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Abstract. We outline a proof that if the Generalized Riemann Hypothesis
holds, then every odd number above 5 is a sum of three prime numbers. The
proof involves an asymptotic theorem covering all but a finite number of cases,
an intermediate lemma, and an extensive computation.

1. Introduction

By “The 3-Primes Problem,” we mean: can every odd number greater than 5
be written as a sum of three prime numbers? This problem was first successfully
attacked by Hardy and Littlewood in their seminal 1923 paper [6]; using their Circle
Method and assuming a “Weak Generalized Riemann Hypothesis,” they proved that
every sufficiently large odd number could be so written. The second author has
calculated [4] directly from that paper that “sufficiently large,” assuming the “full”
Generalized Riemann Hypothesis (GRH below, i.e., that all non-trivial zeros of all
Dirichlet L-functions have real part equal to 1/2), is approximately 1050. In 1926
Lucke [11], in an unpublished doctoral thesis under Edmund Landau, had already
shown that with some refinements the figure could be taken as 1032.

In 1937 Vinogradov [15] used his ingenious methods for estimating exponential
sums to establish the desired asymptotic result while avoiding the GRH entirely.
However, the numerical implications of avoiding the GRH are substantial: in 1956
Borodzkin [1] showed that sufficiently large in Vinogradov’s proof meant numbers

greater than 3315 ≈ 107000000. This figure has since been improved significantly,
most recently by Chen and Wang [2], who have established a bound of 1043000,
but in any case this figure is far beyond hope of “checking the remaining cases by
computer.”

If, however, we return to the original stance of Hardy and Littlewood by assuming
the truth of the GRH while at the same time using some of the refined techniques
of primarily Vinogradov and Linnik [10], and using an extensive computer search,
we do indeed arrive at the following:

Theorem. Assuming the GRH, every odd number greater than 5 can be expressed
as a sum of three prime numbers.
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The proof of this result falls naturally into three parts: an asymptotic theo-
rem handling all but a finite number of cases, a lemma assuring the existence of
primes relatively near unchecked odd numbers, and a computer search for 2-primes
representations of the remaining differences. We now outline each of these parts.

2. The asymptotic theorem

Theorem (Zinoviev). Assuming the GRH, every odd number greater than 1020 is
a sum of three prime numbers.

We discuss here briefly the main ideas behind this result; for complete details
see [16].

Fix N ≥ 9. We are interested in the number of triples (p1, p2, p3) of prime
numbers which satisfy the equation

N = p1 + p2 + p3.(1)

Following [10] we introduce the function

J(N) =
∑

p1+p2+p3=N

log(p1) log(p2) log(p3),

where the sum ranges over all triples of primes (≥ 2). If J(N) > 0 then there is at
least one solution of (1). Here by Λ(n) (n is always a natural number) we denote
von Mangoldt’s function: Λ(n) = log(p) if n = pk (p is prime), and Λ(n) = 0
otherwise. For any real number α set

S(α) =
∑
n>1

Λ(n)e−2πiαne−n/N .

Then we have

S(α) =
∑
p>1

log(p)e−2πiαpe−p/N + θN0.5 log2(N),

where |θ| ≤ 1. Clearly, for any integer m∫ 1

0

e2πiαmdα =

{
1 if m = 0,

0 if m 6= 0.

Changing the order of summation and integration (see [10]), for some new real θ
(|θ| ≤ 1) we obtain

J(N) = e

∫ 1−w

−w
S3(α)e2πiαNdα + θN1.5 log3(N),

where w = w(N) is a small number defined later. We will express J(N) as a sum
of the leading term and the remainder. Estimating the remainder from above, we
will show that it is less than the leading term when N ≥ 1020. We then conclude
that J(N) > 0.

Following Linnik and Vinogradov, we subdivide the interval [−w, 1−w] into the
disjoint union of subsets E′

1, E
′′
1 , E2. Our main idea is to refine this subdivision.

