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HOL Light overview

HOL Light is a member of the HOL family of provers, descended
from Mike Gordon’s original HOL system developed in the 80s.

An LCF-style proof checker for classical higher-order logic built on
top of (polymorphic) simply-typed λ-calculus.

HOL Light is designed to have a simple and clean logical foundation
and an uncluttered implementation.

Written in Objective CAML (OCaml).
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The HOL family DAG

HOL88

�
�

�
�

�	
hol90

@
@

@
@

@R
ProofPower

HHHHHHHHHHHj
Isabelle/HOL

?
HOL Light

?
hol98

@
@

@@R

�
�

�
�

�	

?
HOL 4

@
@

@
@

@R
HOL Zero

?

2



HOL Light’s simplicity

HOL Light is a conceptually simple system that puts the user in
control.

• The interface is primitive, feels spartan and not user-friendly.

• Users are dropped into a functional language toplevel.
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HOL Light’s simplicity

HOL Light is a conceptually simple system that puts the user in
control.

• The interface is primitive, feels spartan and not user-friendly.

• Users are dropped into a functional language toplevel.

On the other hand:

• Easy to program, extending the system with new ‘correct by
construction’ automation

• Good platform for experimenting with new ideas

– New proof styles [Harrison 1996]

– New logical foundations [Voelker 2007]

– New system architecture [Wiedijk 2009]
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HOL Light’s applications

Support for typical ‘formalize computer science’ applications only
moderate

• No automated support for coinductive definitions

• No function spaces in recursive types

• Termination prover for recursive functions simple-minded.

Much stronger support (libraries and automation) for

• Formal verification of hardware and software (especially
numerical algorithms).

• Mainstream mathematics like analysis and number theory (not
so much abstract algebra though)

5



Some HOL Light theorems

For more see Freek Wiedijk’s “Formalizing 100 Theorems” page.

• Jordan Curve Theorem (Tom Hales)

• Radon’s theorem (Lars Schewe)

• Prime Number Theorem (John Harrison)

• Univariate Cartan theorems (Marco Maggesi et al.)

Plus many results contributing to the Flyspeck Project.
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HOL Light’s ASCII syntax

English Standard HOL Light

false, true ⊥, ⊤ F, T

not p ¬p ˜p

p and q p ∧ q p /\ q

p or q p ∨ q p \/ q

p implies q p ⇒ q p ==> q

p iff q p ⇔ q p <=> q

for all x, p ∀x. p !x. p

exists x such that p ∃x. p ?x. p

function x 7→ t λx. t \x. t

some x such that p εx. p @x. p
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The LCF approach to theorem proving

The main features of the LCF approach to theorem proving are:

• Reduce all proofs to a small number of relatively simple primitive
rules

• Use the programmability of the implementation/interaction
language to make this practical

HOL Light may be the most “extreme” application of this philosophy.

• The primitive rules are very simple and few in number.

• Some large proofs expand to hundreds of millions of primitive
inferences.
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HOL types

HOL is based on simply typed lambda calculus, with type variables
to give simple parametric polymorphism.

For example, a theorem about type (α)list can be instantiated and
used for specific instances like (int )list and ((bool )list )list .

Thus, the types in HOL are essentially like terms of first order logic:

type hol_type = Tyvar of string

| Tyapp of string * hol_type list;;
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Primitive and defined types

The only primitive type constructors for the logic itself are bool

(booleans) and fun (function space):

let the_type_constants = ref ["bool",0; "fun",2];;

Later we add an infinite type ind (individuals).

All other types are introduced by a rule of type definition, to be in
bijection with any nonempty subset of an existing type.'
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HOL terms

HOL terms are those of simply-typed lambda calculus. In the
abstract syntax, only variables and constants are decorated with
types.

type term = Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term;;

The usual notation for these categories: v : ty, c : ty, f x and λx. t.
Lambda-terms are a notation for functions, e.g. λx. x + 1 for the
successor function.

The abstract type interface ensures that only well-typed terms can be
constructed.
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Primitive constants

The abstract type interface also ensures that constant terms can only
be constructed for defined constants.

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool .

let the_term_constants =

ref ["=", mk_fun_ty aty (mk_fun_ty aty bool_ty)];;

Later we add the Hilbert ε : (α → bool ) → α yielding the Axiom of
Choice. Read εx. P (x) as ‘some x such that P (x)’.
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Constant definitions

All other constants are introduced using a rule of constant definition.

