
The State of the Art in End-User Software Engineering
ANDREW J. KO
The Information School, DUB Institute, University of Washington
ROBIN ABRAHAM
Microsoft Corporation
LAURA BECKWITH
Unaffiliated
ALAN BLACKWELL
The Computer Laboratory, University of Cambridge
MARGARET BURNETT, MARTIN ERWIG, AND CHRIS SCAFFIDI
School of Electrical and Engineering and Computer Science, Oregon State Uni-
versity
JOSEPH LAWRANCE
MIT CSAIL
HENRY LIEBERMAN
MIT Media Laboratory
BRAD MYERS
Human-Computer Interaction Institute, Carnegie Mellon University
MARY BETH ROSSON
Information Sciences and Technology, Penn State University
GREGG ROTHERMEL
Department of Computer Science and Engineering, University of Nebraska at
Lincoln
MARY SHAW
Institute for Software Research, Carnegie Mellon University
SUSAN WIEDENBECK
College of Information Science and Technology, Drexel University

__

Most programs today are written not by professional software developers, but by people with expertise in other
domains working towards goals for which they need computational support. For example, a teacher might write
a grading spreadsheet to save time grading, or an interaction designer might use an interface builder to test some
user interface design ideas. Although these end-user programmers may not have the same goals as professional
developers, they do face many of the same software engineering challenges, including understanding their re-
quirements, as well as making decisions about design, reuse, integration, testing, and debugging. This article
summarizes and classifies research on these activities, defining the area of End-User Software Engineering
(EUSE) and related terminology. The article then discusses empirical research about end-user software engi-
neering activities and the technologies designed to support them. The article also addresses several crosscutting
issues in the design of EUSE tools, including the roles of risk, reward, and domain complexity, and self-efficacy
in the design of EUSE tools and the potential of educating users about software engineering principles.

Categories and Subject Descriptors: D.2 [Software Engineering], D.3 [Programming Languages], H.5 [In-
formation Interfaces and Presentation], K.4 [Computers and Society], J.4 [Social and Behavioral Sci-
ences]
General Terms: Reliability, Human Factors, Languages, Experimentation, Design
Additional Key Words and Phrases: end-user software engineering, end-user programming, end-user develop-
ment, visual programming, human-computer interaction.
__

 2

1. INTRODUCTION

From the first digital computer programs in the 1940’s to today’s rapidly growing soft-

ware industry, computer programming has become a technical skill of millions. As this

profession has grown, however, a second, perhaps more powerful trend has begun to take

shape. According to statistics from the U.S. Bureau of Labor and Statistics, by 2012 in

the United States there will be fewer than 3 million professional programmers, but more

than 55 million people using spreadsheets and databases at work, many writing formulas

and queries to support their job [Scaffidi et al. 2005]. There are also millions designing

websites with Javascript, writing simulations in MATLAB [Gulley 2006], prototyping

user interfaces in Flash [Myers et al. 2008], and using countless other platforms to sup-

port their work and hobbies. Computer programming, almost as much as computer use, is

becoming a widespread, pervasive practice.

What makes these “end-user programmers” different from their professional counter-

parts is their goals: professionals are paid to ship and maintain software over time; end

users, in contrast, write programs to support some goal in their own domains of expertise.

End-user programmers might be secretaries, accountants, children [Petre and Blackwell

2007], teachers [Wiedenbeck 2005], interaction designers [Myers et al. 2008], scientists

[Segal 2007] or anyone else who finds themselves writing programs to support their work

or hobbies. Programming experience is an independent concern. For example, despite

their considerable programming skills, many system administrators view programming as

only a means to keeping a network and other services online [Barrett et al. 2004]. The

same is true of many research scientists [Carver et al. 2007, Segal 2007].

Despite their differences in priorities from professional developers, end-user pro-

grammers face many of the same software engineering challenges. For example, they

must choose which APIs, libraries, and functions to use [Ko et al. 2004]. Because their

programs contain errors [Panko 1998], they test, verify and debug their programs. They

also face critical consequences to failure. For example, a Texas oil firm lost millions of

dollars in an acquisition deal through an error in a spreadsheet formula [Panko 1995].

The consequences are not just financial. Web applications created by small-business

owners to promote their businesses do just the opposite if they contain bad links or pages

that display incorrectly, resulting in loss of revenue and credibility [Rosson et al. 2005].

 3

Software resources configured by end users to monitor non-critical medical conditions

can cause unnecessary pain or discomfort for users who rely on them [Orrick 2006].

Because of these quality issues, researchers have begun to study end-user program-

ming practices and invent new kinds of technologies that collaborate with end users to

improve software quality. This research area is called end-user software engineering

(EUSE). This topic is distinct from related topics in end-user development in its focus on

software quality. For example, there have been prior surveys of novice programming en-

vironments [Kelleher and Pausch 2005], discussing systems that either help students ac-

quire computing skills or enable the creation of computational artifacts; while quality is a

concern in these contexts, this work focuses largely on learning goals. There have also

been surveys on end-user programming [Sutcliffe and Mehandjiev 2004, Lieberman et al.

2006][Wulf et al. 2006], but these focus on the construction of programs to support other

goals, but not on engineering activities peripheral to construction, such as requirements,

specifications, reuse, testing, and debugging.

In this article, these software engineering activities are our primary focus. We start by

proposing definitions of programming, end-user programming, and end-user software

engineering, focusing on differences in intents and priorities between end-user program-

ming and professional software development. We follow with a lifecycle-oriented treat-

ment of end-user software engineering research, organizing more than a decade of re-

search on incorporating requirements, design, testing, verification, and debugging into

end users’ existing work practices. We then discuss a variety of crosscutting issues in

end-user software engineering research, including the role of risk, reward, and domain of

practice on end users’ decision-making, as well as strategies for persuading users to en-

gage in more rigorous software engineering activities as part of their normal work. We

also discuss individual factors, such as self-efficacy and gender, and their influence on

how effectively people use EUSE tools.