In particular we change the set of “major arcs”, which in our case is E′
1, making

the intervals from this set smaller. We do it as follows.
Let Q = [1.1 log2(N)], τ = 4900 log4(N), w = 1/τ .
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Denote by E(a, q) (where if q > 1, then (a, q) = 1, 0 < a < q, and if q = 1, then
a = 0) the interval [

a

q
− 1

qτ
,
a

q
+

1

qτ

]
.

Then

[−w, 1− w] =
⋃

0<q≤τ

⋃
0≤a<q
(q,a)=1

[
a

q
− 1

qτ
,
a

q
+

1

qτ

]
.

Let E1 = {E(a, q), q ≤ Q} and E2 = [−w, 1 − w]− E1.
Finally, denote by E′

1 the set of intervals E1 with smaller length[
a

q
− 2 log(N)

φ(q)N
,
a

q
+

2 log(N)

φ(q)N

]
,

and set E′′
1 = E1 − E′

1.
We split the integral J(N) into two integrals: over E′

1 (the leading term) and
E′′

1 ∪ E2 (the remainder). The following lemma is used to estimate the remainder
term.

Lemma. For any α ∈ E′′
1 ∪E2, and for any N > 1020 (not necessarily odd), GRH

implies that

|S(α)| < 0.18
N

log(N)
.

The proof of this lemma uses the Riemann-Hadamard method which involves
summation over the zeroes of L-functions.

The leading term is treated using the circle method of Hardy and Littlewood, as
used by Vinogradov and Linnik.

3. An intermediate lemma

Now, by the asymptotic theorem, our problem is reduced to considering odd
numbers which are ≤ 1020. For these, we need the following:

Lemma. If the GRH holds and if 6 ≤ n ≤ 1020, then there exists a prime number
p such that 4 ≤ n− p ≤ 1.615× 1012.

Proof. The conclusion of the lemma obviously holds for n < 1012, say. For larger
n, we apply Schoenfeld [13], equation (6.1). Let Θ(n) =

∑
p≤n log p; if the GRH

holds, and if n ≥ 23× 108, we have

|Θ(n)− n| < 1

8π

√
n(logn− 2) logn.

Just suppose that there is no prime in the interval (n − h, n] except possibly for
two of the six consecutive numbers from n− 5 through n; then we have

2 logn > Θ(n)−Θ(n− h) = (Θ(n)− n)− (Θ(n− h)− (n− h)) + h,

whence by the above,

h <
1

4π

√
n(logn− 2) logn+ 2 logn.

Since n ≤ 1020, we get h < 1.615× 1012. We conclude then that there must be a
prime p such that 4 ≤ n− p ≤ 1.615× 1012.
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We note here that the GRH actually implies an estimate on |Θ(n)−n| which has
a single log factor; see Ivic [7] for example. However, the second author, in working
through the details of such an estimate, found that the constant obtained was large
enough so that, at the level n = 1020, Schoenfeld’s estimate gives a slightly better
numerical result.

4. The computer search for 2-primes representations

Finally, then, if n is an odd number ≤ 1020 and p is as in the previous lemma,
then m = n− p is even and ≤ 1.615× 1012. But for m we have the following:

Theorem (Deshouillers and te Riele). Every even number 4 ≤ m ≤ 1013 is a sum
of two prime numbers.

For a complete exposition of this and related results, see [3].
Let pi be the ith odd prime number.
The usual approach [5], [14] to verify the Goldbach conjecture on a given interval

[a, b] is to find, for every even e ∈ [a, b], the smallest odd prime pi such that e− pi
is a prime. An efficient way to do this is to generate the set of primes

Q(a, b) = {q | q prime and a− εa ≤ q ≤ b},
where εa is chosen in a suitable way, and to generate the sets of even numbers
E0 ⊂ E1 ⊆ E2 ⊆ · · · , defined by E0 = ∅,

Ei+1 = Ei ∪ (Q(a, b) + pi+1), i = 0, 1, . . . , 1

until Ej covers all the even numbers in the interval [a, b] for some j. The set Q(a, b)
is generated with the sieve of Eratosthenes: this is the most time-consuming part
of the computation. For the choice of εa it is sufficient that εa exceeds the largest
odd prime used in the generation of the sets Ej . In the computations checking the
Goldbach conjecture up to 4 × 1011 [14], the largest small odd prime needed was
p446 = 3163 (this is the smallest prime p for which 244885595672− p is prime).

