects a color and an opacity for each input sample value.

If the result of the classification is a two-valued function in which some of the input
values belong to an opaque object and all other values do not belong to the opaque
object and are fully transparent, the classification process is a binary classifier. Binary
classifiers have been used since the first images were generated of volume data. They
were originally used in volume rendering because the value of each data element could
be represented as a single bit which significantly reduced volume storage requirements.
Non-binary classifiers are classifiers that permit a range of output from the classification
process. These come in two types. The first type, called hard classifiers, have sharp
transitions in the output for input values that are close together. The sharp transitions
may cause artifacts in the rendered image as discussed in section 2.4. The second type,
called soft classifiers, do not have sharp transitions in the output for input values that
are close together. These classifiers allow the output to smoothly move from one level
to another without sharp jumps. The distinction between hard and soft classifiers is not
well defined, but merely differentiates groups within the group of non-binary classifiers.

Figure 1.01 shows an example of each of the three classifier types. The left represents a
binary classifier. Notice how the function has only two values, 0.0 and 1.0. The middle
represents a hard classifier. Notice that even though the function takes on a range
of values between 0.0 and 1.0, there are C 1 discontinuities in the function. The right
represents a soft classifier. Like the hard classifier, this classifier takes on values between
0.0 and 1.0. However, there are no abrupt changes in function value for nearby input
values.

1.0 1.0 1.0

0.& o.• o .•

0.0 0.0 0.0
0.0 1.0 0.0 1.0 o.o 1.0

Binary Hard Soft

Figure 1.01: Example Classifiers.

5

1.4 Other Work
Figure 1.02 represents present volume-rendering methods divided along three axes. The
first a.xis indicates whether the method directly renders the volume data or whether
it coerces the data into other primitives before display. In the coercion methods, the
input data is modeled with either line or surface primitives and then these primitives are
rendered, using standard line- or surface-rendering algorithms, such as a z-buffer. This
was an early, co=only used method for rendering volume data sets.

Data Fuchs 77
Herman 79

Coercion Lorensen 87

Binary Non-Binary

Ra.y Tuy 84 Levoy 88

Casting Van Hook 86

Affine NONE Drebin 88

Transformation Hanrahan 90

Element Frieder 85 Westover 89

Tossing Max 90

Figure 1.02: Taxonomy with some Current Methods.

According to Levoy [Kaufman 91, page 89], direct methods may be further divided
along two axes. The first a.xis represents whether the method uses binary or non-binary
classification. Binary methods dictate that each sample is either a part of or not a part
of the desired object. Non-binary methods may have samples that are fractiona.lly part
of the desired object.

The second a.xis represents the type of projection method. There are three basic types
of projection in direct volume-rendering algorithms. The first method is used in the

feed-backward methods. The methods cast rays through the image plane into the data
set to determine the color for each pixel. The second method is used in the hybrid
methods. Affine transformation methods, an example of a hybrid method, use well­
known feed-forward image warping methods to transform the data so it is pixel aligned.

6

Once the data is pixel aligned, they composite the transformed data to calculate visibility.
The third method is used in the feed-forward methods. These methods map each data
element from the data set onto the image plane. They determine how the sample affects
the image, and add the sample's contribution to the image. These methods are called
element-tossing methods because they send each data element from the data set onto
the image plane. The following sections briefly describe representative methods for each
part of the taxonomy.

At SIGGRAPH 1986, researchers from Pixar displayed the first high quality volume­
rendered images. They exhibited images of a computed tomography study of a female
torso in a movie informally known as "The Spinning Fat Lady". The astonishing
quality of these images encouraged researchers to investigate alternatives to surface
rendering long before the group published details of this work at SIGGRAPH 1988
[Drebin 88] and in U.S. Patent 4,835,712. Subsequent researchers explored volume
rendering [Van Hook 86] and related techniques [Levoy 85] in greater detail.

Research on volume rendering has progressed along four lines: data-coercion, ray-casting,
compositing using affine transformation, and com positing by element tossing.

1.4.1 Data-Coercion Method

Polygon
Engine

Figure 1.03: Data-Coercion Method.

[Fuchs 77], [Herman 79], [Ganapathy 82], [Meagher 84], [Lorensen 87], [Cline 88],
[Upson 88] and [Gallagher 89], have investigated various methods of fitting surfaces
in the data and then rendering the surfaces. In Figure 1.03, the renderer is fitting a

7

triangle to a volume element. Triangles from other elements are already on their way to
the conventional polygon engine that is generating the image.

Fuchs, Kedem, and Uselton [Fuchs 77] introduced the first widely used coercion method.
First, a preprocess generates contours within single slices of the data. The method forms
inter-slice triangles from these intra-slice contours by solving the problem of finding
minimum-cost cycles in a directed-toroidal graph. Their optima.! solution generates the
minimum-area surface. They bound the maximum cost of finding the optima.! solution
for a set of contours with m points in one contour and n points in the other contour as

,..(m,n) < (rlog2ml +2) x (2mn+m) for (m< n)

Conventional polygon rendering displays render the triangles to generate the image.

Ganapathy and Dennehy [Ganapathy 82] introduced a heuristic method based on inter­
contour coherence. They theorize that if the method can obta.in some knowledge of
the nature of the object, these methods never need more than m + n steps to form
the triangles between the two contours, where m and n are the number of points in
the two contours. This bound is significantly less than the above bound [Fuchs 77].
These heuristic methods are valuable when computational speed is more important than
optima.! results.

Herman and Liu [Herman 79] proposed the cuberille method. This method thresholds
the data using a binary classifier to generate a binary array. The method renders ones
in this array as opaque cubes by rendering each of the six faces into a z-buffer. Because
the data comes presorted in the volume array, the method can determine a back-to-front
traversal and can use a "Painter's" algorithm instead of the z-buffer.

Meagher [Meagher 84] proposed storing the above binary array as an octree. The binary
array is often sparsely occupied and the areas that are occupied are grouped together.
This coherence a.!lows the octree to greatly increase the method's traversal speed.

Lorensen and Cline [Lorensen 87] introduced a simple and efficient method for generating
surface data. The "marching cubes" method creates a triangle model of an isovalue
surface by a divide and conquer approach. The method fits a triangle at each isovalue
surface value for each volume element using a look-up table and calculates the triangle
vertices using linear interpolation. The renderer renders this surface using standard
polygon rendering algorithms and uses local gradients for the shading norma.!.

Cline, Lorensen, Ludke, Crawford, and Teeter [Cline 88] enhanced this method to
generate individual points instead of triangles. They noticed that as the resolution of
their data sets increases, the number of triangles generated is greater than the number
the pixels in the image. In the "dividing cubes" algorithm, the method generates points
at each isovalue surface instead of triangles. The relative difference in the pixel and
volume element sampling rates controls the density of points.

Upson and Keller [Upson 88], introduced two methods: a ray-casting method, similar
to those described below, and a polygon-based method. In the polygon method, the

8

renderer intersects scan planes, the z extension of scan lines, with each volume element
forming intersection polygons. The method breaks these intersection polygons into spans
and integrates the pixels of each span front-to-hack to generate opacity. The renderer
operates on the volume elements in a predetermined front- to-back order to calculate
visibility.

Gallagher and Nagtegaal [Gallagher 89] describe an algorithm that builds upon the
"marching cubes" method with an algorithm that works on unstructured as well as
rectilinear meshes. It uses visually continuous bicubic polynomials instead of triangles.
An advantage of this method is that it processes each volume element in isolation, thus
minimizing the amount of information accessed in the inner loop. The authors contend
the above is desirable for efficient microcoding of the inner-loop on a single workstation.
In addition, the fact that the elements are treated independently lends the algorithm to
parallel implementations.

1.4.2 Ray-Casting Method

0
/ /

] ~ ~ ~ t-))---- 1-

'v v
Image Plane Data Set

Figure 1.04: Ray-Casting Method.

[Blinn 82], [Kajiya 84], [Tuy 84], [Van Hook 86], [Levay 88], and [Sabella 88], describe
methods of ray-casting volume densities with algorithms that use projections of lines
through the image plane to map pixels into the data set. In Figure 1.04, the renderer is
throwing a ray through the image plane and into the data. The ray continues through
the data until it has accumulated enough density to become opaque. The ray's final
color is determined when the ray either becomes opaque or exits the volume.

9

Blinn [Blinn 82] first began investigating the use of scattering models to simulate how
light interacts with density functions to render the rings of Saturn. Kajiya [Kajiya 84]
investigated ray-casting volume densities as a way to render clouds and other phenomena
defined on rectilinear meshes. In each case the goal was to produce a visually accurate
depiction of natural phenomena. Their methods of shading were adopted as the preferred
shading method in volume rendering. As seen in results from [Drebin 88] and [Levoy 88],
conventional surface shading methods [Phong 75] work well with binary classifiers.
However, the use of scattering models extends the utility of volume renderers to non­

binary classifiers where there are no true surfaces and the desired image has cloud-like
properties.

Tuy and Tuy [Tuy 84] introduced a binary classifying ray-casting method. The method
first thresholded the data set to generate a binary data set. Then for each pixel, they
cast rays into data set which stopped when the ray hit an opaque sample. They modeled
each sample as a rectilinear solid.

Van Hook [Van Hook 86] and Levoy [Levoy 88] explored the basic ray-casting model for
volume rendering. This method casts rays from the image plane into the data set, in a
feed- backward algorithm. Each ray travels through the data set accumulating shade and
opacity according to a rule that accounts for light transmission and reflection. At points
along the ray, the renderer interpolates the data set to generate sample points, shades
each sample point by a shading model, and adds the results of the shading model to the
current ray. The process terminates when the ray exits the volume or the accumulated
opacity along the ray equals one. When the opacity is one, no other data points can
affect the ray's color. This early termination optimization is unique to the feed- backward
method.

Sabella [Sabella 88] introduced a ray-casting method that uses an accurate light­
scattering model to model the scattering effects of light in a cloud. Based on (Blinn 82],
[Kajiya 84], and (Max 86], Sabella's model uses the view rays as the basis for computing
line integrals through the data to generate the color for each ray. His approach generates
cloud-like images that illustrate internal structure, instead of contour surfaces of the data.

10

1.4.3 Affine-Transformations Method

Figure 1.05: Affine. Transformations Method.

[Drebin 88] and [Hanrahan 90] use compositing techniques that warp slices or volumes
into the image plane using affine transformations. In Figure 1.05, the renderer is warping
the data until the data samples become pixel-aligned. Once the data samples are pixel­
aligned, the renderer will scan each depth column of pixels and determine the pixel's
color.

In 1988, Drebin, Carpenter, and Hanrahan [Drebin 88] presented the earlier Pixar
work. Their feed-forward algorithm is an image warping method. The renderer uses
conventional two-pass image warping [Catmull 80] to resample the volume elements in
each slice so the resulting slices are pixel-aligned. It then converts the warped data set
into a substance data set, an opacity data set, a gradient data set, and possibly a mask
data set. The renderer uses these multiple data sets to generate shaded slices that it
composites together to form the final image.

Hanrahan [Hanrahan 90] extended the above method to a three-pass algorithm. He
developed the affine-mapping equations and discussed a way to avoid resampling artifacts
by instructing the renderer to make all the magnification passes before the minification
passes. If a minification step precedes a magnification step, much of the information in
the signal would be lost, since multiple samples are collapsed into a single sample during
minification and they cannot be separated during a subsequent pass. This ordering

allows the renderer to retain the maximum amount of the signal's information during
the transformation.

11

1.4.4 Element-Tossing Method

0

LP EDTO ffiD
~ / Element

to Image Plane

Footprint

Conversion

v
Figure 1.06: Element-Tossing Method.

[Frieder 85], and [Max 90] use com positing techniques that map each volume element
directly into the image plane. Element tossing approaches incrementally add each
sample to the image by first determining an area of effect and then adding the sample's

contribution over this area. In Figure 1.06, the renderer is throwing the data samples
at the image plane. The renderer calculates the image-plane footprint of the element as
the element heads toward the plane, and incrementally adds the element's affect to the
image.

Frieder, Gordon, and Reynolds [Frieder 85] presented a back-to.front method that
traverses a rectilinear mesh in a back-to-front order. Volume elements that have a

density that lies within a given range are coded as part of an object and these elements
are mapped to a pixel and added to the image. Since the elements are either in the object
or not in the object, the renderer simply overwrites the pixel value with the element's
color. The method shades the samples based on distance from the image plane, an

imaginary light source, and binary classification. This method depends on the density
of input samples being higher than the density of image samples to prevent gaps in the

displayed image.

If neighboring volume samples are spanned by polygons, rendering the polygons allows

volume data to be rendered at any scale without gaps. Max, Hanrahan, and Crawfis
[Max 90] have developed a method of rendering unstructured meshes by rendering each

12

polyhedron individually. It scan-converts the front faces and the back faces of the
polyhedron into separate buffers and then integrates the density between these faces using
a scattering model. It then composites these partial images together in a back-to-front

order.

1.5 Thesis Overview
This thesis presents a element-tossing feed-forward volume-rendering algorithm. It
operates on rectilinear meshes that are uniformly sampled in each mesh direction.
However, the sampling rate does not have to be the same in each of the mesh directions.
The method uses non-binary classifiers to reduce rendering artifacts. In addition, a small
local neighborhood surrounding a sample contains all the information a renderer needs
for that sample. This allows the renderer to treat each sample independently, so that
when the renderer runs in parallel, there is little replication of the input data set. Both
the reconstruction and the cruo methods use tables extensively to reduce computation.

Chapter 2 presents a theoretical framework for this and other volume-rendering algo­
rithms.

Chapter 3 describes the rendering pipeline, including transformation, CRlO, reconstruc­
tion, and visibility. Chapter 3 also describes methods for table-driven CRlO and recon­
struction processes.

Chapter 4 discusses two ways to speed up rendering: successive refinement and parallel

execution.

Chapter 5 describes some compromises of my implementation of the splatting algorithm.

Chapter 6 outlines the major areas of future work.

Chapter 2

Volume Data Sampling and Reconstruction

2.1 Introduction
Signal processing forms the basis of volume rendering because volume rendering involves
the reconstruction of the input data and a. resa.mpling to genera.te a discrete image. The
input da.ta. set is a. collection of sa.mples ta.ken from an original input signal or generated
by a. computation. The sampling theorem sta.tes [Sha.nnon 49], if the volumetric sa.mpling
ra.te is a.t least twice the original source's maximum spa.tia.l frequency, it is possible to
fully reconstruct the original signa.! from the sampled signal. The Nyquist rate of a
signal is defined a.s the frequency twice as high a.s the highest frequency in a signal.
If the original signal contains higher frequencies than one half the volumetric sampling
ra.te, which is normally the ca.se, the sa.mpled signal does not conta.in the information
required to properly reconstruct the input signal, and alia.sing a.rtifa.cts will be introduced.
These sa.mples ma.y not represent the original source, but they do represent a continuous
function. Volume renderers a.ssume the original signal wa.s properly filtered before
sa.mpling and this continuous filtered signal is the signal they a.re trying to display,
since the volume renderer does not ha.ve a.ccess to the original source and ca.n only work
from the sa.mples.

The volume-rendering pipeline is a series of geometric ma.pping and filtering steps. For
a. given view, the renderer reconstructs, transforms, sha.des, filters, and resa.mples the
input da.ta. to generate the ima.ge. The ordering of these operations differs a.mong volume­
rendering methods. This section will describe the ideal sequence of operations.

From a. signal-processing point of view, the ideal process would ta.ke the following steps.

(1) Reconstruct the continuous volume function from the input samples by convolv-
ing the sa.mples with a properly chosen reconstruction filter kernel.

(2) Transform this continuous function into image space.

(3) Shade the continuous function.

(4) Filter the continuous sha.ded function with alow-pa.ss filter to lower the signal's
ma.ximum frequency so tha.t it is below one half the ima.ge resampling ra.te.

(5) Sa.mple the function at a. ra.te corresponding to image resolution a.nd calculate

the visibility function to genera.te the ima.ge.

14

Figure 2.01 is a. block diagra.m of the idealized volume-rendering process.

Discrete Continuous Discrete

Input 1--l Reconstruct

t
Transform

t
Shade

t
Filter

t
Resa.mple ~ Image

Figure 2.01: Idealized Volume-Rendering Process.

The renderer first transforms the discrete input into a. .continuous signa.! and then
transforms the continuous function into image space in preparation for the eventual
image-space sa.mpling. The shading process must occur before the resa.mpling process,
because the non!inearities of the shading process may introduce high frequencies into
the signal's spectrum and increase the signal's Nyquist rate so that it is above the
resa.mpling rate. Once the renderer shades the continuous signa.!, the renderer must
filter it to band-limit the signa.! to one half image resa.mpling rate. After the renderer
has filtered the signa.!, the renderer can sa.mple the signa.! a.t image locations (typicaliy
pixels) without aliasing.

This chapter will discuss sa.mpling theory and the assumptions volume-rendering re­
searchers make to apply this theory. It will describe convolution, the mechanism of
reconstruction, in detail to explore efficient convolution methods. In addition, it will
discuss the connection between reconstruction and interpolation and describe the fre­
quency response of common interpolation functions. Fina.lly, the chapter describes the
four basic volume-rendering methods in terms of their interpolation functions.

2.2 Sampling and Reconstruction
Signa.! processing and digital signa.! processing have their roots in 17th and 18th century

mathematics. These techniques are indispensable in the electronics and computer fields.
Today's digital computers store signals, images, and other representations of continuous
functions as a. collection of sa.mples that are discrete in both space and representation.
Algorithms designed without regard for signa.! processing principles, to minimize the

15

number and size of errors when working with these discrete functions, are ad-hoc at
best.

2.2.1 Sampling
Sampling is the process of generating a regular collection of discrete data values from
a continuous signal, illustrated in Figure 2.02. In one dimension, a continuous function
hnpu,(z) denotes the continuous signal. The comb function is a train of evenly spaced
delta functions

00

c(z)= L c5(z-n).
n=-oo

Sampling is expressed mathematically as multiplication of the original signal, hnpu,(z),
by the comb function, c(z),

j,•mpl•o(z) = /;npu,(z) X c(z).

M
\
x+ I I ! --'-'-.!.-1-.-1-.J-J.......J.....l.-

i .. m.l•d(Z)

c(z)

Figure 2.02: Sampling in the Spatial Domain.

By the convolution theorem, multiplication in the spatial domain corresponds to con­
volution, as defined in section 2.5, in the frequency domain [Castleman 79, page 169].
Therefore, sampling, which is multiplication in the spatial domain, can also be expressed
as convolution in the frequency domain, as shown in Figure 2.03. Processes are often
easier to visualize and interpret in one domain than the other and the above property
allows researchers to alternate from one domain to the other and work with the more
convenient representation. Let F(v) be the Fourier transform of f(z) and C(v) be the
Fourier transform of c(z), then

F,ompl•d(v) = F;npu•(v) * C(v).

16

baseband

I~ ~~
0 \ F;nput(v)

*+

I ·• 0 •
F,.mpl<d(v)

·• 0 •
C(v)

Figure 2.03: Sampling in the Frequency Domain.

Convolution of F;nput with a comb function replicates F;nput at each harmonic of the
comb pulse rate, a.s seen in Figure 2.03.

P •• m,1• 4(v) contains two parts: the baseband spectrum, which consists of an exact copy
of the original spectrum, and the harmonic components which make up the rest of the
replicated spectra, Figure 2.04.

baseband replicated spectra

~

Figure 2.04: The Baseband and the High Frequency Components.