What we found in our review of these research efforts were two different histories.

First, studies of end-user software engineering concerns have had a consistently broad

scope. Researchers have studied children [Petre and Blackwell 2007], middle-school stu-

dents [Baker 2007, Kelleher et al. 2007], system administrators [Barrett et al. 2004], peo-

ple at home [Blackwell 2004], knowledge workers in large companies [Bogart et al.

2008, Scaffidi et al. 2006], interaction designers [Ko et al. 2004, Brandt et al. 2008,

Myers et al. 2008], natural scientists [Carver et al. 2007, Segal 2007], software architects

[Lakshminarayanan et al. 2006], bioinformatics professionals [Letondal 2006], web de-

 4

signers [Rode and Rosson 2003], and even volunteers helping with disaster relief [Scaf-

fidi et al. 2007].

In contrast to studies of EUSE, contributions to EUSE tools have historically had a

narrow scope. Early work focused largely on spreadsheets and event-based computing

paradigms and on perfective aspects of end-user software engineering, such as testing,

verification and debugging. Part of this historical bias is due to the fact that doing re-

search on a particular paradigm has required mature and flexible programming languages,

platforms, and IDEs on which to build more helpful software engineering tools, and most

end-user programming platforms have not exhibited these properties. More recently how-

ever, this bias has been eliminated, with recent work focusing on a much broader set of

domains and paradigms, including the web, mobile devices, personal information man-

agement, business processes, and programming in the home. Researchers have also ex-

tended their focus from perfective activities to design, including work on requirements,

specifications, and reuse. Part of this shift is due to the advent of interactive web applica-

tions, as sharing code is becoming much more common.

These trends, coupled with the fact that computing is rapidly being incorporated into

an incredible array of human activities, suggest that EUSE research will become similarly

diverse. This will pose many challenges for the field, since the various domains studied

and supported by research may have little in common. This is also an opportunity, how-

ever, for researchers to identify what is common across these diverse areas of practice.

This article represents an effort at identifying some of these fundamental challenges,

grounded in lessons from prior work.

2. DEFINITIONS

One contribution of this article is to identify existing terms in EUSE research and fill in

terminology gaps, creating a well-defined vocabulary upon which to build future re-

search. In this section, we start with a basic definition of programming and end with a

definition of end-user software engineering.

2.1. Programming and Programs
We define programming similarly to modern English dictionaries, as the process of plan-

ning or writing a program. This leads to the need for a definition of the term program.

Some definitions of “program” are in terms of the language, in which the program is writ-

ten, requiring, for example, that the notation be Turing complete, and able to specify se-

quence, conditional logic and iteration. However, definitions such as these are heavily

 5

influenced by the type of activity being automated. To remove these somewhat arbitrary

constraints from the definition, for the purposes of this paper we define a program as a

collection of specifications that may take variable inputs, and that can be executed (or

interpreted) by a device with computational capabilities. Note that the variability of input

values requires that the program has the ability to execute on future values, which is one

way it is different from simply doing a computation once manually. This definition cap-

tures general purpose languages in wide use, such as Java and C, but also notations as

simple as VCR programs, written to record a particular show when the time of day (in-

put) satisfies the specified constraint, and combinations of HTML and CSS, which are

interpreted to produce a specific visual rendering of shapes and text. It also captures the

use of report generators, which take some abstract specification of the desired report and

automatically create the finished report.

2.2. End-User Programming
We now turn to end-user programming, a phrase popularized by Nardi [1993] in her in-

vestigations into spreadsheet use in office workplaces. An end user1 is simply any com-

puter user. We then define end-user programming as programming to achieve the result

of a program primarily for personal, rather public use. The important distinction here is

that program itself is not primarily intended for use by a large number of users with vary-

ing needs. For example, a teacher may write a grades spreadsheet to track students’ test

scores, a photographer might write a Photoshop script to apply the same filters to a hun-

dred photos, or a caretaker might write a script to help a person with cognitive disabilities

be more independent [Carmien and Fischer 2008]. In these end-user programming situa-

tions, the program is a means to an end and only one of potentially many tools that could

be used to accomplish a goal. This definition also includes a skilled software developer

writing “helper” code to support some primary task. For example, a developer is engag-

ing in end-user programming when writing code to visualize a data structure to help di-

agnose a bug. Here, the tool and its output are intended to support the developers’ par-

ticular task, but not a broader group of users or use cases.

In contrast to end-user programming, professional programming has the goal of pro-

ducing code for others to use. The intent might be to make money, or to write it for fun,

or perhaps as a public service (as is the case for many free and open source projects).

1 The “end” in “end user” comes from economics and business, where the person who purchases a software
product may be different from the “end user” who uses it. Our use of the phrase in this article is more for his-
torical consistency than because we need to make this distinction.

 6

Therefore, the moment novice web designers move from designing a web page for them-

selves to designing a web page for someone else, the nature of their activity has changed.

The same is true if the developer mentioned above decides to share the data structure

visualization tool with the rest of his team. The moment this shift in intent occurs, the

developer must plan and design for a broader range of possible uses, increasing the im-

portance of design and testing, and the prevalence of potential bugs.

It is also important to clarify two aspects of this “intent”-based definition. First, our

definition is not intended to be dichotomous, but continuous. After all, there is no clear

distinction between a program intended for use by five people and a program intended for

fifty. Instead, the key distinction is that as the number of intended uses of the program

increases, a programmer will have to increasingly consider software engineering con-

cerns in order to satisfy increasingly complex and diverse constraints. Second, even if a

programmer does not intend for a program to be used by others, circumstances may

change: the program may have broader value, and the code which was originally un-

tested, hacked together, and full of unexercised bugs may suddenly require more rigorous

software engineering attention.