Given a term t (closed, and with some restrictions on type variables)
and an unused constant name c, we can define c and get the new
theorem:

⊢ c = t

Both terms and type definitions give conservative extensions and so
in particular preserve logical consistency.

Thus, HOL is doubly ascetic:

• All proofs are done by primitive inferences

• All new types are defined not postulated.
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Formulas and theorems

HOL has no separate syntactic notion of formula: we just use terms
of Boolean type.

HOL’s theorems are single-conclusion sequents constructed from
such formulas:

type thm = Sequent of (term list * term);;

In the usual LCF style, these are considered an abstract type and the
inference rules become CAML functions operating on type thm . For
example:

let ASSUME tm =

if type_of tm = bool_ty then Sequent([tm],tm)

else failwith "ASSUME: not a proposition";;

is the rule of assumption.
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HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪ ∆ ⊢ s(u) = t(v)
MK COMB

Γ ⊢ s = t

Γ ⊢ (λx. s) = (λx. t)
ABS

⊢ (λx. t)x = t
BETA
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HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪ ∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ − {q}) ∪ (∆ − {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE
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Simple equality reasoning

We can create various simple derived rules in the usual LCF fashion,
such as a one-sided congruence rule:

let AP_TERM tm th =

try MK_COMB(REFL tm,th)

with Failure _ -> failwith "AP_TERM";;

and a symmetry rule to reverse equations:

let SYM th =

let tm = concl th in

let l,r = dest_eq tm in

let lth = REFL l in

EQ_MP (MK_COMB(AP_TERM (rator (rator tm)) th,lth)) lth;;
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Logical connectives

Even the logical connectives themselves are defined:

⊤ = (λx. x) = (λx. x)

∧ = λp. λq. (λf. f p q) = (λf. f ⊤ ⊤)

⇒= λp. λq. p ∧ q = p

∀ = λP. P = λx. ⊤

∃ = λP. ∀Q. (∀x. P (x) ⇒ Q) ⇒ Q

∨ = λp. λq. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r

⊥ = ∀P. P

¬ = λt. t ⇒ ⊥

∃! = λP. ∃P ∧ ∀x. ∀y. P x ∧ P y ⇒ (x = y)
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Building up derived rules

We proceed to get the full HOL Light system by setting up:

• More and more sophisticated derived inference rules, based on
earlier ones.

• New types for mathematical structures, defined in terms of
earlier structures.

Thus, the whole system is built in a ‘correct by construction’ way and
all proofs ultimately reduce to primitives. An early step in the journey
is conjunction introduction

Γ ⊢ p ∆ ⊢ q

Γ ∪ ∆ ⊢ p ∧ q
CONJ

19



Definition of CONJ

. . . which is defined as:

let CONJ =

let f = ‘f:bool->bool->bool‘

and p = ‘p:bool‘ and q = ‘q:bool‘ in

let pth =

let pth = ASSUME p and qth = ASSUME q in

let th1 = MK_COMB(AP_TERM f (EQT_INTRO pth),EQT_INTRO qth) in

let th2 = ABS f th1 in

let th3 = BETA_RULE (AP_THM (AP_THM AND_DEF p) q) in

EQ_MP (SYM th3) th2 in

fun th1 th2 ->

let th = INST [concl th1,p; concl th2,q] pth in

PROVE_HYP th2 (PROVE_HYP th1 th);;
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Some of HOL Light’s derived rules

• Simplifier for (conditional, contextual) rewriting.

• Tactic mechanism for mixed forward and backward proofs.

• Tautology checker.

• Automated theorem provers for pure logic, based on tableaux
and model elimination.

• Linear arithmetic decision procedures over R, Z and N.

• Differentiator for real functions.

• Generic normalizers for rings and fields

• General quantifier elimination over C

• Gröbner basis algorithm over fields
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A higher-level derived rule

The derived rule REAL ARITH can prove facts of linear arithmetic
automatically.

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

But under the surface, everything is happening by primitive inference
(about 50000 such inferences).
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Conclusions

HOL Light is perhaps the purest example of the LCF methodology
that is actually useful.

• Minimal logical core

• Almost all concepts defined

But thanks to the LCF methodology and the speed of modern
computers, we can use it to tackle:

• Non-trivial mathematics (e.g. the Flyspeck project)

• Quite difficult industrial applications (e.g. FP verification).

For more information:
http://www.cl.cam.ac.uk/˜jrh13/hol-light
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