The Fourier transform of the comb function is also a comb function with reciprocal
spacing of pulses. Thus, if function c() has a period of r, its Fourier transform, C(), will
have a spacing of ~. The closer the pulses lie in the , spatial domain the further apart

17

the pulses will lie in the frequency domain-for example, for an original sampling rate
of one, c() is shown in Figure 2.05.

·• 0 • ·• 0 •
c(z) C(z)

Figure 2.05: Initial Sampling Rate.

If c'() has one-half the period of c(), then C'() will have twice the spacing of C(), as shown
in Figure 2.06.

.. 0 • ·• 0 •
c'(z) C'(z)

Figure 2.06: Double the Initial Sampling Rate.

2.2.2 Reconstruction
Reconstruction is the process of generating a continuous signal from a set of samples,
as illustrated in Figure 2.07. Convolving the samples, j,.m,~od(z), with a reconstruction
kernel h(z), produces a function defined at all"'

'"""""""'''"("') = J,.mpl•d(z) * h(z).

18

I I
\

!

Figure 2.07: Reconstruction in the Spatial Doma.in.

In the sa.me way that sampling may be expressed in either the spatial doma.in or the
frequency doma.in, reconstruction, which is convolution in the spatial doma.in, may
also be expressed a.s multiplication in the frequency doma.ln, a.s shown in Figure 2.08.
Interpreting the result of reconstruction by different kernels is significantly ea.sier in
the frequency doma.in than the spatial doma.in because multiplication is much easier to
visualize than convolution (Castleman 79, page 169]. Let F(v) be the Fourier transform
of f(z) a.nd H(v) be the Fourier transform of h(z), then

19

baseband

0 \ F,.mplod(ll)
,.... X~

t ·• 0 •
F,.aeotuif'uct&d(V)

·• 0 •
H(v)

Figure 2.08: Reconstruction in the Frequency Domain.

2.2.3 Ideal Reconstruction
The goal of reconstruction is to isolate the baseband spectrum from the replicated
spectra in F,ompla4(v). The original sampling process must satisfy two criteria for the
reconstruction process to be able to reconstruct the original input signal. First, the input
must be band-limited. H the signal has a spectrum that is zero everywhere except in a
specific finite range, then it is band-limited.

3 llo 3 \1 jvj > t>o.

Second, the sampling frequency must be greater than the input's Nyquist rate. H F;nput(v)
contains no frequencies greater than one half the sampling rate, it is theoretically possible
to reconstruct F;nput(v) from F,.mplo4(11) exactly. H the sampling process fails to meet
either of these conditions, the replicas of the input spectrum overlap in the frequency
domain, as shown in Figure 2.10, causing the baseband and the replicated spectra to mix.
The extraneous high-frequency information from the replicas is indistinguishable from
the baseband information. This high-frequency energy is said to alias to low-frequency
energy. When the input signal violates the first condition, the spectrum of the input
signal has an infinite extent and cannot be sampled without aliasing. When the sampling
process violates the second condition, the result is an undersampled signal.

H the sampling process satisfies the above two criteria, the reconstruction process can
exactly reconstruct the original input. In the frequency domain, the ideal reconstruction

process multiplies F,.mplo4(v) with H(v) defined as

{

1, if jvj <Nyquist rate;
H(v) = 0, if jvj =Nyquist rate;

o, otherwise.

20

H(v) is called the rectangular or rect filter and is illustrated in Figure 2.09. It is an ideal
low-pass filter which will suppress all spectral replicas in F,..,.P1, 4(v) except the baseband
spectrum. The passband is all frequencies whose absolute value is below the maximum
frequency of a band-limited signal. The stopband is all frequencies whose absolute value
is above the maximum frequency [Oppenheim 83, page 401]. The ideal low-pass filter
will pass all frequencies in the passband without distortion and completely suppress all
frequencies in the stopband. The spatial equivalent of the frequency domain rect filter is
the Fourier transform of H(v), which is the sine function illustrated in Figure 2.09. The
sine function is defined as

. () •in(.-z) ••nc " = (.-z) .

Multiplication in the frequency domain by the rect function is equivalent to convolution
in the spatial domain with the sine function. The sine function has an infinite extent,
which is a problem for the practical use of the ideal low-pass filter in the spatial domain,
as discussed in section 2. 7.1. Convolution with a filter of infinite extent is troublesome
for computers, since it requires an infinite amount of work, and truncating the filter to
a finite extent has adverse effects on the filter's passband and stopband performance.
Consequently, no practical implementation of a low pass filter in the spatial domain
exhibits ideal behavior.

(\ -

... .r.. /\ /\.r.. ...
··~v·v~· ·• 0 •

ainc(z) H(v)

Figure 2.09: Ideal Low-Pass Filter.

2.3 Sampling and Reconstruction Errors
Deviation from the ideal in both the sampling and reconstruction processes causes errors
in the result. Since sampling and reconstruction are central to the volume-rendering
process, sources of error at each step must be identified so that these errors may be
minimized. Choice of sampling rate and reconstruction kernels significantly affect the
types and amounts of these errors.

2.3.1 Sampling Errors
Once the original signal has been sampled, frequency information above one half the
sampling rate aliases as low-frequency information and the reconstruction process cannot
distinguish it from the energy of the baseband spectrum. This extraneous energy causes

21

Moire pa.tterns a.nd ja.gged edges [Mitchell 88]. The reconstruction process ca.nnot remove
these effects since the sa.mpling process modified the original information. The system
must a.ddress these effects during the original sa.mpling process in one of two wa.ys. It
ma.y sa.mple a.t a. higher ra.te, shifting a.pa.rt the spectral replicas a.nd thereby removing
a.ny overla.p, or a.t least reducing the a.mount of overla.p. Alterna.tively, the system ma.y
filter the original input before sa.mpling to remove the high frequencies so there is no
overla.p of spectral replicas after sa.mpling.

In Figure 2.10, the sa.mpling process has undersa.mpled the original signal a.nd the input
signal's spectral replicas overla.p.

0 \ F;,.,..,(ll)

I , I I . I • ' I • I

/ ~.: u v ~ \I ~ \I \I \I \i ~
F,.mpl~o(II)

·• 0 •
C(11)

Figure 2.10: Initial Sa.mpling Ra.te a.llows Replica. Overla.p.

In Figure 2.11, the spa.tial sa.mpling is doubled which sprea.ds out the comb function's
pulses in its Fourier transform fa.r enough so the replicas do not overla.p.

22

I
0 \ Finput(v)

*+r \(\(\! ! -· 0 •
i',a,mplcd(II)

-· 0 •
C'(v)

Figure 2.11: Doubling Sampling Rate removes Replica Overlap.

In Figure 2.10, the original signal has frequencies above one half the sampling rate and the
replicas overlap after sampling. Instead of increasing the sampling rate, the input may
be prefiltered to remove the high-frequency energy, as shown in Figure 2.12 .. Figure 2.12
illustrates the result ofprefiltering the input spectrum with a Bartlett window. Now the
input spectrum does not have the high-frequency energy that causes overlap.

23

baseband

I l
0 \ F,n,..t(V)

x+

I -· 0 •
P,,,.,.,d(v)

-· 0 •
Filter(v)

Figure 2.12: Bartlett Window as a Low-Pass Filter.

Convolving the filtered signal with the comb function produces a result with no overlap,
but with a distorted baseband, as shown in Figure 2.13.

baseband

0 \ FJiltorod(v)

*+

I -· 0 •
F,.,.,z,d(v)

-· 0 •
C(v)

Figure 2.13: Spectrum has No Replica Overlap, but Baseband is
Distorted.

24

2.3.2 Reconstruction Errors
Poor selection of the reconstruction kernel may cause two other artifacts. The first
artifact arises when the reconstruction kernel distorts the baseband. The second artifact
arises when the reconstruction kernel passes frequencies in the stopband. If the kernel
distorts the baseband, it modifies the reconstructed signal, as shown in Figure 2.14. If
the kernel passes frequencies in the stopband, it may collect energy from other replicas
even when these replicas do not overlap, as show in Figure 2.15. This introduces high
frequencies in the reconstructed signal that were not originally present.

In Figure 2.14, the reconstruction process multiplies the sampled signal's spectrum by
the frequency domain triangle pulse. The multiplication deforms the resulting spectrum
in the baseband.

baseband

0 \ F,.mplad(II)

x•
! ·• 0 •

F"ecotU'tf'ucted(V)

·• 0 •
Triangle(v)

Figure 2.14: Distortion due to a Triangle Reconstruction Kernel.

In Figure 2.15, the reconstruction process multiplies the sampled signal's spectrum by
the frequency domain equivalent to the spatial triangle filter. Since the triangle filter is
the result of convolving two rect functions, the Fourier transform of the triangle is the
product of two •inc() functions, which is nne"(). The lobes of the kernel which extend
beyond the baseband allow energy in the stopband to pass to the resulting spectrum. As
we shall see in section 2. 7.3, reconstruction with the spatial triangle filter is of particular
interest in volume rendering since it corresponds to the linear interpolation steps found

in several conventional display algorithms.

25

baseband

0 \ F,.mploo(v)

(\ X+-

t ·• 0 •
F,.aconltf'ud•ci(11)

·• 0 •
•inc2(v)

Figure 2.15: Distortion due to a Bartlett Reconstruction Kernel.

2.4 Volume Rendering Assumptions and Artifacts
Researchers must understand signal processing techniques to develop effective volume­
rendering methods because reconstruction of a continuous volume from the sampled
volume is an essential step before the data can be resampled as an image. Even if the
step is omitted, it is still implicitly a part of the operation because the theory demands
it. Furthermore, to use these techniques, researchers make assumptions about their data.

Most volume-rendering algorithms assume that the input signal is band-limited and that
the original signal was properly sampled. The signal was either known to be band-limited
or it was correctly filtered to lower the Nyquist rate of the input so that it is below the
sampling rate. If this is not true, the sampled data is corrupt and the volume-rendering
process cannot correct the situation.

Although the original samples may accurately represent the original signal, many volume­
rendering methods classify and shade the samples first and then try to reconstruct these
samples, a second source of errors in volume rendering. The CRIO process is often a
nonlinear process which may introduce high frequencies into the sampled data as shown
in Figure 2.20 and Figure 2.24.

Since the CRIO process may be any arbitrary function, illustrated in Figure 2.16, the
result of the CRIO process on a sample's spectrum is hard to characterize. Instead we will
look at two example CRIO processes. The first example compares the results of a binary
and a non-binary classifier on a simple input signal. The difference in classifiers can have a
dramatic effect on the output signal's spectrum, as shown in Figure 2.20 and Figure 2.21.
The second example illustrates the effect on an output sample's spectrum of using the

26

local gradient in the CRIO process. The Fourier transform of the gradient operator is
jw, a high-pass filter, which damps low frequencies and enhances high frequencies. These
enhanced high frequencies in the output will cause aliasing during the resampling process
if they are not reduced or removed during a filtering step.

Input CRIO process Output

HQ 1
Figure 2.16: Classifying Process.

In Figure 2.17 through Figure 2.21, both a binary classifier process and a non-binary
classifier process classify an input signal. Both select the region where the input lies
between 0.3 and 0.7. The binary classifier decides "yes" or "no" whether to include that
point in the output at every sample. The binary classifier introduces sharp transitions
in the output function and introduces high frequencies in the output spectrum. Images
of binary classified data typically have many rendering artifacts because of these high
frequencies [Frieder 85] .. The non-binary classifier does not make "yes" or "no" decisions,
but smoothly transitions from a "no" decision to a "yes" decision with varying degrees
of acceptance in-between. This classifier generates soft edges, not sharp transitions, in
the output and introduces significantly fewer high frequencies.

Figure 2.17 shows the example input signal. This signal is

f;n,.,.t(z) = 0.5 + 2•0 , -5 <. z < 5,
{

m(fl) if •
0, otherwtse.

The signal does contains high frequencies, but they have near zero amplitude.

27

1.0

1\
I \ Area of Interest

0.0
J \

-· 0 • ·• 0 •
/input(Z) IH(11)1

Figure 2.17: Band-limited Example Signal.

Figure 2.18 is an example of a binary classifier. It classifies input in the range 0.3 to
0. 7 as part of the object of interest. This classifiers is almost the rect function, but is
actually trapezoidal in shape as the sides are not vertical. Notice the sharp corners in
the classifier and the resulting high frequencies in its spectrum.

1.0

.;41
0.0

0.0 1.0 ·• •
/bin-..(z) IH(11)1

Figure 2.18: Binary Classifier.

Figure 2.19 is an example of a non-binary classifier. It classifies input in the range 0.3 to
0.7 as part of the object of of interest, but unlike Figure 2.18, this classifier as smooth
transitions from the region of interest to the region of no interest. Notice the lack of sharp
corners in the classifier and the resulting absence of high frequencies in its spectrum.

28

1.0

0.0
o.o 1.0 -· •

/non-hin••v(Z) IH(v)l

Figure 2.19: Non-binary Classifier.

Figure 2.20 illustrates the result of the binary classifier of Figure 2.18 operating on the
input from Figure 2.17. Notice the sharp corners in the output and the resulting high
frequencies in the output spectrum.

r- '

_ ..)\, ~~ ...
-· 0 • -· 0 •

/1JinGf'1JCltJUi/icd(z) IH(v)l

Figure 2.20: Result of Binary Classification.

Figure 2.21 shows the result of the non-binary classifier of Figure 2.19 operating on
the input from Figure 2.17. Notice the absence of sharp corners in the output and the
resulting absence high frequencies in the output spectrum. While some high frequencies

remain, there are not nearly so many as in Figure 2.20.

29

-· 0 •
IH(v)l

Figure 2.21: Result of Non-binary Classification.

In Figure 2.22 through Figure 2.24, a gradient shader process shades the example input
signal of Figure 2.17. The system modulates the intensity of the output by the strength
ofthe gradient raised to a power, much like Phong shading [Phong 75]. Phong shading
is a common technique used in volume rendering to give the user more three-dimensional
shape cues [Levoy 88]. The output has many high-frequency components that are not
present in the input. The exponent used in Phong shading controls the width of the
highlight with higher powers narrowing the highlight, producing the impression of more
mirror-like surfaces. Higher powers introduce more high frequencies than lower powers,
because higher powers narrow the region of the highlight and cause sharper changes in
the brightness of the image.

Consider the input from Figure 2.17. The absolute value of its derivative (one­
dimensional gradient) is shown in Figure 2.22.

I
-· 0 • -· 0 •

lf..-•<liant(z)l IH(v)l

Figure 2.22: Gradient of Input.

Raising the result of the gradient operator to a power, accentuates the region where the
input is changing most rapidly. The result of raising the signal in Figure 2.22 to the 32nd

power is shown in Figure 2.23.

30

·•
IH(ll)l

Figure 2.23: Gradient of Input raised to the 32nd Power.

Now the input signal of Figure 2.17 is multiplied by the raised gradient to select the
region of the input changing most rapidly. This result is shown in Figure 2.24. Notice
the high-frequency components introduced by the nonlinear gradient operator.

I ·•
IH(ll)l

Figure 2.24: Result of Multipling Original by Gradient.

Another co=on volume-rendering assumption is that the image resampling rate is

greater than the original sampling rate. There are more output samples than input
samples, thus magnifying the input. For example, renderers often generate 512 x 512
images from 256 x 256 x 256 or smaller input data. This eliminates the need to filter the
reconstructed signal, because a properly chosen reconstruction kernel will not introduce
frequencies that are above one half the resampling rate. However, the shading process
may introduce such frequencies.

2.5 Convolution
While visualizing reconstruction is easier in the frequency domain, since it is expressed
as multiplication rather than convolution, most renderers operat7 in the spatial domain.
For discrete kernels of limited extent, transforming from the spatial domain to the
frequency domain, performing the multiplication, and transforming back to the spatial

31

domain may be more compute-intensive than just doing the discrete convolution in the
spatial domain. For discrete kernels with a large extent, the convolution will be more
compute-intensive. Volume-rendering algorithms typically convolve the samples and the
reconstruction kernel in the spatial domain, since they co=only use small kernels.

Convolution is expressed mathematically by the convolution integral. Let g() denote the
output signal, j() denote the input signal, and h() denote the filter function.

In one dimension, the convolution integral is

g(t) = 1: f(u)h(t- u) du.

Generalizing to two dimensions, the convolution integral is

g(z,y) = 1:1: f(u,v)h(z-u,y-v)dudv

and in three dimensions, the convolution integral is

g(z,y,z) = 1:1:1: f(u,v,w)h(z- u,y- v,z- w)dudvdw.

For a discrete signal, f(i,j, lc), this becomes

"" "" ""
g(z,y,z)= ~ ~ ~ f(i,j,lc)h(z-i,y-j,z-lr.)

i:-ooj=-oo 1:=-oo

called the convolution sum [Oppenheim 75, page 32].

In the equations above, convolution is viewed as the gathering of contributions from
neighboring samples for each output sample. Alternatively, it may be viewed as the
distribution of contributions from a given sample to its neighboring samples. The former
views an output sample being the weighted average of the set of input samples that lie
under the reconstruction kernel centered at the output sample_ The latter views an
input sample distributing its energy to the set of output samples that lie under the
reconstruction kernel centered at the input sample. Both methods will produce identical
results. Feed-backward methods gather information from the input for each output.
Feed-forward methods spread information from each input to the output.

Figure 2.25 demonstrates feed-backward reconstruction [Feibush 80] with the triangular
pulse, which is equivalent to linear interpolation. The renderer calculates each output
value individually by centering the reconstruction kernel at a output value and calculating
a weighted average of each input sample that lies under the kernel.

In pseudo code thls operation is
For ea.ch output sample I

Output sample I = 0
For ea.ch input sample J under Kernel centered a.t I

Output sample I += Input sample J * Kernel value a.t J
End for

End for

32

For example, the renderer centers the kernel a.t A1 a.nd calculates A1 • When the kernel
is centered a.t A1 , it ha.s a. value of~ a.t X1 a.nd a. value of! a.t X 2 • The renderer then
centers the kernel a.t A, a.nd calculates A 2 • When the kernel is centered a.t A,, it ha.s a.
value of ! a.t X1 a.nd a. value of ~ a.t X 2 • The four steps a.re

At = O, A, = 0 (1)

2 1 2 1
At = 3(X,) + 3(X,) = 3(4) + 3(2) (2)

1 2 1 2
A, = -(Xt) +-(X,)= -(4) + -(2) (3)

3 3 3 3

10
At= 3'

8
A, = -

3
(4)

Intensity

4 ,.---

3 1--

-
2--

1 1--

h ~
IX--:::: ~ -

0 '
0 1 2 3

X, At A, X, Ima.ge Location

Figure 2.25: Feed-Ba.ckwa.rd Reconstruction.

Figure 2.26 demonstrates feed-forward reconstruction with the tria.ngula.r pulse. The
renderer incrementa.lly calculates the outputs. It centers the reconstruction kernel a.t an
input value a.nd spreads the energy to ea.ch output tha.t lies under the kernel.