While our definition of end-user programming is a departure from previously pub-

lished definitions, we do so both to bring clarity to field and to discuss some of the under-

lying dimensions of historical use. For example, a number of connotations of the phrase

have emerged in research, many using it to refer to “novice” programming or “non-

professional” programming, or system design that involves the participation of end users.

Many have also used it to describe an individual’s identity [Nardi 1993]. We believe

these connotations conflate a number of related, but non-equivalent concepts.

 7

For example, consider its use as an identity. A wide variety of people may engage in

end-user programming; Table 1 gives just a glimpse of the diversity of people’s computa-

tional creations. While it is natural to use the phrase “end-user programmers” to describe

these groups, it is not always accurate, because a persons’ intent in programming can

depend on their task. For example, an accountant may use spreadsheets at home to keep

track of a family loan, but use and share a spreadsheet at work to manage annual tax

preparation activities with other accountants. It would be inaccurate to call this account-

ant an end-user programmer in all situations, when the spreadsheet at home is intended

for personal, short-term use, but the one at work is heavily maintained and repeatedly

used by multiple people. Thus, when we use the phrase “end-user programmer” in this

paper, we are indicating the intent behind a programming task, not a fundamental aspect

of the programmer’s identity.

Class of people Activities of programming and tools and languages used
System administrators Write scripts to glue systems together, using text editors and scripting languages
Interaction designers Prototype user interfaces with tools like Visual Basic and Flash
Artists Create interactive art with languages like Processing (http://processing.org)
Teachers Teach science and math with spreadsheets [Niess et al. 2007]
Accountants Tabulate and summarize financial data with spreadsheets
Actuaries Calculate and assess risks using financial simulation tools like MATLAB
Architects Model and design structures using FormZ and other 3D modelers
Children Create animations and games with Alice [Dann et al. 2006] and Scratch
Middle school girls Use Alice to tell stories [Kelleher and Pausch 2006, Kelleher and Pausch 2007]
Webmasters Manage databases and websites using Access, FrontPage, HTML, Javascript
Health care workers Write specifications to generate medical report forms
Scientists/engineers Use MATLAB and Prograph [Cox et al. 1989] to perform tests and simulations
E-mail users Write e-mail rules to manage, sort and filter e-mail
Video game players Author “mods” for first person shooters, online multiplayer games, and The Sims
Musicians Create digital music with synthesizers and musical dataflow languages
VCR and TiVo users Record television programs in advance by specifying parameters and schedules
Home owners Write control schedules for heating and lighting systems with X10
Apple OS X users Automate workflow using AppleScript and Automator
Calculator users Process and graph mathematical data with calculator scripting languages
Managers Author and generate data-base backed reports with Crystal Reports

Table 1. A partial list of class of people who write programs and the kinds of programs they write.

 8

It is also important to not conflate end-user programming with inexperience. Profes-

sional developers with decades of experience can engage in end-user programming by

writing code for personal use, with no intent to share their program with others. They

may complete their end-user programming task more quickly and with fewer bugs, but

they will not approach the work with the same quality goals that they would for produc-

tion code. To illustrate this distinction, consider Figure 1, which portrays programming

experience and intent as two separate dimensions. Computer science students and profes-

sional programmers code with the intent of creating software for people to use (or grade),

but vary in their experience. Similarly, end-user programming involves programming for

personal use, but can include a wide range of programming expertise (of course, there are

many more inexperienced programmers than experienced ones; we are not arguing that

the distribution of experience is uniform).

Similarly, it is important to not conflate end-user programming with the use of “sim-

ple” languages. Experienced developers may use general purpose languages like C++ to

achieve end-user programming goals, and in fact, many scientists do use such languages

to do exploratory scientific analyses, without the intent of sharing the code or polishing it

for future use [Segal 2007]. Similarly, experienced developers may use simple markup

languages such as HTML and CSS to design commercial web sites. In general, end-user

programming can involve a wide range of languages, from macro recording, to domain-

specific languages, to conventional, general-purpose languages. The key distinction in the

choice of language is whether it helps a person achieve their personal goal (e.g., “choos-

ing the right tool for the job”).

Related to the choice of language, end-user programming should not be conflated

Figure 1. Programming activities along dimensions of experience and intent. The diagram is not intended to
suggest the distribution of programmers (as there are many more without experience than with), but simply the

underlying dimensions that characterize programming activity. The upward slant in end-user programming
indicates that people with more experience tend to plan for other uses of their code.

 9

with the use of particular interaction technique for constructing code. Java programs can

be written with a text editor or a visual editor [Ko and Myers 2006] and languages that

are traditionally written with visual editors, such as dataflow languages like Yahoo Pipes

(http://pipes.yahoo.com) and Prograph [Matwin & Petrzykowski 1985], can also be ex-

pressed in textual syntax. The use of visual code editors has more to do with the difficulty

of learning and manipulating textual syntax than the intent of the programmer.

There are a number of phrases related to “end-user programming” that are worth dis-

cussing relative to our definition. End-user development has been defined as “a set of

methods, techniques, and tools that allow users of software systems, who are acting as

non-professional software developers, at some point to create, modify, or extend a soft-

ware artifact” [Lieberman et al. 2006]. This notion of end-user development also focuses

on the use and adaptations of software over time, and focuses on elements of the software

lifecycle beyond the stage of creating a new program. More specifically, mutual-

development, co-development, and participatory design refer to activities in which end

users are involved in a system design, but may or may not be involved in its actual coding

[Henderson and Kyng 1991, Costabile et al. 2009, Mackay 1990]. These accounts of or-

ganizational, social, and collaborative perspectives on end-user development offer several

valuable perspectives on how people appropriate and customize software, most of which

are beyond the scope of this survey.