A more efficient idea, which we have implemented, is to find, for every even
e ∈ [a, b], a prime q, close to a, for which e − q is a prime. To do that efficiently,
a set of k consecutive primes q1, q2, . . . , qk close to a is generated, for suitably
chosen k, and a large set P of all the odd primes up to about b− a is precomputed
(with the sieve of Eratosthenes) in order to check the numbers e − q for primality.
For the actual check of the interval [a, b], we generate the sets of even numbers
F0 ⊂ F1 ⊆ F2 ⊆ · · · , defined by F0 = ∅,

Fi+1 = Fi ∪ (P + qi+1), i = 0, 1, . . . ,

until Fj covers all the even numbers in the interval [a, b] for some j. In our experi-
ments, we have chosen the intervals [a, b] to have a fixed length of 108. The largest
possible prime we may need in the set P lies close to b− q1. By the prime number
theorem, q1 ≈ a−k log a, so that b−q1 ≈ 108+k log a. For the choice of k we notice
that the density of the odd primes among the odd numbers up to 108 is about 0.115
(there are 5761454 odd primes below 108). This means that a proportion of about
0.885 of the even numbers in [a, b] is not covered by the set F1 = P + q1; if the
primes up to 108 were uniformly distributed, which they are not, a proportion of
about 0.8852 of the even numbers would not be covered by F2. After 151 steps,
this proportion is reduced to below 10−8. It turned out that k = 360 was sufficient

1By Q(a, b) + pi+1 we mean the set: {q + pi+1|q ∈ Q(a, b)}.
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for our experiments. For a ≈ 1013 this implies that the largest prime in the set P
must have a size close to 108 + 104.

In the first approach, a small set of small primes up to 5000, say, has to be
available, and for each interval [a, b] to be treated, all the primes in [a, b] have to be
generated. In the second approach, a large set of small primes up to about 108+104

has to be generated (only once), and for each interval [a, b] to be treated, one has to
find the largest k primes ≤ a. Of course, this is much cheaper than to find all the
primes in the interval [a, b]. The price to pay is that for each e ∈ [a, b] some prime
p is found for which e− p is prime, but in general this p is neither the smallest nor
the largest such prime.

For the actual generation of k primes close to a we have used Jaeschke’s compu-
tational results [8], stating that if a positive integer n < 2152302898747 is a strong
pseudoprime with respect to the first five primes 2, 3, 5, 7, 11, then n is prime;
corresponding bounds for the first six and seven primes are 3474749660383 and
341550071728321, respectively.

We have implemented the second approach on a Cray C98 vector computer and
verified the Goldbach conjecture for all even numbers > 4 × 1011 and ≤ 1013.
After the generation of k primes near a, the actual verification was carried out by
sieving with a long array of 64-bit integers called ODD, where each bit represents
an odd number < 108 + 104, the bit being 1 if the corresponding odd number is
prime, and 0 if it is composite. Generating Fi+1 from Fi amounts to doing an
“or” operation between one long array of integers and a shifted version of the array
ODD. This can be carried out very efficiently on the Cray C98. In one typical
run, we handled 5000 consecutive intervals of length 108. Close to 1013 the time
to generate 5000 × 360 large primes was about 2600 CPU-seconds, and the total
sieving time was about 5040 seconds. The total time used to cover the interval
[4×1011, 1013] was approximately 53 (low priority) CPU-hours. The largest number
of large primes which we needed was 328: for e = 7379095622422 and first prime
q1 = 7378999992031 it turned out that e − qi is composite for i = 1, . . . , 327, and
prime for i = 328 (q328 = 7379000002739 and e− q328 = 95619683).
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