In pseudo code this operation is
Zero a.ll Output samples
For ea.ch input sample J

End for

For ea.ch output sample I under Kernel centered a.t J
Output sample I += Input sample J * Kernel va.lue a.t I

End for

33

For example, the renderer centers the kernel a.t X 1 a.nd distributes its energy to A1 a.nd
A2 • When the kernel is centered a.t X1 it ha.s a. va.lue of ~ a.t A 1 a.nd a. va.lue of ~ a.t
A 2 • The renderer then centers the kernel a.t X2 a.nd distributes its energy to A 1 a.nd A2 •

When the kernel is centered a.t X2 it ha.s a. va.lue of~ a.t A 1 a.nd a. va.lue of~ a.t A2 • When
the renderer finishes processing a.ll the input samples, the outputs ha.ve correct va.lues.
The four steps a.re

A, = O, A, = 0

2
0 + ~(4) A, = A,+ "3(X,) =

1
0 + ~(4) A, = A,+ 3(X1) =

1 8 1
A, = A,+ "3(X2) = - + -(2)

3 3

2 4 2
A, = A,+ "3(X,) = - + -(2)

3 3

10 8
A1 = -, A, = -

3 3

Intensity

4 r-

+ -
3 I--

-
-

2 -

1-/ "'-;xV ~ +
~ ' / ~ 0

0 1 2 3

X 1 A1 A, X, Ima.ge Loca.tion

Figure 2.26: Feed-Forwa.rd Reconstruction.

(1)

(2)

(3)

(4)

34

Both the feed-backward and the feed-forward methods produce identical results: A1 = 1~

and Ao = £.
The primary difference between the two methods is how often they access each output
and input sample. Feed-backward methods access an output sample once and an input
sample many times. Feed-forward methods access an input sample once and an output
sample many times. The number of input samples and output samples the two methods
access is directly related to the extent of the reconstruction kernel and the number of
intermediate samples the reconstruction and resampling process is generating. Thus,
the total number of input and output accesses differs in the two methods. A renderer
using linear reconstruction, generating output samples at three times the rate of input
samples, as illustrated in Figure 2.25 and Figure 2.26, and having four input samples
would calculate 13 output samples. For feed-backward reconstruction, the renderer would
access two input samples for each output sample and access that output sample once,
so there would be a total of 39 sample accesses. For feed-forward reconstruction, the
renderer would access 5 output samples for each input sample and access that input
sample once, so there would be 24 sample accesses.

Viewing convolution as generating outputs as a weighted average of inputs or an input
distributing its energy to outputs is the primary difference in the ray-casting and the
element-tossing approaches to volume rendering.

2.6 Interpolation
Interpolation is the process of generating intermediate in-between points from a sampled
signal [Walberg 90, page 124]. Interpolation processes fit a continuous function through
the input samples and evaluate the function at the intermediate points. The process
of finding intermediate values may be thought of as convolving a sampled signal with
a reconstruction kernel, called reconstruction, or alternatively as directly evaluating
the interpolated continuous function at the desired points, called interpolation. While
reconstruction methods typically use feed-forward methods and interpolation methods
typically use feed-backward methods, both these methods generate identical results.
Most volume renderers contain no explicit reconstruction phase. Instead, they use
interpolation methods to map volume data to image samples. Reconstruction and
interpolation are two names for the same process.

Given this view, we need to analyze interpolation functions as reconstruction kernels.
For example, the reconstruction kernel for linear interpolation is a triangular pulse whose
width is twice the spacing of the samples. Interpolation, implemented as convolution,
attempts to select the baseband spectrum of a sampled signal. When the interpolation
function is the sine function and the signal was properly sampled, interpolation can re­
produce the original signal without error. Other interpolating functions fail to completely
remove all other spectral replicas and distort the shape of the baseband, causing aliasing.
Different choices for interpolation or reconstruction kernel cause different amounts and
types of aliasing and distortion. Researchers often examine the quality of the different
interpolation functions by studying the function's frequency response in the stop band

and the passband as is done in section 2. 7.

35

2. 7 Interpolation Methods
In the frequency domain, the multiplication of the sample's spectrum by the reconstruc­
tion kernel should exactly select a signal's baseband. This section will describe eight
co=on interpolation methods. It will show the one-dimensional version of the func­
tion in the spatial domain and its Fourier transform. The Fourier Transform is plotted
linearly for easy comparison with the rect function. It is also plotted logarithmically,
since the stopband response of these filters is small compared to the passband response
and these effects are important for understanding the filter's response as a whole. These
sections also show the result of using the interpolation method to reconstruct the four
two-dimensional signals described in Figure 2.27 and below.

/1() /2()

rect ramp

~
/3() /4()

co.tine impul&e

(', (\ {\

1 v v \

Figure 2.27: Four Example Reconstruction Inputs.

/1() is a rect function defined as

/ 1(z) = { 1, if lzl <= 10;
0, otherwise.

/2() is a ramp function defined as

{

0,
/2(z) = (11-•l

21,
o,

if"'< -10;

if"'>= -10 & "' <= 10;
if"'> 10.

/3() is a cosine defined as

if lzl > 10;

i
o,

(•+to)xs
/3(z) = 1.0-m(2T---)

-___ ____:":___
+0.5,

2.0
if izl <::0 10.

f4() is the impulse function defined as

/4(z) = { 1• 0,
if.,= 0;
otherwise.

36

The input signal is a mesh of 21 x 21 samples with x and y going from -10 to 10.
The input is magnified by a factor of 16 to produce an image that is 345 x 345 pixels.
Superimposed on each image is a cross section of the original function in green, a cross
section of the reconstructed function in red, and the original sample points for a single
row of samples in yellow.

2.7.1 Ideal Kernel
As noted in section 2.2.3, the ideal reconstruction kernel is a rect function in the
frequency domain. The rect function may be a one-dimensional, two-dimensional, or
three-dimensional pulse depending on the input sample's dimensionality.

The problem with the ideal filter is that the Fourier transform of the rect function is the
sine function with infinite extent, as illustrated in Figure 2.28. For the interpolator to use
the ideal filter in the spatial domain, it must convolve the samples with the sine function.
The interpolator must truncate the sine function in order to reduce the compute time.
This truncation distorts the filter and it is no longer the ideal filter, as can be seen in
Figure 2.30.

1.0

"
1.0 r- 1.00 r-

1•·1

o.o o.o 1~2

1e-a

I~ /\ /\ " h·f
0.0 '::1 v v -v 0.0 -1 0 1-1 0 • ·• 0 •

.Hnc(z) IH(v)l log(IH(v)l)

Figure 2.28: Spatial Domain Sine Kernel in One Dimension.

37

Figure 2.29 illustrates sine function reconstruction of the four example functions de·
scribed above.

Figure 2.29: Spatial Domain Sine Kernel Example.

Since the sine function's bound asymptotically falls to zero, it is tempting to truncate the
sine function after a few cycles. A truncated sine and its Fourier transform are illustrated
in Figure 2.30. However, truncation in one domain produces ringing in the other domain,
and the sharp cut-off in the spatial domain produces high-frequency leakage [Mitchell 88],
as illustrated in Figure 2.30.

1.0

o.•

1.0

o .•

truncated •inc(z) IH(v)l

main lobe amplitucle

""""

•
log(IH(v)l)

Figure 2.30: Spatial Domain Truncated Sine Kernel in One Dimension.

38

Figure 2.31 illustrates truncated sine reconstruction of the four example functions de­
scribed above.

Figure 2.31: Spatial Domain Truncated Sine Kernel Example.

While the spatial sine filters is good in a theoretical sense, it is seldom used in practice.
The early truncation of the sine produces ringing, which causes the truncated sine to
have large ripple ratio, defined as the ratio of side lobe amplitude to main lobe amplitude
[Mitchell 88], as illustrated in Figure 2.30. The interpolator truncates the sine filter
quickly because the width of the reconstruction kernel directly affects the amount of
computation required to do convolution, yet this kernel require a large extent to avoid
artifacts.

One way to address this problem is to window the sine function with another function, by

multiplying the sine by a function that smoothly goes to zero at the desired truncation
point (Oppenheim 75, page 239]. For example, the interpolator may multiply the sine
function by a Gaussian filter that goes near zero where it wants to truncates the sine

function. Oppenheim and Shafer (Oppenheim 75, page 242] discuss a family of nearly
optimal windowing functions known as the Kaiser family of windowing function. They

are optimal in the sense that they have the largest main lobe energy for a given peak
side lobe amplitude.

39

Figure 2.32 shows the Gaussian windowed sine function and its Fourier Transform.

1.0 '" 1.0
17' I

1.00 n Gauui&n
Windo.,. I

le-1

~ K-
I I
I I

o.• o.• le-:1 I I
I I
I I

I le-3 I I

li I I ~
0.0 0.0 le--i ·• VoV ' ·• 0 ' ·• 0 '

windowed sine(") IH(v)l log(IH(v)l)

Figure 2.32: Spatial Domain Windowed Sine Kernel in One Dimension.

Figure 2.33 illustrates Gaussian windowed sine reconstruction of the four example
functions described above.

Figure 2.33: Spatial Domain Windowed Sine Kernel Example.

Volume-rendering methods use a variety of interpolation functions, including nearest­
neighbor interpolation, linear interpolation, cubic interpolation, and Gaussian interpo­
lation. The computation-time vs. image-quality trade-off is the primary reason to chose
different methods. Low-quality filters have limited spatial extent and are therefore quick
to evaluate, while the higher quality filters have larger spatial extents and require pro­
portionally more computation.

40

2. 7'.2 Nearest-Neighbor Interpolation
Computationally, the simplest method for interpolation is the nearest-neighbor function,
illustrated in Figure 2.34. It is a zeroth-order interpolation function. The interpolator
assigns each output sample the value of the nearest input sample. This is equivalent to
convolving the input signa.! with a. one-sample-wide rect function in the spatia.! domain.
The rect function, also known·as the sample-and-hold function or the Fourier window,
is

{
1, if '"' < 0.5;

h(z)= O, iflz/=0.5;
0, otherwise.

Convolution with the rect function in the spatia.! domain is equivalent to multiplication
by the sine function in the frequency domain. The spatia.! rect function is a. poor low-pass
filter for two reasons: the centra.! lobe distorts the passband and the other lobes allow
stopband energy to get through to the result. These are exactly the two problems a. good
low-pass filter is trying to avoid. For these quality reasons, the nearest-neighbor method
is usually used to obtain quick-preview images.

1.0 1.0

O.i 0.1

o.o ~----'-'---....-.
-· 0

neare.ft- neighbor(z) IH(v)l log(IH(v)l)

Figure 2.34: Nearest-Neighbor Interpolation in One Dimension.

41

Figure 2.35 illustrates nearest-neighbor reconstruction of the four example functions
described above.

Figure 2.35: Nearest-Neighbor Interpolation Example.

2.7.8 Linear Interpolation
The first-order interpolation function passes a line between each consecutive pair of
input samples and evaluates points on the line. This amounts to using a triangular
pulse, as illustrated in Figure 2.36, as a reconstruction kernel. The triangle pulse's

Fourier transform, 6inc2(z), has an infinite extent and large positive lobes far from zero.
These lobes pass energy from the stopband that causes C1 discontinuities (false edges)

in the output as can be seen in the lower left image of Figure 2.37. Volume-rendering
algorithms use linear interpolation because the filter's extent in the spatial domain is

only 2N samples, where N is the dimension of the input (i.e. 2, 4, or 8 for the one-,
two-, or three-dimensional cases). This high-frequency energy may manifest itself as
false edges in the images giving the result an apparent sharpness that is not present in
the data.

42

1.0

A
1.0

T'
1.00 n I

I le·l

(' : : (\ I
0.6 0.6 lo-2 (\ (\ I I J\ (\

0 0 f\ I I f\
I I

le·3 I I
I I : : 0.0 o.o le·f.

·• 0 • ·• L • -· 0 •
linear(:z:) IH(v)l log(IH(v)l)

Figure 2.36: Linear Interpolation in One Dimension.

Figure 2.37 illustrates linear reconstruction of the four example functions described
above.

Figure 2.37: Linear Interpolation Example.

2. 7.4 Quadratic and Even-Order Interpolation
Researchers seldom use an even-order interpolation function because the number of
sample points on either side of the output point differs by one [Schafer 73), [Walberg 90,

page 128].

43

2. 7.5 Cubic Interpolation
Mitchell defines a large family of cubic filters [Mitchell 88] that are both C 0 and c1
continuous. Discontinuities in C0 or C1 cause high-frequency leakage that may lead to
reconstruction artifacts, as seen in section 2.7.3. These filters also satisfy the constraint
that for all x

ao

L h(z-n)=l.
n.=-oo

This prevents sample frequency ripple, as illustrated in Figure 2.38, which results when
a comb function convolved with the kernel does not generate a constant.

Samples Filter Result

Figure 2.38: Sample Frequency Ripple.

The family of filters is defined by parameters B and C and is defined as

1 { (12- 9B- 6C)Iz3
1 + (-18 + 12B + 6C)Iz"l + (6- 2B),

k(z) = 6 (-B- 6C)Iz31 + (6B + 30C)Iz"l + (-12B- 48C)Izl + (BB + 24C),
0,

if lzl < 1;
if lzl < 2;
otherwise.

General cubic interpolation can produce values that lie outside the range of the inputs.
The interpolator must clamp these values. Tuning B and C can generate filters that
trade the aliasing effects of blurring, ringing, and anisotropy [Mitchell 88]. A parameter
setting of B = 1.0 and C = 0.0 generates the cubic B-splines, as shown in Figure 2.39. A
parameter setting of B = 0.0 and C = 0.5 generates the Catmull-Rom splines, as shown
in Figure 2.41. This family of filters has the further advantage that the filter kernel has
a limited extent. This filter's extent in the spatial domain is only 4N samples, where N

is the dimension of the input (i.e. 4, 16, or 64 for the one-, two-, or three-dimensional
cases).

44

1.0
l.O I ~~

1.00

V'V
I

'· ltt·l

'fY
I I
I I I I

0.6 0.6 I I le-2 I I

1 Ani
I

le-3

! lA II
0.0 0.0 le-ol

-6 0 6 -6 0 6 -6 0 6

B - spline("') JH(v)J log(JH(v)J)

Figure 2.39: Cubic B-spline Interpolation in One Dimension.

Figure 2.40 illustrates the B-spline version of cubic reconstruction of the four example
functions described above.

Figure 2.40: Cubic B-spline Interpolation Example.

1.0 1.0

o.• 0.6

0 0

I I
I

1.00

h-1

n
I

I I
I I

I : :::: M~ ! ! I~IMM
o.o ~......,---l-d---:!"--\;71----o o.o ~.......,......,-+"-!4----+---+--:!'"·' IIA •n

-ti v 0 v 6 -6 0 6 ·5 0 r;

Catmull- Rom(z) IH(v)l log(IH(v)l)

Figure 2.41: Cubic Catmull-Rom Interpolation in One Dimension.

45

Figure 2.42 illustrates the Catmull-Rom version of cubic reconstruction of the four
example functions described above.

Figure 2.42: Cubic Catmull-Rom Interpolation Example.

2. 7.6 Gaussian Interpolation
Some researches use a Gaussian as an interpolation function. A Gaussian's width is
controlled by the parameter u. A Gaussian, illustrated in Figure 2.43, is defined as

•'

46

In both the spatial and frequency domain, the kernel has infinite extent. However, the

Gaussian asymptotically falls toward zero quickly and does not collect much energy from
the stopband. Since it falls toward zero quickly, the Gaussian may be truncated in the
near zero area without causing much ringing. Another feature of the Gaussian is that
it is the only filter that is both separable and rotationally symmetric, (section 2.8). A
problem with the Gaussian is that the filter distorts the passband by attenuating the
high-frequency components of the main replica and causes blurring in the output.

1.0 1.0 II 1.00 n I I
le-l I I

I I
o .•

j
o .• I I 1e·2 I I

\
I I I I
I I I

h·3 I I

0.0 0.0 h·•
I ~

·• 0 • ·• 0 • ·• 0 •
Gau88ian(:z:) IH(v)l log(IH(v)l)

Figure 2.43: Gaussian Interpolation in One Dimension.

Figure 2.44 illustrates Gaussian reconstruction of the four example functions described

above.

Figure 2.44: Gaussian Interpolation Example.

47

2.8 Multi-Dimensional Interpolation
There are two wa.ys to extend the above kernels to higher dimensions.

One method is to use ea.ch coordinate a.s a. free va.ria.ble, separate the one-dimensional
kernels, and multiply their results. A three-dimensionallinearly-separa.ble kernel is

h(z, y, z) = h'(z) x h'(y) x h'(z). Method(l)

The second method is to use the radius from the kernel center a.s the free variable. This
produces rota.tiona.lly-symmetric kernels. These kernels suffer from sample frequency
ripple, a.s illustrated in Figure 2.38, where equal amplitude samples do not produce
a. fiat field (Castleman 79, pa.ge 42]. Instead they produce a. field tha.t differs from
the constant amplitude a.t points between the equal valued input samples. A three­
dimensional rota.tiona.lly-symmetric kernel is

h(z, y, z) = h'(-./z2 + y2 + z2). Method(2)

The correct wa.y to extend reconstruction filters to higher dimensions is by method 1,
because rota.tiona.lly-symmetric kernels, except for the Gaussian which is a.lso separable,
will not correctly reconstruct a. regular mesh.

2.9 Interpolation In Current Methods
Volume renderers seldom generate images tha.t are a.xis-a.ligned and ha.ve identical sam­
pling rates for the input da.ta. and the image. Only in this ca.se can the renderer use
the a.ctua.l da.ta. samples to generate the image. In a.ll other instances the renderer must
generate samples from the da.ta. a.t locations between the input values by calculating a.
continuous function over the input and resampling this continuous function. The genera­
tion of the continuous function is reconstruction. This is typica.lly done by interpolating
the input samples with an interpolation function and using the interpolated values to
generate the image samples.

The four ma.in volume-rendering approaches perform the interpolation a.t different points
in the rendering pipeline and with different interpolation functions.

Da.ta.-coercion methods generate the continuous function a.t the first step by approximat­
ing the function with lines or surfaces. In the "marching-cubes" method (Lorensen 87],
reconstruction is the linear interpolation in the three dimensions required to generate
the surface triangles. This choice of coercion primitive is ma.de without regard for the
signa.! processing aspects of volume rendering. Their goa.!, a.s stated in (Lorensen 87], is
to generate hard-surface images from computed tomography da.ta.. Since linear interpo­

lation generates C1 discontinuities, a.s shown in section 2.7.3, and binary classification
introduces high frequencies in the output, a.s shown in section 2.4, images generated by
the "marching-cubes" method ha.ve many a.rtifa.cts, such a.s sharp changes in the image
values. In addition to reconstruction artifacts, these images a.lso exhibit artifacts of the

surface rendering process. These artifacts ma.y vary widely depending on the qua.lity of

the surface renderer.

48

Ray-casting methods [Van Hook 86], [Levoy 88] would be equivalent to the "marching­
cubes" method, if they strictly used binary classifiers and linearly searched each volume
element for the desired isovalue surface value. However, these methods typically inter­
polate the input volume along rays at a predetermined sampling rate and may miss the
isovalue surface. To solve this problem, they use non-binary classifiers that change the
range of the acceptable density values for a given isovalue surface based on how fast the
data is changing near the sample point [Levay 88]. When the data values are changing
slowly, a narrow range of values is acceptable as the isovalue surface. When the data
values are changing rapidly, a wide range of values is acceptable as the isovalue surface
and the isovalue surface is not missed.