Terms such as customization, configuring [Eagan and Stasko 2008], and tailoring

[Trigg and Bødker 1994, Kahler 2001] include parameterization of existing programs, but

not direct modification of a program’s source code. Visual programming refers to a set of

interaction techniques and visual notations for expressing programs. The phrase often

implies use by end-user programmers, but visual notations are not always targeted at a

particular type of programming practice. Domain-specific languages are programming

languages designed for writing programs for a particular kind of context or practice. End-

user programming may or may not involve such languages, since what defines end-user

programming is the intent, not the choice of languages or tools. Finally, scripts and

scripting languages are often distinguished from programs and programming languages

by the use of machine interpretation rather than compilation and their “high-level” use in

coordinating the functions of multiple programs or services. The phrase end-user pro-

gramming, because it is often conflated with inexperience, often connotes the use of

scripting languages since these languages have the reputation of being easier to learn.

 10

2.3. End-User Software Engineering
With definitions of programming and end-user programming, we now turn to the central

topic of this article, end-user software engineering. As we discussed in the previous sec-

tion, the intent behind programming is what distinguishes end-user programming from

other activities. This is because programmers’ intents determine to what extent they con-

sider concerns such as reliability, reuse, and maintainability and the extent to which they

engage in activities that reinforce these qualities, such as testing, verification, and debug-

ging. Therefore, if one defines software engineering as systematic and disciplined activi-

ties that address software quality issues2, the key difference between professional soft-

ware engineering and end-user software engineering is the amount attention given to

software quality concerns.

In professional software engineering, the amount of attention is much greater: if a

program is intended for use by millions of users, all with varying concerns and unique

contexts of use, a programmer must consider quality regularly and rigorously in order to

succeed. This is perhaps why definitions of software engineering often imply rigor. For

example, IEEE Standard 610.12 defines software engineering as “the application of sys-

tematic, disciplined, quantifiable approaches to the development, operation, and mainte-

nance of software.” Systematicity, discipline, and quantification all require significant

time and attention, so much so that professional software developers spend more time

testing and maintaining code than developing it [Tassey 2002] and they often structure

their teams, communication, and tools around performing these activities [Ko et al.

2007].

In contrast, end-user software engineering still involves systematic and disciplined

activities that address software quality issues, but these activities are secondary to the

goal that the program is helping to achieve. Because of this difference in priorities and

2

 Because the meaning of the phrase software engineering is still under much debate, we use the definition from
current IEEE standards.

Software Engineering Activity Professional SE End-user SE

Requirements explicit implicit

Specifications explicit implicit

Reuse planned unplanned

Testing and Verification cautious overconfident

Debugging systematic opportunistic

Table 2. Qualitative differences between professional and end-user software engineering.

 11

because of the opportunistic nature end-user programming [Brandt et al. 2008], people

who are engaging in end-user programming rarely have the time or interest in systematic

and disciplined software engineering activities. For example, Segal [2007] reported on

several teams of scientists engaging in end-user programming, finding that software itself

is not valued, that the process of creating software was highly iterative and unpredictable,

and that testing was not considered important relative other domain-specific risks [Segal

2007]. These differences are coarsely summarized in Table 2, showing that end-user

software engineering can be characterized by its unplanned, implicit, opportunistic na-

ture, due primarily to the priorities and intents of the programmer (but perhaps also to

inexperience).

Given these differences, the challenge of end-user software engineering research is to

find ways to incorporate software engineering activities into users’ existing workflow,

without requiring people to substantially change the nature of their work or their priori-

ties. For example, rather than expecting spreadsheet users to incorporate a testing phase

into their programming efforts, tools can simplify the tracking of successful and failing

inputs incrementally, providing feedback about software quality as the user edits the

spreadsheet program. Approaches like these, and the ones reported throughout the rest of

this article, allow users to stay focused on their primary goals (teaching children, record-

ing a television, making scientific discoveries, etc.), while still achieving software qual-

ity.

It is important to note that we do not discuss the issue of educating users about soft-

ware engineering practices in this article. Many of the techniques discussed in our review

may have the side effect of teaching users about the importance of testing, for example,

but this is not the primary goal of these techniques. There is a case to be made that any-

one creating software with some potential for costly failure ought to engage in more rig-

orous and disciplined software engineering activities. This viewpoint and any research

associated with it, is outside the scope of this article.

3. END-USER SOFTWARE ENGINEERING RESEARCH

End-user software engineering research is interdisciplinary, drawing from computer sci-

ence, software engineering, human-computer interaction, education, psychology and

other disciplines. Therefore, there are several dimensions along which we could discuss

the literature in this area, including tools, language paradigm, research approach, and so

on. However, because we aim to contrast EUSE with professional software engineering,

 12

we chose to organize the literature by software engineering activities commonly listed in

software engineering textbooks (e.g., [Ghezzi et al. 2002]). For each of these, however,

we frame the discussion from the perspective of an end user:

1. Requirements. How the software should behave in the world.

2. Design and specifications. How the software behaves internally to achieve the re-

quirements.

3. Reuse. Using preexisting code to save time and avoid errors (including integration,

extension, and other perfective maintenance).

4. Testing and verification. Gaining confidence about correctness and identifying

failures.