Some ray-casting methods allow the user to change from nearest-neighbor interpolation
for quick and allased preview, to linear interpolation for day-to-day image generation,
to cubic interpolation for publication-quality imagery. Different interpolation functions
require different amounts of computation because they have different spatial extents. In
the three-dimensional case, the nearest-neighbor method only needs to know the input
value for the nearest sample, whereas the linear method needs to know the 8 nearest
samples, and the cubic method needs to know the 64 nearest samples. As the complexity
of the interpolation methods increases, the quality of the image increases. Nearest­
neighbor interpolated images suffer from blockiness caused by the sharp transitions
when neighboring pixels are closest to different input samples, all seen in Figure 2.35.
Linearly interpolated images suffer from C1 discontinuities caused by the transitions
when neighboring pixels are generated from different sets of input samples, as seen in
Figure 2.37. This is most noticeable as the common star pattern seen in bilinearly
enlarged images and would show up as a three-dimensional star pattern in volume­
rendered images. Since cubic interpolation has twice the extent of linear interpolation
and the effect of any given sample smoothly goes to zero as the sample no longer affects
the interpolation result, there are fewer sharp changes in the resulting images. The
trade-off is the interpolator tends to blur the result. Viewers are often dissatisfied
with the blurring because they are accustomed to seeing the sharp edges that linear
interpolation generates.

Some ray-casting methods shade the original samples and then attempt to interpolate
these values. For the interpolation process to be free of reconstruction errors, the
shaded signal should be filtered to lower the signal's Nyquist rate so that it is below
the resampling rate.

Affine transformation methods must use separable kernels so the methods can use the
two-pass and three-pass image warping methods. These methods are much less sensitive
to kernel extent sizes, because for a. kernel extent of n, the amount of computation is
O(n) instead of O(n3) for the ray-casting methods. Therefore, the three-pa.ss approaches
typically use high-quality reconstruction kernels for all ima.ge generation. Hanrahan
[Hanrahan 90] is careful to consider signal processing concerns in his method. He
chooses the order of the three passes that performs all magnification before min.ifica.tion.
If a. minification step precedes a magnification step, much of the information in the

49

signa.! would be lost, since multiple samples are collapsed into a single sample during
minification and they cannot be separated during a subsequent pass. This ordering
a.llows the renderer to retain the maximum amount of the signal's information during

the transformation.

Element-tossing approaches vary widely on how they do interpolation because they
toss different elements. Polyhedra-tossing approaches [Max 90] use linear interpolation
to scan-convert the front and back faces of each polyhedron. This exhibits the C1

discontinuities common to linear interpolation in the images [Max 90]. The method
usua.lly runs on unstructured meshes, and in genera.! the reconstruction process for
non-uniform sampling is not well understood and is significantly more complex than
the uniform sampling case. Because the goa.! of the method is to generate images from
unstructured meshes and the problem of reconstructing non-uniformly sampled samples
is not well understood, linear interpolation is the best interpolation method we currently
know how to use on unstructured meshes.

Point-tossing approaches, such as splatting [Westover 90], use Gaussian reconstruction,

since the Gaussian is both separable and rotational-symmetric. This a.llows the method
to integrate one dimension out of the kernel and perform two-dimensional reconstruction
instead of three-dimensional reconstruction. While this is not as good as the computa­
tional savings of the one-dimensional reconstruction used in the affine transformation
methods, it is better than the computational requirements of the three-dimensional re­
construction used by either data-coercion methods or ray-casting methods. Gaussian
reconstruction tends to blur the resulting image and viewers are often dissatisfied with
the absence of image sharpness, even though the image sharpness of other methods is a

reconstruction artifact.

Chapter 3

Splatting Method

3.1 Introduction
This chapter presents the feed-forward splatting rendering algorithm. Feed-forward
algorithms are those that directly map data onto the image plane. The algorithm
presented here was inspired by the structure of the traditional graphics pipeline in which
a single element passes through a single pipeline stage one at a time. Examples in
surface graphics include the z-buffer algorithm and the "painter's" algorithm. This
renderer maps each data element onto the image plane and then adds the element's
contribution to the accumulating image. The renderer terminates when it has added
each data element to the image. The splatting method uses feed-forward convolution
to distribute energy from input samples onto the image plane. The renderer transforms
and shades each input sample and passes samples that have nonzero opacity to the
reconstruction process. The reconstruction process calculates an image-plane footprint
for each data sample and uses the footprint to spread the sample's energy onto the
image plane. The renderer calculates visibility by compositing each sample's footprint
into an incrementally updated accumulation buffer. This works because the input data
may be traversed in a presorted order, either a back-to-front or front-to-hack, since
it is a rectilinear mesh. When the renderer has processed all the input samples, the
accumulation buffer is the final image.

Many volume renderers run in a non-interactive mode, because an image may take
many hours to compute. When the renderer completes the image, the user may change
the input parameters and try again, iterating until satisfied. While this batch method
of volume rendering may be satisfactory for presentation-quality image generation, it
does not lend itself to data exploration. The length of time between iterations makes
experimentation time-consuming and destroys idea continuity.

The goal of the splatting algorithm is a system for interactive exploration of volume
data with enough :flexibility to encourage the user to try numerous and unconventional
mappings. The splatting algorithm lends itself naturally to parallelism because it treats
each sample independently and multiple processes can operate concurrently on multiple
samples. In addition, as the samples are treated independently, they can be operated
on by a series of functional blocks in a pipeline. Each functional block performs a
single function on each sample, and these single-function blocks may be written as table­
driven processes. The renderer uses only table-driven CRIO processes, thus the user can

51

understand the data mappings. The renderer also allows the user to control every step
in the generation process. When users change an input viewing parameter, they should
see the change instantly. The altered image may not be the final image, but should be
adequate for the user to quickly steer through the data [Brooks 86], [Greenberg 86].

The reconstruction step is the most complicated portion of the algorithm. The renderer
must determine each sample's image-space contribution to the final image. A brute-force
method would one-dimensionally integrate the reconstruction kernel for every pixel for
every input sample. If the renderer can calculate the image space extent of the kernel,
the number of integrations reduces to the number of samples times the number of pixels
that fall within the extent, however, this is still many integrations.

In an orthographic view, the footprint ofthe projected reconstruction kernel is the same
for all samples except for an image-space offset. This allows the renderer to build a
footprint function table once per image and use the table for all samples. Since the table
is discrete, the renderer builds it at sub-pixel resolution to help reduce aliasing artifacts.
The renderer could perform the actual integrations of the kernel for each sample in the
footprint table. However, this is still many integrations and integration is usually a
compute-intensive operation.

To reduce the computational complexity of generating the single footprint table, the
renderer uses an approximating function to build the footprint table for the particular
view. This approximating function is intended to model the result of integrating the
reconstruction kernel. The renderer evaluates the approximating function for each sample
in the footprint table, instead of calculating any integrations. The renderer must make
two calculations to use the approximating function. First, the renderer computes the
image-space extent of the projection of the reconstruction kernel. Second, the renderer
computes a mapping from this extent to the extent that surrounds the approximating
function. Then for each entry of the footprint table, the renderer maps the entry from
the transformed region extent to the approximating function extent and evaluates the
approximating function. The renderer builds the footprint table once per image and uses
the table for all input samples. The renderer centers the table at the sample's projected
image-space location and accesses the table at the center of each pixel that falls within
the table's extent.

3.2 Design Trade-offs
A primary goal of this thesis is to identify an algorithm suitable for interactive volume
rendering that generates high-quality images. This desire led to many specific decisions
during algorithm development.

A feed-forward method was chosen because it can treat each volume element indepen­
dently, making the algorithm easy to parallelize. Since each element is independent
of the other elements, there can be a set of processes each doing the same algorithm,
working on subsets of the data. Each of these processes is identical to the process that
runs on the single processor version. The parallel aspects of the feed-forward method
are discussed in Chapter 4.

52

The renderer runs in either a back-to-front order or a front-to-hack order. The back-to­
front order allows the user to see features in the data set that are subsequently hidden
by other features. The front-to-hack order allows the user to understand the final image
sooner, so he can change the viewing parameters if he is dissatisfied with the current
image.

As much of the rendering process as possible is table-driven because table-driven compu­
tations are much less computationally Intensive than explicit computation. This mostly
affects the CRlO process and the reconstruction process. The reconstruction process uses
a footprint table for speed, which is described in section 3.7. The CRIO process uses
four shading tables to eliminate much of the CRIO computation. Section 3.6 describes
the CRlO process in detail.

The renderer shades the Input samples. While this is contrary to the ideal volume
rendering process, as described In Chapter 2, it is an important optimization. The
most important factor affecting rendering time in a feed-forward renderer is pipeline
throughput. Reducing the number of Input samples traveling down the rendering
pipeline reduces the rendering time. Shading first allows the renderer to send only
nonzero-opacity tuples to the reconstruction process. The reconstruction process is the
most compute-Intensive portion of splatting, and reducing the amount of work that
the reconstruction process must do directly Increases rendering speed. Many volume­
rendered images contain only a small percentage of nonzero-opacity tuples. Even if
the entire volume generates nonzero-opacity tuples, shading first does not increase the
amount of data for the pipeline. Therefore, shading first cannot adversely affect rendering
times, it can only help.

The renderer models each input sample as a reflective, light-emitting, semi-transparent
cloud. This retains the transparent nature of clouds and allows,for shading effects which
give users many three-dimensional cues about the data [Levay 88].

For maximum quality, the renderer should not make any binary classification or shading
decisions [Levay 88], [Drebln 88]. The shading tables, described in section 3.6, do not
force the user to define tables that are soft classifiers, but certainly ailow the user to
specify soft classifiers without affecting the rendering speed of the system. If the user
specifies a binary classifier, the results may have many rendering artifacts, because a
binary classifier may significantly change a sample's spectrum.

The algorithm only renders orthographic views. Perspective is difficult for both feed­
forward and feed- backward algorithms. For a perspective view, the apparent sampling
rate of the Input data changes with depth. Feed-forward algorithms must adjust a
sample's region of effect for each apparent sampling rate. Feed-backward algorithms
must cast rays at sufficient sampling rates to guarantee that the portion of the data that

lies furthest from the image plane is adequately sampled. However, orthographic views of
volume data are sufficient for many applications, and often viewers prefer orthographic
images rather than perspective images, because they maintain ·the shape of and the

distance between features.

53

3.3 Rendering Algorithm
The splatting algorithm discussed in this chapter is a feed-forward algorithm that shades

at input samples and reconstructs a final image from the shaded volume. The algorithm
consists of four main parts: transforming, cruo, reconstruction, and visibility, as

illustrated in Figure 3.01. Information move between the processes in the form of a
tuple for each sample. These tuples (A, B, C, D) contain different intermediate results

as described below.

Rendering Pipeline

I Data 141 Transform I
yB

I CRlO I
tc

I Center Footprint I
yD

I Accumulate I
t

I Composite 1~1 Image I

Figure 3.01: Block Diagram of the Splatting Pipeline.

3.4 Pipeline Structure
The input to the renderer is a input tuple, A:

density value < d > den8ityunit.flinearunit.3

gradient strength < m > den8ityunit.flinearunitr flinearunit

gradient direction

mesh coordinates

< 8,¢ > degrees
< i, j, k > integers specifying mesh location

The renderer view-transforms the input tuple, converting the mesh coordinates into

image coordinates and generates an image-space tuple, B:

density value < d > denoityunit.flinearunit.3

gradient strength < m > denoityunitoflinearunits3 flinearunit

gradient direction < 8, ¢ > degrees
image coordinates < z, y, z > pixels for x and y, depth for z

The renderer runs the CR10 process on the image-space tuple, where color and opacity

are arbitrary functions of the elements in the image-space tuple. This step generates a

CRlO tuple, C:

color < r, g, b > 0.0 to 1.0

54

opacity <a> 0.0 to 1.0
image coordinates < :z:, y, z > pixels for x and y, depth for z

If the opacity of the CRIO tuple is not zero, the renderer passes the CRIO tuple on
to the reconstruction process. The reconstruction process determines the ima.ge-spa.ce
effect of the CRIO tuple, ca.lled its footprint. This generates a. single splat tuple, D:

color < r, g, b > 0.0 to 1.0
opacity <a > 0.0 to 1.0
footprint coordinates < :z:, y > pixels

The renderer then combines the splat tuple into the image using a. visibility rule.

The following sections describe these four processing steps in detail.

3.5 View Transformation

j

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

L---------------~, z
Grid Space Data

v * * * * *
F $ *

* * * * * * * \ \ \ \ * *
* * * * ** * \ \ \ * *
* * ** ** * \ \ \ * *
* *****4L\ \ * *
* * * ** ** . * *

* * * *

Image Space Data.

Figure 3.02: View Transformation.

The view-transformation process's job is to convert the input tuple's mesh space < i, j, k >
into an image space < :z:, y, z >, illustrated in Figure 3.02. Orthographic views, defined
by the view-transformation matrix, are simple to generate, because the input volume is
a. rectilinear mesh.

3.5.1 Method
The homogeneous transformation matrix for an orthographic view is

(

a b c 0)
T= : ~ { ~ .

j k I 1

The view-transformation matrix is a 4 x 4 matrix, because the view may have translations
and the footprint generation process uses homogeneous transformations to bulld the
footprint. Entries a through i represent the scaling and the rotation portion of the
transformation and entries j, lc, and I represent the :z:, y, and z translations.

55

The renderer maps an input sample at mesh point < i, j, lc > to image-space point
< ,,y,z >by

We see that the incremental step in image-space coordinate for each step along a mesh
direction is

Az l ! X(~~),
A. ,6./c
A•
A.

or,

PHA• = Po + .6-M x ,6.,,

Thus, the renderer can read the step sizes directly from the transformation matrix, for

each of x, y, and z for each input i, j, and k. These step sizes are constant throughout the

entire volume, since we begin with uniformly sampled input data and we are generating
only orthographic projections. By inspecting the sign and magnitude of the change in z
values, the renderer can determine a traversal that guarantees a back-to-front ordering or

a front-to-hack ordering. The ordering traverses either the i, j, or k mesh direction fastest,
one of the remaining two directions second fastest, and the last remaining direction
slowest. The fastest changing axis is the axis that has the smallest absolute change in
z for each step along that mesh direction. The sign of the. delta z value for that mesh

direction determines which end of the cube the renderer starts traversing for that axis.
Similarly the second fastest changing axis is the axis with the second smallest change
in z for each step in along that mesh direction. The two fastest changing axes define a

plane of data perpendicular to the other axis, called a sheet. There are three possible

sheet groupings for a data set. The first contains all the samples in the i and j direction
for each k, the second contains all the samples in the i and k direction for each j, and

the third contains all the samples in the j and k direction for each i. A sheet of data is a
slice of the data set perpendicular to one of the mesh axis that is closer to being parallel

to the image plane after the view transformation than the other two possible groupings.

Both the back-to-front traversal order and front-to-hack traversal order have merits. The
back-to-front ordering allows the renderer to display the partial images during rendering

and show hidden features. The front-to-hack ordering allows the users to stop image
generation sooner if he does not like the image, because the current image displayed is

always part of the final image. The current renderer will generate images in either order,

depending on the value of a run-time flag.

Once the renderer knows these deltas and the ordering, the renderer transforms the

furthest or nearest input point with a full matrix multiplication. This is the origin for the

incremental updates to the image-space coordinates one sample at a time. The renderer

adds the appropriate deltas as it processes the input volume, generating image-space

tuples. The renderer sends these tuples to the CRIO process.

3.6 CRIO Process

Transform

Tuple

Determine

Color

and

Opacity

t
illuminate

with

Light

Source

Figure 3.03: Block Diagram of the CRIO Process.

56

The CRIO process's job is to convert the image-space tuple into a CRIO tuple, illustrated
in Figure 3.03. If the renderer's CRIO process uses only information contained as either
part of the sample tuple or information generated once in a preprocessing step, any
CRIO process can be used with the splatting algorithm. The CRIO process uses non­
binary classification and the application of a user-specified shading model. Both of these
steps are table-driven for speed. A common table-driven CRIO process has four parts:
emittance, diffuse reflection, specular reflection, and opacity calculations [Westover 89].
The CRIO process requires the density, gradient strength and gradient direction for each
input sample. Density and gradient strength are often used to select a density value's
color and opacity properties. The gradient direction is used as a pseudo surface norma.!
during the illumination calculation.

3.6.1 Method
As the gradient operator requires knowledge of neighboring samples, either a preprocessor
generates the gradient information or the renderer duplicates a sma.ll shell around each
volume so the gradient is defined on the outer faces of the volume. While similar
applications use a variety of gradient operators [Hom 81], [Van Hook 86], [Drebin 88],
this renderer uses the following:

gradient;(i, j, l:) = data('+ 1,j, l:)- data(i- 1, j, l:)

gradient;(i,j,l:) = data(i,j + 1,k)- data(i,j -1,1:)

gradient~ (i, j, l:) = data(i, j, l: + 1) - data(i, j, l: - 1).

57

The magnitude of the gradient is its length normalized to the maximum gradient possible
for the input data set. For a data set with a maximum value of M a:o,.mpl• and a minimum
value of Min,.mpl., the maximum gradient magnitude is

MazMagnitude1"11diant = J(3(Mazumple- Mina 11mple)2).

Once the renderer calculates the magnitude of the gradient, it normalizes the gradient
vector and stores two components of the vector in the input tuple. The gradient vector
is used as the surface normal for the illumination calculation.

The CRJO process uses four tables to determine a image-space tuple's color and opacity.
A table is used to determine emitted color, a second table is used to determine opacity,
a third table is used to determine reflected color, and a fourth table is used to vary the
sample's opacity based on a second value in the tuple. The renderer indexes these tables
by a value available in the image-space tuple. These values include the density value,
gradient strength, gradient direction, and the image-space position. The renderer uses
the first two tables to determine the color and the opacity of the value specified by the
input. It uses the third table for the shading model and the fourth table for feature
enhancement. In addition, the illumination calculation uses a set of user-specified light
sources. These are infinite light sources specified by a color and a light-source direction.
Rather than transforming the gradient vector for each sample, the renderer transforms
each light source direction by the inverse of the view-transformation matrix. Thus,
the renderer is required to only transform the light source direction once, instead of
transforming each gradient vector. Various components of the CRJO process may be
turned off for two reasons. First, portions of the illumination calculation are more time
consuming than others and the user may turn these parts off to decrease rendering times.
Second, the some illumination cues occasionally impede understanding the data and the
user turns these parts off to simplify the image.

Below are the equations for calculating the result color and opacity of a image-space
tuple [Westover 89]. The final color intensity is composed of three parts: the intensity
due to the emitted light from the sample, the intensity due to the diffuse portion of the
illumination model, and the intensity due to the specular. portion of the illumination
model.

Let I denote the intensity, A denote the opacity, L denote the light-source direction
vector, G denote the gradient direction vector, H denote the vector half-way between
the eye vector and the light vector, and n denote the specular exponent. Since the value
of a component of the intensity vector may be less than 0 or more than 1, the renderer
clamps each intensity component to fall between 0 and 1.

The emittance rule for shading is

58

The diffuse rule for shading is

IdiJJ = Table,.Jl.etion[inde:z:,.Jl•«ion] x (L • G).

The specular rule for shading is

!•pee = Table,.eflection[indeZ,.eJleetion} X (H • G)"'.

The final color intensity is

The opacity rule for shading is

59

3.6.2 Application of Shading Rules Examples
Surface enhancement is an example of a use for the opacity-variation table. If the table
contains a ramp from 0 to 1 and the gradient strength selects a value, samples that
have a low gradient magnitude will have a low opacity-variation value and samples that
have a high gradient magnitude will have a high opacity-variation value. The result of
multiplying the sample's opacity by the opacity-variation value is to make samples that
are in areas where the density is changing slowly more transparent and make samples
that are in areas where the density is changing rapidly more opaque. The underlying
assumption is that areas where the density is changing rapidly are probably surfaces.
This is shown in Figure 3.04, where skin densities have a red color, bone densities have
a white color, and the opacity variation table contains a ramp that selects areas of high
gradient magnitude. Notice the skin surface on the right-hand image and the double
bone surface in the cut of the jaw bone. The bone appears to be hollow, because the
inside of the bone has slowly varying density and the opacity-variation table makes it
transparent.

The computed tomography data set is 256 x 256 x 93 samples. The 93 axial slices are
1.5mm thick and are sampled at 0.8mm in the x and y directions. The data is courtesy
of William Lorensen, General Electric Company, and was generated by D. C. Hemmy,
MD, of the Medical College of Wisconsin.

Figure 3.04: Using the Opacity· Variation Table for Surfaces.

60

Another use of the opacity-variation table is to index the opacity-variation table with
the packet's z value. If the opacity-variation table contains a ramp from 0 to 1 and z
values near the image-plane select values near 1 and z values far from the image-plane
select values near 0, the result is a pseudo depth-cueing image, the left side image in
Figure 3.05. The right side image in Figure 3.05 is the molecule shaded without depth
cueing.

The molecular data set is 137 x 113 x 59 samples. The three mesh directions are sampled
at the same rate. The molecule is ribonuclease. The data is courtesy of Christopher Hill,
Chemistry Department, University of York. The original data was shaded by Marc Levoy,
Computer Systems Laboratory, Stanford University, using his isovalue-surface shading
model (Levoy 88]. The splatting renderer used an identity mapping so it did no shading
and only reconstructed the volume and projected the image.

Figure 3.05: Using the Opacity-Variation Table for Depth Cueing.

61

Biochemists achieve other interesting effects by using the gradient magnitude to select the
emitted color for a sample. This colors the density by gradient strength which may help
select atom types in an electron density map. Two views of the same gradient-shaded
molecule are shown in Figure 3.06. The right view is the left view rotated about the
x-axis by 90°.

This molecular data set it 55 x 53 x 57 samples. The three mesh directions are sampled
at the same rate. The molecule is a transfer RNA. The data is courtesy of Frank Hage,
Biochemistry Department, University of North Carolina at Chapel Hill.

Figure 3.06: Gradient Shading.

62

3. 7 Reconstruction

Center

[;] Footprint - at

Sample's

Projection

t
Evaluate

Footprint

for all Pixels Splat -in Extent Tuple

Figure 3.07: Block Diagram of the Reconstruction Process.

The renderer must reconstruct a continuous signal from discrete samples during the
volume-rendering process, as shown in Figure 3.07, so it· can resample the signal at
image resolution.

3.7.1 Footprint Function
As discussed in Chapter 2, reconstruction is performed by convolving the reconstruction
kernel with the sampled signal. Let f() be the input samples, h() the reconstruction
kernel, and g() the reconstructed signal. Let i, j, and k range over the input mesh. The
volume reconstruction equation for a discrete input, f(i,j, l:), is

~ ~ ~

g(z,y,z)= L L L f(i,j,k)h(z-i,y-j,z-k).
i=-oo ;=-co J::-oo

This equation implies that each output point is a weighted average of many input points.

Instead of considering how multiple samples contribute to a pixel, consider how a sample
contributes to multiple pixels. The effect a single input sample < i, j, l: > has at point
< z,y,z >is

effed(;,;,l)(z, y, z) = f(i, j; l:) X h(z- i, y- j, z- l:).

For speed, the renderer models the contribution from a single input to a given < z, y >
screen location by the sum of the input's contribution to all the points in z that lie

behind the < z, y > screen location:

effed(;,;,l)(z, y) = L: f(i, j, l:) X h(z- i, y- j, z- l:) dz.

63

Here the renderer departs slightly from the ideal process. If visibility were an additive
process, the above would be correct because it would not matter in what order the
sample arrived at the image plane. However, visibility is not an additive process and
collapsing the three-dimensional kernel into a two-dimensional footprint prevents the
visibility process from accurately modeling the effects of part of the sample's contribution
being in front of the other parts of the sample's contribution.

In the case of scattering, the intensity exiting a. sample would be the intensity entering
the sample multiplied by an exponential decay function, which models light traveling
through a. scattering medium {section 2.8).

1
....

I, • .,= I,nhr x e:z:p(- K,.(S) dSJ
ente,-

Instead of scattering light throughout the sample, the above approximation combines a.
sample's density into a single value and treats the sample as a discrete semi-transparent
layer. The difference in these two approaches is discussed in section 2.8 .

. For a given sample, f(i,j, k) is a constant. Moving it outside the integral gives

effect(:z:,y) =f(i,j,k) 1: h(:z:-i,y-j,z-k)dz.

Now the integral is independent of the input and is only dependent on the reconstruction
kernel. Define the footprint function centered at the origin ·as

footprint(:z:, y) = 1: h(:z:, y, z) dz.

Thus, the footprint is a two-dimensional image-space projection of the reconstruction
kernel.

3.7.2 Method
For orthographic views of rectilinear meshes, the footprint of ea.ch sample is identical
except for an image-space offset. Therefore, the renderer need only calculate the footprint
function once for ea.ch view of the da.ta set. Once the renderer calculates the footprint,
it can evaluate the footprint function at each pixel tha.t lies within the footprint's extent
to determine the the effect this sample has that pixel. The renderer weights the sample
color and opacity by the footprint value and adds tha.t amount to the pixel.

The weight at pixel < o:, y > for a footprint centered a.t < i, j > is

weight(:z:, y) = footprint(z- i, y- j).

Evaluating the footprint function requires an integration. The renderer could use numer­
ical integration techniques, because many kernels a.re difficult to integrate analytically.
This is a compute-intensive operation, and we do not want the renderer to recompute the
footprint every time the renderer needs to use it. Since the footprint function is constant

64

for all the input samples, the renderer builds a footprint table once, at the beginning of
the rendering process, and uses the footprint table for every sample.

The easiest way to build the table is to first determine the image-space extent of the
projection of the reconstruction kernel and then select a sub-pixel sampling rate. The
renderer chooses a sub-pixel sampling rate based on how many pixels the sample affects.
H the sample affects a large number of pixels, the samples are probably far apart in
image-space and do not need a high-degree of sub-pixel resolution. H the sample affects
only a small number of pixels, the samples are probably near each other in image-space
and small errors in footprint placement will cause visible artifacts. For these reasons the
renderer builds a footprint table that has a sub-pixel sampling rate that ranges between
one and eighty-one samples per pixel. The sampling rate is chosen so the size of the
footprint table is about 128 x 128 total samples. The renderer builds the footprint
table on a mesh with many samples per pixel, because without over-sampling, rendering
artifacts will occur [Whitted 83]. The renderer integrates the kernel at each of these
sub-pixel table locations. This reduces the number of required integrations, but the

renderer must still integrate the reconstruction kernel to build the footprint table once
per image.

An alternate way to generate the footprint table is to model the result of the integration
with some simple function-for example, a Gaussian, because the result of integrating
one dimension of a three-dimensional Gaussian is itself a Gaussian. In this way, the
renderer evaluates the simple function at the table entries and does no integration.

The renderer must calculate two things to build the footprint table in this way. First,
it calculates the image-space extent of the projection of the kernel. H the extent of the
kernel is infinite, the renderer truncates the kernel where the kernel is sufficiently close to
zero. The decision of where to truncate the kernel has a rendering-time vs. image-quality
trade-off. Truncating the kernel quickly decreases the rendering time but adversely effects
image quality, as shown in Chapter 2. Truncating the kernel far from its center increases
the quality of the images but causes the renderer to make more computations. Second,
the renderer calculates a mapping from the footprint extent to an extent that surrounds
the approximating function. These two calculations are presented in section 3.7.4.

65

Once the renderer builds the footprint table, it centers the footprint table at each
sample's projected screen position, X in Figure 3.08. This footprint has a.n extent
of three by three pixels, the crosses. The footprint has a. sub-pixel sampling rate of
three by three sub-samples per pixel (the dotted lines). When the footprint is centered
on X, exactly nine pixel centers fa.ll within the extent of the footprint. It calculates
the image-space extent of the kernel by offsetting the transformed region extent to the
projected screen position. Then for each pixel in the extent, labeled 0 in Figure 3.08,
the renderer samples the footprint table to determine the weight for this sample a.nd this
pixel. The weighted sample is passed to the visibility process.

output pixel centers

input projected point

footprint

·--h·:···· ·+··,··· --+, . 0: . 0: . 0 ---r··r··· ···-~·-·r·· ····1

footprint

centered on
projected point

~ixels
Figure 3.08: Use of Footprint Function.

66

3.7.3 Using the Approximation Function
This splatting method assumes that the extent of the reconstruction kernel is a sphere.
H the extent is not a sphere, the renderer bounds the kernel by a sphere so it may
calculate the extent using the sphere methods. For efficiency reasons, the bounding
sphere should be as tight as possible. A loose-fitting sphere will cause the renderer to
build a footprint table that has many zero entries, and to·visit many pixels that a sample
does not affect. For a spherical kernel, the radius of the sphere is equal to the width of the
reconstruction kernel. This sphere, called the unit region sphere, as seen in Figure 3.09,
defines the three-dimensional region that a sample will effect. The projection of the
unit region sphere on the image plane is a circle called the unit region extent, as seen in
Figure 3.09. The renderer does not integrate the actual reconstruction kernel over the
unit region extent, but models the result of the integration with a simple function-for
example, a Gaussian. The function which models the result of the integration is called
the approximating function.

k '
uait reJioa sphere ..

~
:.llll

~1 z 2 ~ uuit ""''" oi.elo uait reJioa eztent -

Figure 3.09: Unit Region Kernel.

During image generation, the renderer transforms the unit region sphere by the view­
transformation matrix and generates the transformed region ellipsoid, as seen in Fig­

ure 3.10. H the sampling rates in the mesh directions are equal and the image is scaled
equally in both image dimensions, then the transformed region ellipsoid is a sphere.
The renderer then projects the transformed region ellipsoid onto the image plane and
calculates the extent of the projection, called the transformed region extent, as seen
in Figure 3.10. This projection is always an ellipse in an orthographic projection, as
shown below in section 3. 7 .4. The ellipse is called the projected region ellipse, as seen in
Figure 3.10. The renderer also calculates a mapping from the transformed region extent
to the unit region extent.

67

Figure 3.10: View-Transformed Kernel.

To build the footprint table, the renderer maps each sub-pixel table entry from the
transformed region extent onto the unit region extent, evaluates the approximating
function and stores the result in the footprint table. This table is built once for an
image and is used by the reconstruction process each time it operates on a CRIO tuple.
This step contains several approximations that produce rendering artifacts which are
described in Chapter 5.

3.7.4 Extents and Mappings
The renderer must determine extents and mappings for two cases: when the unit sphere
maps to a sphere after applying the view-transformation matrix, and when the unit
sphere maps to an ellipsoid. The result is a sphere when the input volume has equal
spacings in each of the mesh directions and the view-transformation matrix has uniform
scaling. The result is an ellipsoid when the input volume has non-uniform spacing in
each of the mesh directions or the view-transformation matrix has non-uniform scaling.
Since a sphere is a special case of an ellipsoid, the renderer uses the elliptical method
described below for all volumes.

The projection of transformed region ellipsoid is always an image-space ellipse. The
extent of a kernel's effect is the extent of the projected region ellipse and the mapping
from the footprint table to the unit region circle is a mapping from the projected region
ellipse to the unit region circle.

The renderer builds the region ellipsoid by scaling the unit region sphere by the mesh
spacing scaling factors and then transforming by view-transformation matrix. By
treating the unit region sphere as a quadric surface, these transformations can be

represented mathematically by matrix multiplications.

68

Let the original unit sphere be U:

u- (~ - 0
0

0 0 0) 1 0 0
0 1 0 .
0 0 1

The mesh spacing scaling factors are the relative scales of the spacing in each mesh
direction. For example, computed tomography data is usually sampled at a higher rate
in the x and y directions than in the z direction. This causes the spacing in the three
mesh directions to be different. Let s. be the scale factor in the x direction, s, be the
scale factor in the y direction, and S, be the scale factor in the z direction, then the
mesh spacing scaling factor is

c 0 0

D· s- o Sj 0
- 0 0 sk

0 0 0

The view-transformation matrix is

V= (~
b c

D· • I
h i
0 0

The mesh space region ellipsoid is

E=SU.

The renderer calculates both the inverse view-transformation matrix and its transpose
to transform the quadric surface, E. The resulting region ellipsoid is

R= v-'T E v-'.

The region ellipsoid, R, can be written as

A
D E

0 2 2
D

B
F

0 R= 2 2
E F c 0 2 2
0 0 0 -K

This gives an ellipsoid defined by

(z, y, z, 1) R (D = 0,

69

or

Az2 + By2 + Cz 2 + Dzy+ Ezz+Fyz- K = 0. (1)

By rearranging terms, completing the square, and solving for z and y, the renderer can
calculate the image-space extent of the transformed ellipsoid. The z and y extents are

K
z=±

Dr

A - ~ - o:<E=---"'""-'''-'
4.B ~2

4(0-.,.)

and y=±
K

DB
D' (F--.r)'

B - 4A - '-__..,'-'­
s•

4(0-n:)

The renderer also needs to calculate the mapping from the projection of the region
ellipsoid back to the unit circle. To do this, the renderer first calculates the projected
region ellipse from the region ellipsoid. This projection is an ellipse. To find the ellipse,

first rewrite (1) as a quadratic in z. The quadratic is

Cz2 + (Ez + Fy)z + (Az2 + By2 + Dzy- K) = 0.

Points on the edge of the projection of the region ellipsoid, R, have only one root in this
quadratic. Only one root to the quadratic at2 + bt + c = 0 exists when b2 - 4ac = 0 or
when

(Ez + Fy) 2
- 4C(Az2 + By2 + Dzy- I() = 0.

Grouping the z2 , the y', and the zy terms gives the projected region ellipse

where

Xz2 + Yy' + Zzy- K = 0,

E'
X=A--

4C

F"
Y=B- 4C

Z=D- EF.
2C

(2)

Once the renderer calculates the projected region ellipse, it can define a transformation
that takes points from the ellipse into the unit circle. This is the inverse of the mapping
that takes the unit circle into the ellipse. To calculate the second mapping, the renderer
needs to calculate two things: the amount to scale along the z and the y axes, and the
amount of rotation about the view direction, illustrated in Figure 3.11.

70

~
1/ ~ •

'"" / •

T-1(z) = z'

Figure 3.11: Ellipse to Circle Mapping.

The renderer finds these values so it can calculate the mapping T- 1 , whicll takes points in
the projected region ellipse onto the unit circle. An ellipse can be generated by rotating
and scaling a circle and this operation can be expressed mathematically a.s

P=TU'J!l', (3)

where T is the transformation matrix con'.~.ining the rotation and the scaling, and U is
the unit circle expressed a.s a. quadric sJ:-.;.,·e. Since we know P, the projected region
ellipse and U, we solve the above equation ior T.

The projected region ellipse is

P- (;

z 0

n· y 0
- 0 0 1

0 0 0 -1

LetT be

n
b 0

D· T=
d 0
0 1
0 0

U is

u- e 0 0

D·
1 0

- 0 0 1
0 0 0

We know the values for X, Y, and Z from (2). We also know, from (3), that X, Y, and

Z a.re

a2 +b2 =X,

c2 +d2 =Y,

ac+bd= Z.

(4)

(5)

(6)

71

There a.re three equations and four unknowns, a, b, c, and d. However, T is a matrix
that is a scale in the z and y directions followed by a rotation about the z axis. So we
also know

a= S: x cos8,

b = -S= x 11in8,

C = SJI X 8in8,

d=S, xcosiJ.

(7)

(8)

(9)

(10)

Plugging (7), (8), (9), and (10) into (4), (5), and (6) and applying some algebraic
manipulation produces

(X-Y) cosiJ oiniJ
Z = oiniJ- cos9 (11)

This seems to be a problem when Z is zero but upon investigation of P, when Z is zero,
P is a scaling of U. Therefore T is simply

a=fl,d= VY

When Z is nonzero, let

G= (X- Y)
z

then plugging {12) into (11) produces

G = (w'- 1)
w

Using the quadratic formula, w is

or

and b= c= 0.

and
co•IJ

w---
- 6in8

w•- Gw-1 = 0.

G±~
w=

2

(12)

Given w, IJ is arctan(;0
). This gives both •iniJ and cool/ and allows the renderer to solve

for s. and s. using (7), (8), (9), and (10). The above equations leaves. and s. undefined
when IJ = 45 degrees. When this occurs, the renderer rotates the view an additional 0.01

degrees about the view direction. This fudge allows the renderer to calculate s. and s.
with little effect on the image.

With IJ, s., and s. the renderer builds T by multiplying the identity matrix by a scale
matrix of s. and s., followed by a z rotation matrix of 9. The mapping from Pinto U

is then the inverse of T : T- 1 •

The renderer uses r- 1 to map entries from the footprint table to the approximating

function.

72

3.8 Visibility

There is one major difficulty in trying to model the interaction of light through the
absorbing, emitting, and scattering media of a volume data set. The absorption,
emission, and scattering of energy is occurring at every point in the volume. A complete
solution to the problem requires knowledge about the properties of every point of volume
and this makes the exact solution intractable [Siegel 72, page 141]. Approximations to
the ideal solution typically study the effects on the light along a single path through the
volume. As light passes through a volume element, its intensity is reduced by absorption
and scattering. The change is dependent on how much volume the light passes through
and on the local properties of the volume. Given a coefficient of proportionality K~,
called an eztinction coefficient, the decrease in intensity caused by traveling a step along

a path S is given by

(13)

Integrating (13) along a path S that enters and exit a volume gives

(14)

Therefore, the intensity of light is attenuated exponentially while passing through an
absorbing-scattering medium [Siegel 72, page 413]. This shows the nonlinear nature of
visibility because the visibility operator violates both the superposition,

ezp(a) + ezp(b) # ezp(a+ b),

and scalability,

Ax ezp(a) # ezp(A x a),

criteria of linear systems.

Volume rendering methods often model (14) with the composite operator. Let
I ntenaity1 • .,., be the intensity of light a volume element is emitting and Opacity1 • .,.,

be the amount of light a volume elements blocks. Let lnten8ity, ••• be the amount of
light coming from behind the volume element. Then lnten•ity.,.,, the amount of light
the volume element sends to the viewer, is

lnten•ity.,., = Opacity, • .,., X lnten•ityJ•ont + (1.0- Opacityf•ont) X lntenoityhhind·

Sabella [Sabella 88] and Max [Max 90] have pointed out that as sample spacing in the z
direction approaches zero, and the compositing operator calculates the amount of light
emanating from increasingly thinner volume elements, the compositing operation gives

equivalent results to the integration techniques.

Splatting uses the compositing operator to perform visibility because it receives discrete

samples from the rendering pipeline and because compositing is much less compute­

intensive than integrating the actual exponential.

In volume rendering, the extinction coefficient or opacity is constantly changing for each

sample in the data set. In addition, the exponential decay function described above

73

is itself an approximation to the intractable calculation of how light travels through an
absorbing, emitting, semi-transparent medium. Since the medium is constantly changing

properties, it is impossible to characterize the errors introduced by collapsing a sample's
contribution into a two-dimensional footprint and using the compositing operator to
calculate visibility.

3.8.1 Method
The visibility process receives a color and opacity for each sample and a weight for each

pixel in that sample's extent. For each pixel in the footprint, the renderer weights the

sample by the footprint value and composites the sample's color and opacity into the
accumulation buffer.

The visibility rules are different for front-to-hack and back-to-front traversals, but the
rules are equivalent.

Let I denote the intensity, A denote the opacity, o denote the output, c denote what is
currently in the accumulation buffer, and n denote the new sample.