5. Debugging. Repairing known failures by locating and correcting errors.

In our discussion of each of these, we will review research in understanding and sup-

porting these activities, and characterize the historical emphasis on particular paradigms

or end-user programming domains. In doing so, however, we do not imply that these ac-

tivities take place in sequence; indeed, the waterfall model [Ghezzi et al. 2002] is even

less appropriate in end-user programming than it is in professional development.

It is important to note that we do not explicitly discuss the implementation and use of

end-user programs, even though these activities are a central part of end-user program-

ming activity. Surveys of implementation issues in end-user programming have been dis-

cussed extensively in previous literature [Sutcliffe and Mehandjiev 2004, Kelleher and

Pausch 2005, Lieberman et al. 2006][Wulf et al. 2006]. The use of end-user programs

depends largely on for what purpose they were created and most end-user software engi-

neering research has attempted to be independent of purpose. We do, however, discuss

the maintenance of end-user programs in our discussion of sharing in Section 3.3.

3.1. What Should My Program Do? — Requirements
The term “requirements” refers to statements of how a program should behave in the

world (as opposed to the internal behavior of a program, which is how it achieves these

external concerns). For example, a requirement for a tax program might be “Create a

properly formatted 1040 tax form based on my financial data.” This is a statement of a

desired result, but not of how the result is achieved.

 13

In considering the history of work on this activity, the contributions have largely fo-

cused on understanding the sources and types of requirements of different domains of

end-user programming and contrasting these with the role of requirements in professional

software engineering.

For example, in professional software engineering, projects usually involve a re-

quirements gathering phase that results in requirements specifications. These specifica-

tions can be helpful in anticipating project resource needs and for negotiating with cli-

ents. For end-user software engineering, however, the notion of requirements has to be

reinvented. Because their motivations are not related to the software, but to some other

goal, people engaging in end-user programming rarely have an interest in explicitly stat-

ing their requirements. This means they may be less likely to learn formal languages in

which to express requirements or to follow structured development methodologies. Fur-

thermore, in many cases, end users may not know the requirements at the outset of a pro-

ject; the requirements may only become clear in the process of implementation [Costabile

et al. 2006, Fischer and Giaccardi 2006, Mørch and Mehandjiev 2000, Segal 2007].

While this is also true in Agile development [Coplien and Harrison 2004], Agile develop-

ers explicitly recognize that requirements will evolve and have tools and processes that

plan for emergent requirements. In contrast, people engaging in end-user programming

are unlikely to plan in this way.

Another difference between requirements in professional and end-user software engi-

neering is the source of the requirements. In professional settings, the customers and us-

ers are usually different people from the developers themselves. In these situations, re-

quirements analysts use formal interviews and other methods [Beyer and Holtzblatt 1998]

to arrive at the requirements. End-user programmers, on the other hand, are usually pro-

gramming for themselves or for a friend or colleague. Therefore, end-user software engi-

neering is unlike other forms of software engineering, where the challenge of require-

ments definition is to understand the context, needs and priorities of other people and

organizations. For end users, requirements are both more easily understood (because the

requirements are their own) and more likely to change (because end users may need to

negotiate such changes only with themselves). Furthermore, end users’ requirements are

able to be implicit, and perhaps not even consciously recognized.

The situation in which an end user programs also affects the type of requirements. For

example, at an office, the requirements are often to automate repetitive operations (such

as transferring or transforming pieces of information such as customer names, products,

 14

accounts, or documents). In this context, a decision to write a program at all corresponds

directly to real investment since time is money. End users who become successful at

automating their own work often find that their programs are passed on to others, whether

by simple sharing of tools between peers [MacLean et al. 1990], or as a means for man-

agers to define office procedures. These social contexts start to resemble the concerns of

professional software developers, for whom requirements analysis extends to the defini-

tion and negotiation of work practices [Ko et al. 2007].

At home, end-user software engineering is seldom about efficiency (except in the case

of office-like work that is done at home, such as taxes). Instead, typical tasks include

automation of future actions, such as starting a cooker or recording television. It is often

the case that one member of a household becomes expert in operating a particular appli-

ance, and assumes responsibility for programming it [Rode et al. 2005, Blackwell 2004].

In this context, requirements are negotiated within the social relations of the household,

in a manner that might have some resemblance to professional software experiences.

Sometimes there are no requirements to start with; for example, there is a long tradition

of “tinkering,” in which hobbyists explore ways to reconfigure and personalize technol-

ogy with no definite end in mind [Blackwell 2006]. Even though these hobbyists might

have envisioned some scenario of use when they made the purchase [Okada 2005], those

motivations may be abandoned later. Instead, requirements evolve through experimenta-

tion, seeing what one can do, and perhaps motivated by the possibility of exhibiting the

final product to others as a demonstration of skill and technical mastery.

In online contexts, end users must often consider the users of the web site or service

they are creating [Rode et al. 2006], demonstrating that the distinction between the intent

behind end-user programming and professional programming is a continuum rather than

a mutually exclusive categorization. Further, in some situations, requirements are shared

and negotiated, as happens with professional software developers. For example, Scaffidi

et al. interviewed six Hurricane Katrina site developers and found that three relied on

teammates for evaluating what features should be present and whether the site was viable

at all [Scaffidi et al. 2006]. In this same study, requirements were derived from beliefs

about the users of the program. One writer on the aggregators' email distribution list rec-

ognized that this “loosey goosey data entry strategy” would provide end users with

maximal flexibility. Unfortunately, the lack of validation led to semantic errors that soft-

ware propagated into the new database.