For a front-to-hack traversal, the formulae are

Io = Ic + ((1- Ac) x (In x An))

and

A 0 = Ac + {{1- Ac) x An)·

For a back-to-front traversal, the formulae are

I 0 = {{1- An) x Ic) +(In x An)

and

A.= {{1- An) x Ac) +An·

The initial implementation of the visibility process calculated the footprint for each
sample and composited the sample's footprint onto the accumulation buffer sample-by­
sample [Westover 89]. This does not properly model reconstruction (section 5.3) as

neighboring samples whose kernels overlap are treated independently. Reconstruction is
an additive process and the value of points between two samples is a combination of both

sample's values. The renderer can not treat the samples independently because visibility

does not adhere to superposition. For example, in a back-to-front traversal samples that

arrive later at the visibility process have visibility priority over samples that arrive earlier

even though these samples should sum their contributions in the overlap region before
the visibility process composites the result onto the accumulation buffer.

To address the problem of correctly calculating the value of a reconstructed point that

lies between samples with overlapping kernels, we i:ltroduced the sheet buffer method.

A sheet buffer is a buffer the size of an image that acts as storag~ for the reconstruction

process. As the renderer reconstructs a sheet of samples (section 3.5.1) if first zeros the

sheet buffer between sheets and then simply adds the weighted contribution for each

74

sample into the sheet buffer over the sample's footprint. When the renderer finishes
with all the samples in a single sheet, the visibility process composites the entire sheet
onto the accumulation buffer. This division of reconstruction and visibility has two
benefits. First, it allows both the reconstruction process and the visibility process to
more accurately model convolution and energy attenuation respectively. Second, the
com positing operation is performed coherently. This reduces the number of calculations
that the reconstruction and the visibility processes perform (section 5.3). The cost of
the sheet buffer method is the memory cost of storing the sheet buffer.

Chapter 4

Enhancements

4.1 Introduction
Two enhancements can increase the utility ofthe spla.tting algorithm. First, the a.pproa.ch
permits successive refinement. The method can quickly generate preview images, so
tha.t users can judge the effect of changing viewing parameters without having to wa.it
for the renderer to complete the entire image. If the user does not change the viewing
parameters, the image improves by successive refinement. If he does, rendering begins
anew with a. fresh preview image. Second, the feed-forward algorithm lends itself to
parallel execution, which increases the rendering speed.

4.2 Successive Refinement
One wa.y to improve the apparent update ra.te of image generation is to display partial
images during image generation. This allows the user to view the da.ta. with the
current viewing parameters quickly. The user can change a. viewing parameter without
waiting for the image to be completely rendered, and image generation restarts with
the new viewing parameters [Bergman 86]. The spla.tting renderer builds preview
images three wa.ys: by displaying partial images which are incremental updates of
the accumulation buffer, by displaying low-quality but complete images genera. ted by
changing the reconstruction kernel, and by displaying partial but unbiased images
generated by subsampling the input data..

Ideally, when a. researcher uses an interactive renderer to explore a. static da.ta. set,
the renderer should give immediate feedback whenever any viewing parameters change.
These viewing-parameter changes can include the viewing position, the clipping planes,
or the shading function. The feedback need not be a. high-quality full-resolution image
which ma.y ta.ke many seconds for the renderer to compute, but should be of good enough
quality for the researcher to judge the effect of the change. The preview update should be
fast enough so tha.t the la.g in response will not destroy effective interaction. For example,
when the user is rotating the da.ta. set with a. mouse, rotation should not continue after
mouse movement stops.

4.2.1 Incremental Updates
The feed-forward method uses two incrementally-updated buffers tha.t can be displayed
during image generation: the sheet buffer and the accumulation buffer. The renderer
uses the sheet buffer when reconstructing one sheet of the da.ta.. It fills this buffer with
zeros between sheets and then splats ea.ch sample of the sheet into the sheet buffer

76

by adding the sample's weighted contribution over the sample's footprint. This buffer
changes quickly and contains information about only a single sheet of data. The renderer
also maintains the accumulation buffer. After the renderer finishes calculating the sheet
buffer, it composites the sheet buffer onto the accumulation buffer. The accumulation
buffer contains the image that would result if the renderer stopped processing samples.
This buffer is updated many times per second and provides interesting views that look
as if a clipping plane is moving through the data either back-to-front or front-to-hack
depending on the rendering order.

4.2.2 Footprint Extent: Speed vs. Quality

The most compute-intensive part of the feed-forward renderer for high-quality images
is the reconstruction process. Since the renderer performs a multiply and an add for
each pixel within the extent of a sample's footprint, the footprint's extent determines
the amount of computation required to use the footprint. Three factors affect the size of
the footprint's extent: the relative spacing in the three mesh directions, the scale factor,
and the kernel's spatial extent.

Many data sets have different sampling rates the the three mesh directions. For example,
computed-tomography data sets are sampled many more times in the cross-sectional
direction than the longitudinal direction. The renderer has to scale the footprint to
adjust for the difference so it can preserve the correct aspect ratio of the data. If an
image was generated of an axis-aligned data set and the data set has twice as many
samples in the x direction as the y direction, the footprint would have to be twice as
large in the y direction because of the absence of samples in the y direction. The renderer
sets the minimum spacing to one and then normalizes the other two spacings. These
spacings are called the mesh factor.

The scale factor is the ratio of pixel sampling rate to image sampling rate-for example,
a scale factor of two would cause the renderer to magnify the input mesh spacing by
two and generate an image that has twice the resolution of the input in both image
dimensions. Thus, increasing the scale factor increases the size of a footprint's extent
in pixels. As the scale factor increases by a factor of N, the renderer must do N 2 more
calculations. Scale factors of one cause the renderer to generate images that have the
about same pixel resolution as the data-for example, the renderer would generate an
image that has between 64 x 64 and 110 x 110 covered pixels for a 64 x 64 x 64 data
set. The difference is due to possible data rotations. The small size is for axis-aligned
view and the large size is for a data set that was rotated 45° in each of the x, y, and
z directions. If a user wanted larger coverage in his image, he would increase the scale
factor. A scale factor of three causes the renderer to generate a 192 x 192 image in the

pixel-aligned case and a 332 x 332 image in the rotated case.

Different filter kernels have different extents independent of the scaling factor. The
filters described in section 2. 7 have extents which cover an actual range from infinite
to a single pixel and cover a practical range from 7 pixels to a single pixel. Changing
the reconstruCtion kernel can have large effects on computational. requirements as shown

below in this section.

77

1.0 1.0 r- 1.0

o.• 0.& 0.&

0.0 o.o o.o \
·• 0 • ·• 0 • ·• 0 •

Single-Sample Nearest-Neighbor Gaussian

Figure 4.01: The Three Kernels.

A low-quality and computationally-inexpensive kernel is the single-point kernel, as
illustrated in Figure 4.01, where the renderer maps a sample to a single pixel. The
footprint for this function is always one pixel, a spatial impulse function, and the footprint
computation requires only a single multiply and add per sample per color channel. A
problem with the single-point kernel is that for certain rotations, such as 45° about the
viewing axis or for scale factors larger than one the image will have holes as seen in the
upper left image of Figure 4.02.

An intermediate-quality and moderately computation-intensive kernel is the nearest­
neighbor kernel, as illustrated in Figure 4.01, where the renderer maps a sample to all
the pixels that are closer to this sample than any other sample in the sheet. The extent
of the nearest-neighbor kernel is approximately

((2 X r•ca/e factur X me•h jactorl)- 1).

The actual extent is calculated using the extent formulae of section 3.7.4, which take
rotations into account. When the scale factor is one, the nearest-neighbor kernel is
equivalent to the single-point kernel; however, when the scale factor is greater than one,
the footprint for the nearest-neighbor kernel is larger than one pixel. For example, when
the renderer uses the nearest-neighbor kernel and uses a scale factor of two, the footprint
extent is three pixels square and the footprint computation requires nlne multiplications
and additions per sample per color channel. This kernel will not cause holes in the image,
but the image will appear blocky for scale factors greater than one as seen in the upper
right image of Figure 4.02.

A high-quality and computationally-expensive kernel is one using a Gaussian to deter­
mine the amount of a sample's contribution to the pixels in its extent, as illustrated in

Figure 4.01.
·'

/aa.uuit~n(z) = e-~.

78

Since the Ga. us sian has infinite spatial extent, it must be truncated. This should be
done far enough from the center of the Gaussian so that the value of Gaussian is small
to reduce the ringing effects of truncation. The renderer chooses the value of 0.004 a.s
the point of truncation. This value is approximately ,~,, the smallest nonzero value
that can be represented in 8-bit color components. Values below this threshold will have
little effect on the output result. The extent of the Gaussian kernel is the number of
pixels in its footprint. The width of the one-dimensional Gaussian kernel is how many
input samples lie under the truncated Gaussian. The extent of the Gaussian kernel is
approximately

(f•cale factar X width X mesh factarl).

The actual extent is calculated using the extent formulae of section 3.7.4, which take

rotations into account. A five-sample-wide Gaussian, is one whose value falls to under
0.004 a.t two input samples from the center. This Gaussian has a. u = 0.6. When the
renderer uses this Gaussian and uses a. scale factor of two, the footprint extent is nine
pixels square and the footprint computation requires 81 multiplications and additions per
sample per color channel. These three kernels span an 81-to-1 range in the computational
requirements for reconstruction. The corresponding rendering times are shown below in
Table 4.01.

The !mages in Figure 4.02 are renderings of a data. set using the above three classes of
kernels. The lma.ge in the upper left was generated using the single-point kernel. The
image in the upper right was generated using the nearest-neighbor kernel. The image in
the lower center was generated using the five-sample-wide Gaussian kernel.

Figure 4.02: Image from the Three Classes of Kernels.

79

These relative differences in computational requirements do not remain constant with
changes to the scale factor. The above multiplication and addition counts are for images
with a scale factor of two. For a scale factor of three, the number of multiplications
and additions stays at one for the single-point kernel and changes to 25 for the nearest­
neighbor kernel and 169 for the five-sample-wide Gaussian kernel. Thus, for magnified
images with a scale factor of three, this choice of kernels produces a 169 to 1 range in
the number of reconstruction calculations.

4.2.3 Subsampled Rendering: Speed vs. Quality
Since the renderer uses a feed-forward method, the most important factor affecting
rendering time is pipeline throughput. The renderer can adjust the number of samples
that it processes, and thus adjust pipeline throughput, by subsampling the input data set.
For example the renderer may generate a low-resolution version of the data by operating
on every 4th input sample in each mesh direction. With a three-dimensional volume,
this reduces the number of samples for the pipeline by a factor of 64. The renderer may
generates a middle-resolution version by operating on every other input sample in each
mesh direction. With a three-dimensional volume, this reduces the number of samples
for the pipeline by a factor of eight.

The images in Figure 4.03 are images of a data set rendered at the subsampled resolu­
tions. The low-resolution data set image is in the upper left (64x reduction), the middle­
resolution data set image is in the upper right (8x reduction), and the high-resolution
data set image is in the lower center (no reduction).

Figure 4.03: Image from the Three Resolutions.

The quality of the images of the subsampled volumes depends on the frequency content
of the volume. If the original volume was band-limited and was sampled at four

80

times its Nyquist rate (an unlikely event) , then the subsa.mpled volume will not
introduce artifacts. More likely, the volume contains high frequency information and the
subsampling process will cause this energy to alias. This violates the premise that signal
processing issues need to addressed during volume rendering, however, these images of
the subsampled volume are only for quick preview and will refine to high-quality images
over time.

4.2.4 Rendering Computation Comparison
As seen in the previous section, the choice of kernel and choice of subsampling rate
obviously have large effects on how much computation the renderer does during recon­
struction. For example, consider when the renderer generates an image of a 128 x 128
x 128 input data. set with a. scale factor of three. When the renderer works with the
low-resolution subsampled data set (32 x 32 x 32) and uses the single-point kernel, it
processes 32,768 samples, each with a. one pixel footprint, requiring 32,768 multiplications
and additions. When the renderer works with the high-resolution data set (128 x 128 x
128) and uses the five-sample-wide Gaussian kernel, it processes over two million samples,
each with a 13 x 13 footprint, requiring over 350 million multiplications and additions.
This is a. 10,000-to-1 difference in the computation requirements between the low-quality
low-resolution preview image and the high-quality full-resolution image. These choices
a.llow the renderer to generate a range of views trading off rendering speed for image
quality a.s shown in Table 4.01.

Rendering Times
.

Input Kernel Footprint Time Shown in

Resolution Size (seconds) Figure

32x32 single-point 1x1 0.6 Not Shown

32x32 nearest-neighbor 3x5 4.1 Not Shown

32x32 Gaussian 9x17 36.9 Figure 4.03

64x64 single-point 1x1 1.2 Not Shown

64x64 nearest-neighbor 3x5 7.0 Not Shown

64x64 Gaussian 9x17 49.6 Figure 4.03

128x128 single-point 1x1 4.0 Figure 4.02

128x128 nearest-neighbor 3x5 20.2 Figure 4.02

128x128 Gaussian 9x17 109.2 Figure 4.02 and

Figure 4.03

Table 4.01: Rendering Times During Successive Refinement

For the measurements in Table 4.01, the spla.tting renderer generated a set of sample
images of a. 256 x 256 x 93 computed-tomography study of a. human head. The spacing

81

between samples is twice as large in the z direction as the x and y directions. The images
are 512 x 512 pixels and the scale factor is set to two. Rendering times for the three
resolutions of the data set and for the three reconstruction kernels are listed in the table.

4.3 Parallel Execution
A naive parallel feed-backward algorithm, e.g. ray-casting, requires that the renderer
either replicate the entire data volume at each computation node or resend the data to
the computation nodes for each frame, since the renderer cannot know what portions
of the data each computation node needs for an arbitrary view. Since a feed-forward
algorithm can treat each data sample independently, splatting is easily parallelizable
without the need to replicate the input volume at each computation node. In addition,
the processes that run on the parallel computation nodes use exactly the same algorithms
that run on the single process version except that they run on a subset of the data.

All of the parallel approaches in this section assume the parallel processor is a multiple­
instruction-multiple-data (MIMD) architecture without shared memory. The earliest
parallel implementation of splatting ran on a collection of workstations connected via
ethernet. Later, splatting was implemented on the Sun VX/MVX visualization accelera­
tor, which is also a MIMD machine without shared memory. Parallel splatting does not
require this type of architecture [Neumann 90], it was just the type of parallel machine
that was available for the conduct of this research.

4.3.1 Pipeline Balance in the Initial Parallel Implementation
The most obvious way to parallelize a feed-forward process is to use functional paral­
lelism, where each pipeline element runs as a separate process. Splatting can be done
with the transformation process, the CRIO process, the reconstruction process, and the
visibility process running as separate processes, where the parallel renderer passes tuples
from functional block to functional block, as illustrated in Figure 4.04.

Input ~ Transform

t
CRIO

t
Reconstruct

Resample

t
Composite 1~1 Image

Figure 4.04: Functional Parallelism.

82

The problem with this brute-force approach is that the renderer must pass too much
data too many times between the separate processes, some of which do relatively little
work. Because the input volume is a rectilinear mesh, the transformation process
may be performed incrementally, requiring only three additions per volume element.
Additionally, the image-space tuple requires more storage than the input tuple, since
the image-space coordinates require fractional representations and the mesh coordinates
are implied by the rectilinear mesh and need not be explicitly stored. The CRIO
process requires more computation than the transformation process and sends only
nonzero-opacity tuples down the pipeline. Since the transformation process requires
little computation and expands the amount of data while the CRIO process requires
significant computation but can reduce the amount of information it sends down the
pipeline, these two processes were combined into a single process.

For a 128 x 128 x 128 data set, with a 9 x 17 sample footprint, and 50% nonzero­
opacity tuples, the functionally parallel approach would require the renderer to transmit
approximately 2 million tuples from the transformation process to the CRIO process.
The renderer would then transmit approximately 1 million CRIO tuples from the CRIO
process to the reconstruction process and would then transmit approximately 1 million
9 x 17 footprints to the visibility process. The above grouping reduces the transfer
to a single transmission of the 1 million CRIO tuples from the CRIO process to the
reconstruction process.

In the original implementation, reconstruction and visibility were tightly coupled. As
soon as the renderer calculated the footprint, it composited the sample onto the accu­
mulation buffer. Since a footprint can be large (i.e. 9 x 17 for the lower center image in
Figure 4.02), and sending the footprint requires more bandwidth than sending the the
sample, these processes were combined into a single process.

This parallelization has the transformation and the CRIO processes run within a single
process, and the reconstruction and the visibility processes run within a second process.
The transformation/CRIO process reads the data set once and sends only tuples that
have nonzero opacity to the reconstruction/visibility process. Typical volume-rendered
images generate fewer than 100% nonzero-opacity tuples [Levoy 90]. For example, in
Figure 4.02 only about 8.8% of the samples in the data set generate nonzero-opacity
tuples.

83

Since the transformatiorr/CRIO process must deal with all the input whereas the recon­
struction/visibility process must only deal with the nonzero-opacity tuples, the renderer
uses multiple transformation/CRIO processes. For data partitioning reasons described
below, the renderer uses multiple, N°, transformation/CRIO processes, and a single
reconstruction/visibility process where N is a small integer. If N is one, the renderer
consists of two processes, as illustrated in Figure 4.05, and essentially runs the single
process version ofthe algorithm described in Chapter 3; the single transformation/CRIO
process runs on the entire input volume and sends nonzero-opacity tuples to the single
reconstruction/visibility process.

/ / -
Tra11.1form

/
I

CRIO

Data - n~nsero-opacity tuples

Sh .. t
B.ecoaltruct 1-

B1df'er

I
Image

Compo1he
!Accumulatioll

SufFer

Figure 4.05: Trivial Parallel Implementation.

If there are multiple transformation/ CRIO processes, the renderer distributes ~ of the
input data to each transformation/CRIO process. Figure 4.06 is a block diagram of
the initial parallelization with N = 2. The renderer breaks the input data set into N3

subsets, for reasons explained below, and passes N subsets to each transformation/CRIO
process. These processes run the algorithms described in Chapter 3 on each subset. The
reconstruction/visibility process monitors an input stream from each of the transforma­
tion/CRIO processes, splatting each nonzero-opacity tuple into the sheet buffer. When

all of these processes have finished with a sheet of data, the reconstruction/visibility
process composites the sheet buffer onto the accumulation buffer.

84

/ / /
u

I

/ / / I

v Traneform Tran1fonn Tran•form Traa•form

vv I I I
/ CRIO CRIO CRIO CRIO

Data
I
I I

nonzer~opacity tuple• - !1

f-
Sheet

Rec::ODitruct
BufFer

lf
Image

Co111polite f-
~ccu~:aulation

Buft'u

' i

Figure 4.06: Initial Parallel Implementation with N = 2.