 15

In educational contexts, programming is often used as a tool to educate students about

mathematics and science. What makes these classroom situations unique is how require-

ments are delivered to and adapted by students. For example, Rosson et al. [2002] de-

scribe a participatory design workshop in which pairs of students and senior citizens cre-

ated simulation projects to promote discussion about community issues. In this situation,

requirements emerged from interpersonal communication in conversation and then were

later constrained by the capabilities of the simulation tool. This contrasts with a class-

room study of AgentSheets [Ioannidou et al. 2006], in which small groups of elementary

school students followed a carefully designed curriculum to design biological simula-

tions. In this situation, the instructions set the scope of the programming and students

chose the detailed requirements within this scope. In other contexts [Niess 2007], the

teachers and the students are end-user programmers. The degree to which the teachers

understood the abilities and limitations of spreadsheets affected not only the requirements

they developed in lab activities, but also the degree to which the students understood the

abilities and limitations of spreadsheets.

In general, research has not attempted to explicitly support requirements capture, and

the studies we have discussed should help reveal why. There are some techniques, how-

ever, that can be viewed as a form of requirements elicitation. For example, the Whyline

[Ko and Myers 2004], which allows users to ask “why” questions about their program’s

output, is an implicit way of learning about what behavior the user intended and did not

intend. The same is true of the goal debugging work in the spreadsheet paradigm [Abra-

ham and Erwig 2007b], which allows users to inquire about incorrect values in spread-

sheet output. Both of these systems are a form of requirements elicitation, in which the

requirements are used to support debugging.

3.2. How Should My Program Work? — Design and Design Specifications
In software engineering, design specifications specify the internal behavior of a system,

whereas the requirements are external (in the world). In professional software engineer-

ing, software designers translate the ideas in the requirements into design specifications.

These specifications can be helpful in coordinating implementation strategies and ensur-

ing the right prioritization of software qualities such as performance and reliability. De-

sign processes can ensure that all of the requirements have been accounted for.

In end-user programming, the challenge of translating one’s requirements into a

working program can be daunting. For example, interview studies of people who wanted

 16

to develop web applications revealed that people are capable of envisioning simple inter-

active applications, but cannot imagine how to translate their requirements into working

applications [Rosson et al. 2005]. Further, in end-user software engineering, the benefits

of explicit design processes and specifications may be unclear to users. Most of the bene-

fits of being explicit come in the long term and at a large scale, whereas end users may

not expect long-term usage of their programs, even though this is not particularly accu-

rate. For example, studies of spreadsheets have shown that end users are creating more

and more complex spreadsheets [Shaw 2004], with typical corporate spreadsheets dou-

bling in size and formula content every three years [Whittaker 1999].

In general, research on incorporating specifications into end-user programming has

been quite pragmatic. If systems have supported any form of specifications, they have

been used (1) to support a particular kind of design process, such as prototyping or ex-

ploratory activities, (2) as the primary programming language, (3) or as an intermediate

language that either makes it easier to generate correct programs or helps with program

validation. Most of these technologies have focused on improving the creation and vali-

dation of spreadsheets, the prototyping of web sites, and the expression of preferences in

the privacy domain. There is considerably less work on model- and specification-based

approaches for interactive and web-based applications, though this is beginning to

change. In the rest of this section, we review these approaches in light of the various

imbalances and biases.

3.2.1. Design Processes. Software design processes constrain how requirements are

translated into design specifications and then implementations. They also involve a care-

ful consideration of tradeoffs among conflicting goals such as reliability, maintainability,

performance and other software qualities. These processes are usually learned by profes-

sionals through experience or training. Many end-user programmers, however, are “silent

designers” [Gorb and Dumas 1987], with no training in design and often seeing no bene-

fit to ensuring such qualities.

Some have proposed dealing with this lack of design experience by enforcing particu-

lar design processes. For example, Ronen et al. propose a design process that focuses on

ensuring that spreadsheets are reliable, auditable, and safe to update (without introducing

errors) [Ronen et al. 1989]. Powell and Baker define strategies and best practices for

spreadsheet design to improve the quality of created spreadsheets [Powell and Baker

2004]. Outside of the spreadsheet domain, Rosson et al. tested a design process with end-

user web programmers based on scenarios and concept maps, finding that the process was

 17

useful for orienting participants towards particular design solutions [Rosson et al. 2007].

One problem with dictating proper design practices is that end-user programmers often

design alone, making it difficult to enforce such processes.

An alternative to enforcing good behavior is to let end users work in the way they are

used to working, but inject good design decisions into their existing practices. One cru-

cial difference between trained software engineers’ and end users’ approaches to problem

solving is the extent to which they can anticipate design constraints on a solution. Soft-

ware engineers can use their experience and knowledge of design patterns to predict con-

flicts and dependencies in their design decisions [Lakshminarayanan et al. 2006]. End-

user programmers, however, often come to understand the constraints on their programs’

implementations only in the process of writing their program [Fischer and Giaccardi

2006].

Because end-user programmers’ designs tend to be emergent, like their requirements,

requirements and design in end-user programming are rarely separate activities. This is

reflected in most design approaches that have been targeted at end-user programmers,

which largely aim to support evolutionary and exploratory prototyping, rather than up-

front design. For example, DENIM, a sketching system for designing web sites, allows

users to leave parts of the interface in a rough and ambiguous state [Newman et al. 2003].

This characteristic is called provisionality [Green et al. 2006], where elements of a design

can be partially, and perhaps imprecisely stated.

 18

Another approach to dealing with end users’ emergent designs is to constrain what

can be designed to a particular domain. The WebSheets [Wolber et al. 2002] and Click

[Rode et al. 2005] environments both strive to aid users in developing web applications at

a level of abstraction that allows the environment to generate database-driven web appli-

cations, rather than write the necessary code at a lower level. There are several other

commercial systems that impose similar constraints on design within a certain domain.