The renderer must carefully partition the data into the subsets sent to each transfor­
mation/CRlO process, because the renderer must operate on the samples in either a
front-to-hack or a back-to-front order for all orientations. A brute-force subdivision
approach would break the data set into N 3 subsets, one for each transformation/CRlO
process, each subset containing a range the slices of the data set. If the view looked
down slices, this subdivision would work fine, since each transformation/ CRlO process
would operate on a group of rows for each sheet. However, if this view is rotated 90°
about the y-axis, a single transformation/CRlO process would operate on all the sam­
ples for a single sheet, while the other transformation/CRlO processes waited for it to
finish. An alternative way to subdivide the data is to divide the data into N 3 subsets
by dividing the data set N times in each mesh direction. The renderer would then send
N subsets to each of the N 3 transformationfCRlO processes. The renderer must still
carefully partition which subsets are sent to which transformationfCRlO processes. If
a transformation/ CRlO process received two subsets that had samples from the same
sheet, then for some view directions, that single transformation/CRlO process would
be working on multiple subsets at the same time while another transformation/CRlO
process would have no subsets to work on. Consider the case for N = 3. Number the
N 3 processes 0 through 8. If the renderer sent the first transformation/CRlO process,

85

number 0, the lower left data. subset for each z-a.ligned group of N 2 subsets, the process
assignment would look like the left ha.nd side of Figure 4.07. This arrangement is rea­
sonably distributed for views looking down the z axis. However, if the view wa.s rotated
go• about the y axis, a.s ha.s happened in the right ha.nd side, there would not be a.n
equal distribution of work for ea.ch sheet. For example, only processes 2, 5, a.nd 8 have
a.ny samples from the front-most sheet.

Figure 4.07: Data. Set Collision with N = 3.

Fortunately there is a. wa.y to distribute the N 3 subsets to the N 2 processes so there is
no sheet overlap in the a.ny of three mesh directions, which a.llows the N 2 tra.nsforma.­
tion/CRIO processes work a.s a. group on each sheet in a. front-to-ba.ck or a. back-to-front
order. First, the renderer numbers the N 2 processes

(i,j): (0, 0), (0, 1), ... , (0, N- 1), (1, 0), ... , (N -1, N- 1)

a.nd the N 3 subsets
(i,j, l:): (0,0, 0), ... , (N -1, N -1,N- 1).

Then for each process, (i,j), a.nd fork going from 0 to N-1, the renderer sends subset

< (i + l:) mod N, (i + k) mod N, k > to tra.nsforma.tion/CRIO process (i, j). This wa.y, from
a.ny view direction, each process has exactly one of its subsets active for a.ny given
sheet. For example, in Figure 4.08 the subsets are distributed correctly for the left hand
view; a.nd when the view is rotated go• around they-axis, a.ll nine tra.nsforma.tion/CRIO
processes are active on a.ny given sheet.

86

I
1 2 0 6 5 1

7 8 6 I" 7

4 5 3 0 8 4

1/ I
5 3 4 / 7 3 2

2 0 1 4 0 8
90°

8 6 7 1 6 5

1/
6 7 8 1

hood

8 4 0

3 4 5 Good 5 1 6

0 1 2 2 7 3

Figure 4.08: Para.llel Da.ta. Distribution with N = 3.

A N = 2 para.llel version of the spla.tting renderer, a.s diagramed in Figure 4.06, is
running on a. Sun-4/370 workstation a.nd a. Sun-VX/MVX visualization a.ccelera.tor
(Sun 91]. The user-interface portion of the renderer runs on the workstation; it controls
aJl user interaction a.nd sends the input da.ta. to the VX/MVX. The MVX ha.s four
processing nodes, ea.ch with four megabytes of local memory, a.nd the VX ha.s a. single
processing node with four megabytes of local memory. These five processing nodes
are connected by a. single 20 mega.bytefsecond bus. The four processing nodes of
the MVX run tra.nsforma.tion/CRJO processes which send CRJO tuples to the single
reconstruction/visibility process on the processing node of the VX. The VX also ha.s
sixteen megabytes of display memory. The reconstruction/visibility process builds the
a.ccumula.tion buffer, a.s well a.s the final ima.ge, in the display memory so the user ca.n
see the ima.ge incrementa.lly upda.te.

This implementation provides three reconstruction kernels (section 4.2.2). The first is
the single-point kernel, where the renderer ma.ps ea.ch input sample to a. single output
pixel. The second is the nearest-neighbor kernel, where the renderer ma.ps a. sample to
aJl the pixels tha.t are closer to this sample tha.n a.ny other sample in the sheet. The
third is the Ga.ussia.n kernel, with a. cr = 0.6, tha.t is truncated a.t two input samples from
the center.

This version of the para.llel renderer ha.s loa.d-bala.ncing problems. When the renderer
is using a. sma.ll reconstruction kernel a.nd a. complicated CRJO process, the tra.nsforma.­
tionfCRJO process dominates the computation a.nd ru~s most efficiently with a. large N.

When the renderer uses a. high-quality reconstruction kernel a.nd a. simple ta.ble-driven

87

cruo process, the reconstruction/visibility process dominates the computation, and the
renderer underutilizes the transformation/CR10 processes.

Table 4.02 demonstrates this phenomenon. Rendering times on the above implementa­
tion are given for various stages of the rendering process for generating the images in
Figure 4.02. First, the "CR10" value is the time required by the transformation/CR10
processes to generate CR10 tuples from the input tuples. Second, the "send" value is the
time required by the transformation/CR10 processes to send the nonzero-opacity tuples
to the reconstruction/visibility process. Third, the "splat" value is the time required
by the reconstruction process to build the sheet buffers. Fourth, the "composite" value
is the time required by the visibility process to composites the sheet buffers onto the
accumulation buffer. Finally, the total number is how long it took the entire rendering.
Notice that the "CR10" and "send" times are independent of the reconstruction process
and the reconstruction process takes over two orders-of-magnitude longer to run for the
high-quality Gaussian kernel than for the low-quality single-point kernel.

Rendering Times

Kernel Footprint cruo Send Splat Composite

Size (seconds (seconds (seconds (seconds)

single-point 1x1 14.3 7.6 0.2 11.4

nearest-neighbor 3x5 13.9 8.0 2.5 16.8

Gaussian 9x17 14.1 7.9 55.7 23.1

Table 4.02: Stage Rendering Times for Three Kernels

4.3.2 Multiple Independent Sheet Buffers

Total

(seconds)

33.5

41.2

100.8

A second parallel version of splatting, as illustrated in Figure 4.09, was designed to
address this load-balancing problem, It attempts to achieve better load balancing for
high-quality images. The method takes advantage of the fact that the algorithm currently
uses an accumulation buffer, instead of com positing every sample independently. This
version breaks the reconstruction/visibility process into its two components. The first
process determines the footprint for each input tuple and adds the footprint into the
sheet buffer. The second process performs the visibility computation by com positing
the sheet buffer onto the accumulation buffer. In this version, the renderer distributes
the sheet buffer to the M = N 2 processes, each holding every Mth scanline. When
the reconstruction process finishes with all the samples from a given sheet, it passes its
scanlines to the visibility process.

A trial implementation of the above method is running on a Sun-4/370 workstation and
a Sun-VX/MVX visualization accelerator. The user-interface portion of the renderer

runs on the workstation; it controls all user interaction and sends the input data to the
VX/MVX. In this version, a reconstruction process as well as a transformation/CR10
process run on each MVX node. Since footprints for high-quality images are large (9 x 17

88

for the lower center image in Figure 4.02) and cover many scanlines, each reconstruction
process does about the same amount of work. Since the sheet buffer is distributed, each
transformation/CRIO process sends its CRIO tuples to all the reconstruction processes.
When each reconstruction process finishes a sheet and sends its portion of sheet buffer
to the visibility process, the visibility process composites the sheet buffer onto the
accumulation buffer and displays it.

Preliminary experiments suggest that this parallelization has an 80% utilization of
the VX/MVX processors compared to the approximately 10% utilization of the first
VX/MVX approach. While this new approach requires much more bandwidth, to send
the tuples from each CRIO process to each reconstruction process, the VX/MVX has
plenty of bandwidth for this task.

I I
I I

ITraa•fonal Traa1formj JTra~~odorml JTraaaformJ

Data
I CRIO I I CRIO J L CRIO I I CRIO I

I I I I I I I

F-•••••m1 r,.••••m1 ja ,,. .. 1 IR•••••'"·~i
I I

I I
Bv.ffu I ••••• I Baff•f I ••••• I Buffer

I I
Bv.ffcr

•heet-buft'er acanlines - I

I
II

Compoaito - fAc::c:umula•ioa Image
Buft'er

Figure 4.09: Multiple Independent Sheet Buffers with M = 4.

4.3.3 Proposed Parallel Implementation
The above parallel approaches require (N' + 1) processes with N being a small integer.
If a system supports (N(N' + 1) + 1) or (N3 + N + 1) processes another parallelization is
straightforward, as illustrated in Figure 4.10. Again, the renderer breaks the data set into
N 3 subsets and sends one subset to each of the N 3 processes. For a given view direction,

the renderer finds the proper order to traverse the data and uses this order to group the
sets of N 2 subsets that contain common sheets into a slab. The renderer assigns each slab

89

group a. single process from the N process pool. These N groups of processes, each with
(N2 + 1) processes, render a.n image for their slab in the sa.me way as the above methods
render a.n image. When the groups complete the slab images, they send their images to
the single remaining process that combines the slab images into the fina.l image. This
method requires the renderer to reconfigure the process tree to reform the slab groups
or resend the data. each time the view changes, since the processes that ma.ke up a. slab
set may cha.nge as the view changes. With N = 3, there a.re 27 tra.nsforma.tion/CRIO
processes grouped in three sets of nine. Each of these groups feed sca.nlines to one of
three slab-composite processes. These three slab-composite processes send their slab
images to a. single image-composite process that builds the fina.l image.

6 7 8 15 16 17 24 25 26

3 4 5 12 13 14 21 22 23

0 1 2 9 10 11 18 19 20

Ill! II II Ill I II Ill I I' I Ill

.... Slab

Oompo•i•• Compo•ite Compoaite

I I

w- Image
Im.ar• Compoflte

Figure 4.10: Proposed Pa.ra.llel Implementation with N = 3.

This pa.ra.llelization should run N times faster tha.n the multiple-independent sheet-buffer
approach. The fina.l image composite step requires little time, and the N groups of
processors a.re tota.lly independent a.nd a.re working on one Nth of the problem.

Chapter 5

Judicious Compromises

5.1 Introduction
The ideal feed-forward renderer, outlined in Chapter 2, reconstructs the assumed con­
tinuous function, g(), by convolving the sampled input, fO, with the filter kernel, h():

co co co

g(z,y,z)= :E :E :E f(i,j,k)h(z-i,y-j,z-k).
i=-oo ;:-oo 1:=-oo

The renderer transforms g() with the viewing matrix, M, to generate the view­
transformed function, v():

v(z,y,z) = Mg(z,y,z).

The ideal renderer shades v() with shading function, •(), and filters the result with a
low-pass filter, l(), to remove frequencies that exceed one-half the image sampling rate.
This generates the filtered, shaded, view-transformed function p():

co "" co

p(z,y,z)= :E :E :E •(v(i,j,k))l(z-i,y-j,z-k).
i=-oo ;=-oo i=-co

The renderer then calculates visibility for each pixel by operating on p() in the region
defined by the projection of that pixel into p().

To increase execution speed, the actual implementation of the feed-forward algorithm
introduces three design compromises which make it a less-than-ideal renderer. These
compromises are:

• The renderer shades the original input samples before reconstruction instead of
shading the view-transformed reconstructed signal.

• The renderer reconstructs the signal and calculates visibility at discrete steps
along the region defined by each pixel's projection.

• The renderer uses a table-driven approximation of the footprint function when
it reconstructs the shaded signal.

This chapter suggests a variety ofimplementation alternatives which deviate, to a greater
or lesser extent, from the ideal in order to define an efficient renderer.

91

5.2 Efficient Process Ordering: Shade First
The most critical factor affecting rendering time in a feed-forward method is pipeline
throughput. Due to the feed-forward approach, the renderer shades the original samples
and sends only nonzero-opacity samples down the rendering pipeline. In some cases, for
example Figure 3.04, as few as 8.8% of the input samples have non-zero opacity. At the
other extreme, for example Figure 3.06, 40% or more have nonzero opacity. Shading
the original input allows the method to run faster in many cases, and never causes the
renderer to run slower.

Additionally, there are still fewer input samples tha.n samples generated in the resa.mpling
process. because many volume-rendered images magnify the extent of the da.ta.. For
example, for an input volume of 128 x 128 x 128 and a. scale factor of three, the renderer
shades approximately two million input samples. H the renderer reconstructed ea.ch of
the 128 sheets and each sheet ha.d 384 x 384 pixels (three times 128 x 128), the renderer
shades over six million resampled samples.

This modification to the process ordering in the rendering pipeline imposes the constraint
tha.t the shading process must be band-limited, since the system does not low-pa.ss filter
the shaded signal. H the system uses a. binary classifier or uses a. shading process tha.t
introduces frequencies into the signal's spectrum that exceed one-half the image sampling
rate, then aliasing will occur and there will be classification artifacts in the resultant
images, as described in section 2.4.

5.3 Reconstruction and Visibility
There are many wa.ys to transform the ideal method into one tha.t is better suited to
practical implementation. This section will consider four possible implementations of
the reconstruction process.

First, if visibility is simply an additive process, then the transformation, reconstruction,
filtering, and visibility stages are all linear, and individual samples could be treated
independently throughout rendering pipeline. The renderer simply a.dds each tuple into
the accumulation buffer and each pixel is a. sum of all the intensity tha.t exists in the
region defined by that pixel's projection through the da.ta..

Unfortunately, visibility is not merely a.n additive process, but is a. nonlinear process
tha.t must operate sequentially on the input in either a. back-to-front or a. front-to-hack
order.

The first reconstruction method, and the method tha.t most accurately models the ideal
method, generates a three-dimensional discrete footprint for each sample and uses this
three-dimensional footprint to spread a. sample's energy into a. volume tha.t is axis-aligned

with the image, as shown in Figure 5.01. This volume has one sample per pixel in width
and height and many samples per pixel in depth. Once the volume is transformed,
reconstructed, and resampled on this mesh by spla.tting the three-dimensional footprint
of ea.ch sample, the renderer shades these samples. Since the shading process ca.n change

the spectrum of the signal, the process low-pass filters the shaded samples to lower the
signal's Nyquist ra.te so tha.t it is below the resampling ra.te. Once the volume is filtered,

92

the renderer uses a visibility model to determine visibility for each pixel by processing
each depth column of samples that lie behind that pixel.

Sheet Buffers

Yr,---L-----,

N-1\
N Accumulation

Shaded
Footprint N + 1 Buffer

Figure 5.01: Ideal Splatting Method.

One problem with this feed-forward method is it requires a three-dimensional buffer to
hold the transformed, reconstructed, and resampled volume. This buffer makes parallel
reconstruction difficult, because the buffer is a single resource that has to be accessed by
each splatting node. However, once the renderer creates the volume, the renderer could
shade, filter, and perform visibility in parallel with simple image subdivision techniques,
because the volume is pixel-aligned.

An alternative approach is to treat each sample independently even during visibility,
using the composite-every-sample method. This version of the renderer operates on
the input samples in an order that guarantees either a front-to-hack or a back-to­
front traversal. The renderer composites each sample's footprint into the accumulation
buffer (Westover 89]. The problem with this method is each sample's energy is treated
independently of other samples for each image-space point. Digital filtering theory

dictates that each image-space point be a weighted average of the input samples. The
renderer must add the contribution of all samples which affect an image-space point
before the renderer calculates the visibility of that point.

The effect of the approximation is illustrated in Figure 5.02.

93

(0,0,1) (0,0,1) (0, o, 1) Background color (red, green, blue)

/ (1, o, o)/ /(1,0,0)1 Foreground color (red, green, blue)

1

Foreground opacity

0 x,,,, XmsdcUe X,.t.1ht

Figure 5.02: Composite-Every-Sample Problem.

If the renderer were linearly interpolating and reconstructing point Xmiddl• from points
X"'' and x.,,M, then point Xmiddl• should have an opacity of one and block a.ll the data
behind the point during the compositing step. A point X consists of its color, C, and its
opacity, 0.

In the idea.! case, the opacity is

Omiddle = 0.0

Omitldle + = 0.5 X Otejt

Om.iddle + = 0.5 X O,.ight

Omidtlle = 1.0.

And the color is

Cmiddl• = 1.0 X (1.0, 0.0, 0.0) + (1.0- 1.0) X (0.0, 0.0, 1.0)

Cmiddl• = (1.0, 0.0, 0.0).

The composite-every-sample method first composites x,,,,

Omiddle = 0.0

Omiddl• + = 0.5 X 01•/f

Omiddle = 0.5.

Cmiddl• = 0.5 X {1.0, 0.0, 0.0) + (1.0- 0.5) X (0.0, 0.0, 1.0)

Cmiddl• = {0.5, O, 0.5).

This Cmiool• becomes the new background and the renderer composites X,,,ht

Om.iddle = 0.0

Omiddle + = 0.5 X of'igh.t

Om.iddle = 0.5,

Cm.itldle = Omiddle X Cjougroun.d + (1.0- Om.iddJe) X Czu,.ci:gf'ound

Cmiddl• = 0.5 X (1.0, 0.0, 0.0) + {1.0- 0.5) X (0.5, 0.0, 0.5)

Cmiddl• = (0.75, 0.00, 0.25).

94

Here the incorrect ordering of reconstruction and visibility allows the blue background
color to bleed through the opaque red slice.

The above observation led to the development of the sheet buffer. All the samples
which are part of the same sheet are added together into the sheet buffer before the
sheet buffer is used by the visibility process. This allows overlapping reconstruction
kernels to add their contribution to the image-space point, which more accurately models
reconstruction. A second benefit of using the sheet buffer i's that the renderer performs
coherent compositing. In the composite-every-sample method, the renderer must do a
composite operation, (Opacity x Fm-egruund+ (1- Opacity) x Background), for each pixel
in each sample's extent. High-quality reconstruction kernels have wide extents and a
pixel may get operated on many times for each sheet. For example, when the renderer
uses a five-sample-wide Gaussian reconstruction kernel, the renderer will operate on each
pixel 25 times for every sheet of data. The sheet buffer method replaces the composite
operator with addition and does 25 additions for each pixel within a sample's extent.
Once the renderer finishes all the samples in a sheet, it composites the sheet buffer into
the accumulation buffer and accesses each accumulated pixel only once.

The composite operation requires one addition, one subtraction, and two multiplications
for a total of four arithmetic operations. If the renderer uses a five-sample-wide Gaussian,
and the samples in a sheet cover a 128 x 128 pixel region, the composite-every-sample
method does approximately 128 x 128 x 25 composite operations, for a total of 1.6 million
arithmetic operations per sheet. The sheet buffer method reduces this number to 128
x 128 x 25 additions and 128 x 128 composite operations for a total of just under .5
million arithmetic operations per sheet, a savings of more than three-to-one over the
composite-every-sample method.

The sheet buffer approach addresses the problem of overlapping kernels in the image­

space x and y directions. It allows the reconstruction process to add the contribution of
all samples in a sheet, whose kernels may overlap, to all the pixels in a sheet before it

95

passes the sheet buffer onto the visibility process. However, the image-space z direction
is still collapsed during the generation of the footprint and there is no additive affect
of multiple overlapping kernels in depth, even though many kernels overlap in the z
direction. The effect of this approximation can be reduced with the use of multiple
footprints per sample in z and multiple sheet buffers in z, as shown in Figure 5.01. In
this way, the renderer may maintain multiple sheet buffers and overlapping kernels can
contribute their energy to pixels in different sheets before the reconstruction process
passes the sheet onto the visibility process. H a reconstruction kernel has a five-sample­
wide extent, the renderer needs five sheet buffers and five footprint tables, one for each
sheet within a sample's z extent. The renderer composites a sheet buffer when no more
samples can affect the sheet buffer. In the five-sample-wide kernel case, a sample can
affect its sheet as well as two sheets in front of its sheet and two sheets in back of
its sheet. When the renderer finishes processing all the samples in a sheet, no more
samples can affect the back-most sheet buffer and the renderer can composite the entire
sheet buffer into the accumulation buffer. Once the renderer composites the sheet buffer
it can reuse the sheet buffer as the new front-most sheet. This method more closely
approximates the initial discrete method, described in section 3.8, without requiring an
entire volume buffer. It does, however, require multiple sheet buffers. This method
performs the same number of composite operations as the sheet buffer method; however,
in the case of a five-sample-wide Gaussian reconstruction kernel, this method does five
times as many additions during the reconstruction phase, because it operates on five
sheets at a time. In this example, the reconstruction process does 128 x 128 x 25 x
5 additions and 128 x 128 composite operations for a total of 2.1 million arithmetic
operations. The present implementation does not use the multiple sheet buffer method,
because the single sheet buffer method generates images of sufficient quality and the
multiple sheet buffer method requires four times as many arithmetic operations during
reconstruction (the most expensive part of the splatting method).