Yahoo Pipes (http://pipes.yahoo.com), for example, allows the composition, selection and

refinement of RSS feeds, but limits these activities to a pre-defined set of operators. Ap-

ple’s Automator is a similar system, enabling the construction of dataflow programs that

process and operate on data with multiple applications, but limiting these operations to a

pre-defined set.

Supporting emergent designs under changing ideas of requirements can also be done

by supporting asynchronous or synchronous collaborations between professional software

developers and end-user programmers. Approaches that emphasize synchronous aspects

view professional developers and end-user programmers as a team (e.g., [Costabile et al.

2006, Fischer and Giaccardi 2006]). On the other hand, in strictly asynchronous ap-

proaches, the professional developer provides tailoring mechanisms for end-user pro-

grammers, thereby building in flexibility for end-user programmers to adjust the software

over time as new requirements emerge [Bandini and Simone 2006, Dittrich et al. 2006,

Figure 2. Links between web site content, sketched in DENIM, an informal web site sketching tool. Reprinted
from [Newman et al. 2003] with permission from authors.

 19

Letondal 2006, Stevens et al. 2006, Won et al. 2006, Wulf et al. 2008]. As Pipek and

Kahler point out, tailorability is a rich area, including not only issues of how to support

low-level tailoring, but also numerous collaborative and social aspects [Pipek & Kahler

2006].

3.2.2. Writing Specifications. In professional software engineering, one way to ensure

that requirements have been satisfied is to write explicit design specifications and then

have tools check the program for inconsistencies with these specifications. In general,

tools and languages for expressing specifications tend to be declarative in nature, allow-

ing users to express what they want to happen, but not necessarily how.

In applying this idea to end-user software engineering, one approach is for a tool to

require up-front design. For example, ViTSL separates the modeling and data-entry as-

pects of spreadsheet development [Erwig et al. 2005]. The spreadsheet model is captured

as a template [Abraham et al. 2005] like the one in Figure 3. The ellipsis under row 3

indicates that the row can be repeated downwards; each row stores the scores of a student

enrolled in the course. These templates can then be imported into a system called Gencel

[Erwig et al. 2005, Erwig et al. 2006], which can be used to generate spreadsheets that are

guaranteed to conform to the model represented by the template. For example, an in-

stance of the template in Figure 3 is shown in Figure 4. The menu bar on the right allows

the user to perform insertion and deletion, protecting the user against unintended changes.

One limitation of this approach is that once a spreadsheet is generated from a template,

edits to the generated spreadsheet cannot be propagated back to the template. (This same

problem occurs in code generation systems in software engineering, where changes to the

code are not reflected back to the specifications.)

Some systems are intended to support the exploration of specifications by supporting

modeling for a particular type of application. For example, Berti et al. [2004] describe

CTTE, a system that helps users convert natural language descriptions of tasks and sce-

narios into a hierarchy of subtasks. This is essentially a modeling language that helps

users to express the design and underlying workflow of a user interface. In a similar sys-

tem, Lin and Landay [2008] describe Damask, a system that allows designers to proto-

type ubiquitous computing applications and test them with users. In both of these sys-

tems, the modeling languages were carefully designed with a particular domain and class

of applications in mind.

 20

Most other systems that support specification writing are used for later verification

and checking, rather than generating programs. For example, Topes [Scaffidi et al. 2008]

allowing users to define string-based data types that can be used to check the validity of

data and operations in any programming language that stores information as strings.

Other researchers have developed end-user specification languages for privacy and secu-

rity. For example, Dougherty et al. [2006] describe a framework for expressing access-

control policies in terms of domain concepts. These specifications are stated as “differ-

ences” rather than as absolutes. For example, rather than stating who gets privileges in a

declarative form, the system supports statements such as “after this change, students

should not gain any new privileges.” Cranor et al. [2006] describe Privacy Bird, a related

approach, which includes a specification language for users to express their privacy pref-

erences in terms of the personal information being made accessible. Privacy Bird then

uses these specifications to warn users about web sites’ violations of these preferences.

Figure 3. A ViTSL template, specifying the underlying structure of a grading spreadsheet. The names appear in
rows and the assignments appear in columns, with the ellipses indicating repetition. Reproduced from [Abraham

and Erwig 2006c] with permission from authors.

Figure 4. An instance of the grade sheet template from Figure 3 loaded into Excel. The operations in the toolbar
on the right utilize the spreadsheet’s underlying structure to help users avoid introducing errors into the struc-

ture. Reproduced from [Abraham and Erwig 2006c] with permission from authors.

 21

Finally, some approaches for writing specifications take a direct manipulation, what

you see is what you get (WYSIWYG) approach, moving the description of behavior and

appearance to the user’s language, rather than a machine language. For example, many

WYSIWYG web site tools allow users to directly manipulate the design of a web site and

then let the tool generate the HTML and CSS for use in a web browser (most notably at

the time of this writing is Adobe’s Dreamweaver). To enable direct manipulation, such

tools often limit the range of design possibilities to facilitate code generation, requiring

users to learn the underlying language to express more complicated designs.

3.2.3. Inferring specifications. One approach to the problem of how to support a de-

sign process is to eliminate it, replacing it with technologies that can determine require-

ments automatically through various forms of inference.

Several systems have used a programming by example approach to this problem (such

systems are described in detail in [Lieberman 2000]). These systems allow users to pro-

vide multiple examples of the program’s intended behavior and the tool observes the be-

havior and attempts to generalize from it. For example, Abraham and Erwig developed an

approach for automatically inferring the templates discussed in the previous section from

an example spreadsheet [Abraham and Erwig 2006a], allowing users more flexibility in

redefining the spreadsheet template as requirements change. In the domain of event-based

simulations, the AgentSheets environment [Repenning and Perrone 2000] lets the pro-

grammer specify that a new type of “part” is just like an existing part, except for its icon;

the tool will then generate all of the instructions necessary for the new part. McDaniel

and Myers [1999] describe an approach to inferring interaction specifications, allowing

users to click and drag objects from one part of the screen to another to demonstrate a

desired movement at runtime.