5.4 Footprint Approximations
For an orthographic view, the renderer generates the footprint table once per frame.
Ideally, the renderer should analytically integrate the view-transformed kernel along z to
generate the footprint table, but this integration may be intractable. Alternatively, the

renderer should numerically integrate the view-transformed kernel along z to generate
the footprint table. This provides an accurate solution, but requires the footprint
generation process to evaluate the kernel multiple times for each footprint table entry as
it numerically integrates the kernel. To increase speed, an approximation function was

introduced.

In order to limit the extent of the footprint table, the renderer truncates the approxima­
tion function. For Gaussian reconstruction kernels, the renderer truncates the kernel at

the point where its value falls below 0.004, which is approximately equal to 2~5 or one
quantization level in most computer graphics displays. The result of the truncation is
that the volume under the kernel does not equal one, but instead is a little less than one

96

(.9974), which may causes a slight sample frequency ripple for a constant input. How­
ever, there are typically few areas of constant value in volume-rendered images, result
intensities are quantized to 256 levels anyways, and the selected truncation value is so
small that there is little energy in the truncated tail (less than .3%) that this truncation
has no noticeable effect on the output images.

For a truncated spherical Gaussian kernel, which has a bounding sphere and equal mesh
spacing in each mesh direction, the approximation function introduces no error. The
kernel is assumed to look the same from any view and the renderer can model the
result of the integration from any view with a function that is simple to evaluate. If
this assumption is true, the renderer generates the footprint table by evaluating the
approximation function, rather than integrating the original kernel. In some cases this
introduces no error-for example, a two-dimensional Gaussian can accurately model the
three-dimensional Gaussian, because one-dimensional integration of a three-dimensional
Gaussian yields a two-dimensional Gaussian.

When the mesh spacing is different in each mesh direction, or the scale factor is different
in the two image directions, the kernel has an ellipsoid of influence. The renderer
calculates the transformation from ellipsoid to sphere and uses this mapping to evaluate
the approximation function. When the view direction is along one of the mesh axes,
the approximation function still does not introduce any errors for a Gaussian kernel.
However, when there are extreme differences in spacing, some angles produce ellipsoids
that map poorly to a sphere. The approximation function then differs from the correct
solution and the footprint table is not a good representation of the ideal solution. The
ideal integration of the kernel would be

footprint(z,y) = 1: e
,.,

dz,

where

(1)

and v-• is the inverse viewing transformation matrix. The approximation function
models the integration as

footprint(z,y) = 1: e dz,

where

(2)

and T- 1 is the ellipse to circle mapping defined in section 3.7.4.

97

This phenomenon is illustrated visually in Figure 5.03. H the mesh spacing is twice as
large in the x direction as the z direction, the kernel is an ellipsoid. H the view direction
is rotated 45° about the y-axis, the footprint generation process should integrate the
kernel along rays that are not aligned with any of the ellipsoid's axes. However, the
mapping from view-transformed extent to the approximation function extent causes the
integration to be modeled as if the rays were axis-aligned; Thus, this rotated ellipsoid is
not accurately modeled with the approximation function.

zv

Ideal Integration Path
Actual Integration Path

From Footprint Table

Figure 5.03: Rotated Elliptical Kernels.

The above approximation is a straightforward rendering-time vs. image-quality trade-off.
Ideally the renderer should integrate the view-transformed kernel, but this is a compute­
intensive operation. Therefore, the renderer uses the approximation function to generate
the footprint table quickly.

An error term could possibly be generated by calculating equation (1) - equation (2),
but the subjective image quality with this approximation was good enough that we did
not calculate or bound the error term.

Chapter 6

Conclusions

6.1 Introduction
This chapter will discuss some conclusions about the spla.tting method, outline the thesis'
contributions, a.nd offer some suggestions for future work.

6.2 Conclusions
This thesis presents a. linear-systems-theory based framework for volume rendering. It
looks a.t current volume-rendering methods in this framework to discuss the causes of
rendering artifacts. In addition, the thesis presents a. new volume-rendering algorithm,
spla.tting, tha.t ma.ps well but not perfectly to the idea.! volume-rendering method oper­
ating within the framework. The new method ca.n also run in para.llel without needing
to replicate the input da.ta..

The spla.tting algorithm presented here differs fundamenta.lly from existing algorithms. It
uses feed-forward reconstruction, which touches input samples once a.nd output samples
ma.ny times. Touching the inputs once is good for distributed systems, since the system
does not ha.ve to replicate the input da.ta. a.t ea.ch processing node or resend the input

· · da.ta. ma.ny times to various processing nodes. Touching the output ma.ny times may be
ba.d for distributed systems, since the output is a. resource tha.t ma.y only exist in one
place which becomes a. memory contention bottleneck.

The renderer ca.n run in para.llel in the four wa.ys described in Chapter 4. An a.dva.nta.ge
of the spla.tting method is tha.t the processes in the para.llel versions are the sa.me a.s the
processes in the non-pa.ra.llel versions except they operate on a. subset of the input da.ta..
This makes the para.llel process ea.sy to understand a.nd natura.! to program.

The renderer ma.y ma.ke rendering-time vs. image-quality tra.de-offs a.t several points in

the rendering pipeline.

(1) The renderer ma.y operate on a. sma.ll version of the input to speed processing

thereby sacrificing fine detail in the final images.

(2) The renderer ma.y use poor reconstruction kernels because they ha.ve limited
spatia.! extents a.nd reduce the amount of reconstruction computation.

(3) The renderer ma.y use a. footprint table tha.t it builds from a.n a.n approximation
functions instead of the original kernel to reduce the cost of table generation.

99

(4) The renderer internlixes reconstruction and visibility at different points, depend­
ing the memory resources and computation speed ofthe rendering machine. Sep­
arating these process gives better results, but requires more intermediate storage
and more computation.

These trade-offs are important in getting a system to run at interactive rates. Researchers
can trade how much quality they desire in the final image against how long they are
willing to wait for the result.

Splatting is a valid volume reconstruction technique with a sound theoretical basis in
signal processing. However, to use the splatting reconstruction techniques for volume
rendering, we made some minor concessions. These concessions are:

• We treat shading as a band-limited process, so we can shade first and reduce the
amount of computation later.

• We model attenuation/scattering as a discrete compositing process.

• We assume the input is band-limited.

• We do not properly project the z dimension of the signal during visibility.

The renderer generates reasonable quality images. The ideal splatting method may
closely model the ideal volume-rendering algorithm with each of the rendering steps
adhering closely to the requirements of linear-system theory and each procedure occur­
ring at the proper step in the rendering pipeline. The current implementation of the
splatting algorithm make the concessions mentioned above. These concession seem to
have only minor effects on the resultant images. The largest effects are seen when the
CRJO process is not band-limited and it introduces high frequencies that cause aliasing
during the resampling phase. Other noticeable artifacts occur due to the use of the
approximation function when the input data set has large differences in the sampling
rates along the three mesh directions.

6.3 Contributions

This thesis' major contribution is twofold. First, it presents a theoretical framework for
the volume-rendering process. Although the theory is straightforward, it has been largely
ignored in previous work. Second it introduces the splatting algorithm, a technique for
direct rendering of rectilinear meshes of volume data. It is a naturally parallel algorithm
which adheres well (but not perfectly) to the requirements imposed by signal processing
theory. The algorithm has several novel features. First, it can render volumes as either
clouds or surfaces by changing the shading functions. Second, it can smoothly trade
rendering time and image quality by varying the amount of computation during various

stages of the rendering pipeline.

100

6.4 Derivative and Future Work
An important goal for further research is more evenly distributing the reconstruction and
visibility process in the para.llel implementations. The solution involving a sheet buffer,
or a set of sheet buffers, and the accumulation buffer leads to a memory contention
bottleneck at the sheet buffer or the accumulation buffer. This contention hampers
the rendering speed of para.llel implementations, since each computation node must
access the common resource at multiple points in the rendering pipeline. Neumann
[Neumann 91] has done some interesting work along these lines on the heterogeneous
multicomputer Pixel-Planes 5 [Fuchs 89]. He uses the multiple pixel processors to
compute the footprint function and the compositing function in para.llel for a.ll pixels.

Another area for further research is how volume renderers should display meshes of
higher-order elements, such as sets of scalars of vectors. The current shading rules were
designed to render scalar fields.

In addition, it is not clear how the straight element-tossing approach will deal with
curvilinear and unstructured meshes. The reconstruction footprint can be different for
each input sample and using a common footprint is a major way the splatting method
reduces the computational requirements of reconstruction. Ma.x, Hanrahan, and Crawfis
[Ma.x 90], have used the basic splatting pipeline to render unstructured meshes. Their
method models the element as a polyhedron and regenerates the footprint for each data
element before splatting that elements contribution to the image.

Another area for further research is modifying the splatting algorithm to handle geo­
metric data intermixed with the volume data. Geometric data is not band-limited and
does not easily conform to the independent treatment of the input data. The ray-casting
approaches and the data-coercion approaches deal with geometric data trivia.lly, since
the ray-casting approaches can trace the geometric data as easily as the volume data, and
the data-coercion approaches already generate geometric data as the display primitives.
Hanrahan [Hanrahan 91 J has an interesting way of modeling a sample's footprint with
a collection of semi-transparent polygons. He renders the polygons with conventional
high-performance graphics engines. Since these footprints are polygonal, intermixing
other polygonal data should be straightforward.

Another area for further research is to bound and characterize the errors introduced by
the various approximations made in the implementations described in this thesis.

A final area for further research is process ordering within the splatting pipeline. Splat­

ting can be ordered so that the process more closely adheres to the ideal ordering pre·
sented in Chapter 2. It is not clear how this reordering would affect rendering times
and memory space requirements. McMillan [McMillan 90] has proposed a method for
three-dimensional splatting. The intermediate volume buffer is sma.ller that the original

data set since he takes advantage of maintaining local gradient information to help during

reconstruction.

Chapter 7

References

Abram G.D., L.A. Westover, a.nd J.T. Whitted, [1985] "Efficient Alias-Free Rendering
Using Bit-Masks and Look- Up Tables", Computer Graphics, vol. 1 g, no. S, July
1985.

Bergma.n, L., H. Fuchs, E. Gra.nt, a.nd S. Spach, [1986] "Image Rendering by Adaptive
Refinemenf', Computer Graphics, vol. 20, no. 4, August 1986.

Blinn, J.F., [1982] "Light Reflection Functions for Simulation for Clouds and Dusty
Surfaces", Computer Graphics, vol. 16, no. S, July 1982.

Brooks Jr., F.P., [1986] "Interactive Graphics Can Double America's Supercomputers",
1986 Workshop on Interactive 3D Graphics, October 1986.

Carpenter, L., [1984] "The A-Buffer, an Antialiased Hidden Surface MethDif', Computer
Graphics, vol. 18, no. 3, July 1984.

Ca.stlema.n, K.R.., [1979] "Digital Image Processing", Prentice-Hall Inc., USA.

Catmull, E., a.nd A.R.. Smith, [1980] "3-D Transformations of Images in Scanline Order',
Computer Graphics, vol. 14, no. S, July 1980.

Cline, H.E., W.E. Lorensen, S. Ludke, C.R. Crawford, a.nd B.C. Teeter, [1988] "Two algo­
rithms for the three-dimensional reconstruction of tomograms", Medical Physics,
vol. 15, no. S, May /June, 1988.

Drebin, R..A., L.C. Carpenter, a.nd P. Ha.nra.ha.n, [1988] "Volume Rendering'', Computer
Graphics, vol. 22, no. 4, August 1988.

Drebin, R..A., L.C. Carpenter [1989] "Methods And Apparatus For Imaging Volume Data
With Shading", U.S. Patent, no. 4,835, 712, May 1989.

Feibush E.A., M.S. Levoy, R..L. Cook, [1980] "Synthetic Texturing Using Digital Filters",
Computer Graphics, vol. 14, no. S, July 1980.

Frieder, G. , D. Gordon, a.nd R..A. Reynolds, [1985] "Back-to-Front Display of Voxel
Based Objects", IEEE Computer Graphics a.nd Applications, vol. 5, no. 1,
Ja.nua.ry 1985.

Fuchs, H., Z.M. Kedem, a.nd S.P. Uselton, [1977] "Optimal Surface Reconstruction from
Planar Contours", Communications of the ACM, vol. 20, no. 10, October 1977.

Fuchs, H., J. Poulton, J.G. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Molnar,
G. Turk, B. Tebbs, a.nd L. Israel, [1989] "Pixel-Planes 5: A Heterogeneous Mul­
tiprocessor Graphics System Using Processor-Enhanced Memories", Computer
Graphics, vol. 23, no. 3, July 1989.

Gallagher, R.. a.nd J. Nagtega.a.l, [1989] "An Efficient 3-D Visualization Technique for
Finite Element Models and Other Coarse Volumes", Computer Graphics, vol.
23, no. S, July 1989.

102

Ganapathy, S., and T.G. Dennehy, [1982] "A New General Triangulation Method for
Planar Contours", Computer Graphics, vol. 16, no. 3, July 1982.

Greenberg, D.P., [1986] "Scientist Wants a Window into the Database", Panel on
Graphics, Image Processing, and Workstations, October, 1986.

Hanrahan, P., [1990] "Three-Pass Affine Transforms for Volume Rendering", Computer
Graphics, vol. 24, no. 5, November 1990.

Hanrahan, P., [1991] "Hierarchal Splatting", Computer Graphics, vol. 25, no. 4, July
1991.

Herman, G.T., and H.K. Liu, [1979] "Three-Dimensional Display of Human Organs from
Computed Tomograms", Computer Graphics and Imaging Processing, January
1979.

Horn, B.K.P., [1981] "Hill Shading and the Reflectance Map", Proceedings of the IEEE,
vol. 69, no. 1, January 1981.

Kajiya, J.T., and B.P. Von Herzen, [1984] "Ray Tracing Volume Densities", Computer
Graphics, vol. 18, no. 3, July 1984.

Kaufman, A., [1991] "Volume Visualization", IEEE Computer Society Press, USA.

Lenz, R., B. Gudmundsson, B. Lindskog, and P.E. Danielsson, [1986] "Display of Density
Volumes", IEEE Computer Graphics and Applications, vol. 6, no. 7, July 1986.

Levinthal, C. [1966] "Molecular model-building by computer", Scientific American, vol.
214, no. 6, July 1966.

Levay, M.S., and J.T. Whitted, [1985] "The Use of Points as a Display Primitive",
Technical Report 85-022, University of North Carolina, Chapel Hill, NC, 1985.

Levay, M.S., [1988] "Volume Rendering: Display of Surfaces from Volume Data", IEEE
Computer Graphics and Applications, vol. 8, no. 3, May 1988.

Levay, M.S., [1990] "Efficient Ray Tracing of Volume Data", ACM Transactions of
Graphics, vol. 9, no. 3, July 1990.

Lorensen, W.E. and H.E. Cline, [1987] "Marching Cubes: A High Resolutic'1 3D Surface
Construction Algorithm", Computer Graphics, vol. 21, no. 4, Jul. 1987.

Max, N ., [1986] "Light Diffusion through Clouds and Hazt!, Computer Vision, Graphics
and Image Processing, vol. 33, 1986.

Max, N., P. Hanrahan, and R. Crawfis, [1990] "Area and Volume Coherence for Efficient
Visualization of 3D Scalar Functions", Computer Graphics, vol. 24, no. 5,
November 1990.

McMillan, L., [1990] Personal Communication, June 1990.

Meagher, D.J., [1984] "Geometric Modeling Using Octree Encoding", Computer Graphics
and Image Processing, vol. 19, no. 2, June 1982.

Mitchell, D.P., and A.N. Netravali, [1988] "Reconstruction Filters in Computer Graph­
ics", Computer Graphics, vol. 22, no. 4, 1988.

Neumann, U., [1990] "Accelerating Volume Rendering with a Pizel-Processor Array",
Technical Report 91-000, University of North Carolina, Chapel Hill, NC, 1991.

Oppenheim, A.V. and R.W. Schafer, (1975] "Digital Signal Processing", Prentice-Hall
Inc., USA

Oppenheim, A.V. and A.S. Willsky, [1983] "Signals and Systems", Prentice-Hall Inc.,
USA

103

Russel, G., and R. B. Miles, [1987] "Display and perception of 3-D space filling data"
Applied Optics, vol. 26, no. <', March 1987.

Phong, B.T., [1975] "Rlumination for iomputer Generated Images", Communications
of the ACM, vol. 18, no. 6, Jure 1975.

Porter, T., and T. Duff, [1984] "Compositing Digital Images" Computer Graphics, vol.
18, no. 3, July 1984.

Sabella, P., [1988] "A Rendering Algorithm for Visualizing 3D Scalar Data" Computer
Graphics, vol. 22, no. 4, August 1988.

Schafer, R.W. and L.R. Rabbiner, [1973] "A Digital Signal Processing Approach to
Interpolation", Proceedings of the IEEE, vol. 61, no. 6, June 1973.

Shannon, C. E., [1949] "Communication in the Presence of Noise", Proceedings IRE,
vol. 37, 1949.

Siegel, R. and J.R. Howell, [1972] "Thermal Radiation and Heat Transfer'', MaGraw-Hill
Book Company, USA.

Sun Microsystems Inc, [1991] "Technical White Paper, Sun VX/MVX Visualization
Accelerator'', to be published.

Tuy, H.K., L.T. Tuy, [1984] "Direct 2-D Display of 3-D Objects", IEEE Computer
Graphics and Applications, vol. 4, no. 10, November 1984.

Upson, C., and K. Keller, [1988] "VBUFFER: Visible Volume Rendering" Computer
Graphics, vol. 22, no. 4, August 1988.

Van Hook, T., (1986] Personal Communication, September 1986.

Westover, L.A., [1989] "Interactive Volume Rendering'' Proceedings of the Chapel Hill
Workshop on Volume Visualization, May 1989.

Westover, L.A., [1990] "Footprint Evaluation for Volume Rendering'' Computer Graph­
ics, vol. 24, no. 4, August 1990.

Whitted, J.T., [1983] "Anti-Aliased Line Drawing Using Brush Eztrusion", Computer
Graphics, vol. 17, no. 3, July 1983.

Williams, T .R., [1982] "A Man-Machine Interface for Interpreting Electron Density
Maps", Ph.D. dissertation, University of North Carolina, Chapel Hill, NC, 1982.

Wolberg, G. [1990] "Digital Image Warping", IEEE Computer Society Press, USA.

Wright, W.V., (1972] "An Interactive Computer Graphics System for Molecular Studies",
Ph.D. dissertation, University of North Carolina, Chapel Hill, NC, 1972.