Recent work has begun to apply programming by example to web sites. For example,

Toomim et al. [2009] allow users to select example data from web sites and automatically

generate a range of user interface enhancements. Nichols and Lau [2008] describe a simi-

lar system, which allows users to create a mobile version of a web site through a combi-

nation of navigating through the desired portion of the site and explicitly selecting con-

tent. Macias and Paterno [2008] take a similar approach, in which users directly modify

the web page source code. These modifications are used as a specification of preferences,

which are then generalized and applied to other pages on the same site. Yet another ap-

proach allows users to identify the same content with multiple markings, increasing the

robustness of the inference [Lingham and Elbaum 2007].

 22

One problem with programming by example approaches is that the specifications in-

ferred are difficult to reuse in future programs, since most systems do not package the

resulting program as a reusable component or a function There are some exceptions to

this, however. For example, Scaffidi et al. [2007] describe an approach to inferring data

type specifications from unlabeled textual examples and then allowing users to review

and customize the specification. The specification can then be easily packaged and reused

for use in other applications. Another counter example is [Smith et al. 2000].

An alternative to programming by example is to elicit aspects of the specification di-

rectly from end users. Burnett et al. [2003] describe an approach for spreadsheets, attach-

ing assertions to each cell to specify intended numerical values. In this approach, seen in

Figure 5, users can specify an intended range of a cell’s value at any time. Then, the sys-

tem propagates these ranges through cell formulas, allowing the system to further reason

about the correctness of the spreadsheet. If a conflict is found between a user-generated

assertion and a system-generated assertion, the system circles the two assertions to indi-

cate the conflict. This assertions-based approach has been shown to increase people’s

effectiveness at testing and debugging [Wilson et al. 2003, Burnett et al. 2003]. Scaffidi

describes a similar approach for validating textual input [Scaffidi et al. 2008]; we de-

scribe this approach in Section 3.3.4.

Other approaches take natural language descriptions of requirements and attempt to

translate them into code. For example, Liu and Lieberman [2005] describe a system that

Figure 5. An assertion conflict in Forms/3. The user wrote the assertion on the Celsius cell (0 to 100), which
conflicts with the computer generated assertion (0 to 500). This prompts the user to check for errors in the cells’

formulas [Burnett et al. 2003]. Original figure obtained from authors.

 23

takes descriptions of the intended behavior of a system and generates Python declarations

of the objects and behaviors described in the descriptions. Little and Miller [2006] devel-

oped a similar approach for Chickenfoot [Bolin et al. 2005] (a web scripting language)

and Microsoft Word’s Visual Basic for Applications. Their approach exploits the user’s

familiarity with the vocabulary of the application domain to express commands in that

domain. Users can state their goals in terms of the domain keywords that they are familiar

with and the system generates the code. Other systems have attempted to teach com-

mands to users when their effect may not be visible, as in the case of scriptable group-

ware applications [Wulf 2000].

3.3. What Can I Use to Write My Program? — Reuse
Reuse generally refers to either a form of composition, such as “gluing” together compo-

nents APIs, or libraries, or modification, such as changing some existing code to suit a

new context or problem. In professional programming, most of the code that developers

write involves reuse of some sort, whether copying code snippets, adapting example

code, or using libraries and frameworks by invoking their APIs [Bellon et al. 2007]. Tra-

ditionally, the motivations for these various types of reuse are usually to save time, to

avoid the risk of writing erroneous new code, and to support maintainability [Ye and

Fischer 2005, Ravichandran and Rothenberger 2003].

While these practices are also true in end-user programming, in many ways they are

made more difficult by end users’ shift in priorities. In particular, finding, reusing, and

even sharing code becomes more opportunistic, as the goals of reuse are more to save

time and less to achieve other software qualities. Furthermore, in end-user programming,

reuse is often what makes a project possible, since it may be easier for an end user to per-

form a task manually or not at all than to have to write it from scratch without other code

to reuse [Blackwell 2002a].

Prior work on reuse has largely focused on studies of reuse in more conventional pro-

gramming languages with large APIs or object hierarchies. Consequently, many of the

challenges that professionals face, end users face as well. Where these populations differ

is in how APIs, libraries, and frameworks must be designed to support a certain popula-

tion. While APIs designed for professionals use often focus on optimizing flexibility, end

users often need much more focused support for achieving their domain-specific goals. In

this section, we characterize prior work on these different reuse activities and compare

and contrast the role of reuse in end-user programming and professional development.

 24

3.3.1. Finding Code to Reuse. A fundamental challenge to reuse is finding code and

abstractions to reuse or knowing that they exist at all [Ye and Fischer 2005]. For exam-

ple, Ko found that students using Visual Basic.NET to implement user interfaces strug-

gled when trying to use search tools to find relevant APIs, and instead relied on their

more experienced peers for finding example code or APIs [Ko et al. 2004]. This is similar

to Nardi’s finding that people often seek out slightly more experienced coworkers for

programming help [Nardi 1993]. Example code and example programs are one of the

greatest sources of help for discovering, understanding, and coordinating reusable ab-

stractions, both in professional programming [Rosson and Carroll 1996, Stylos and

Myers 2006] and end-user programming [Wiedenbeck 2005, Rosson et al. 2005]. In

many cases the examples are fully functional, so the programmer can try out the exam-

ples and better understand how they work [Rosson and Carroll 1996, Walpole and

Burnett 1997].

Researchers have also invented a number of tools to help search for both example

code and APIs. For example, the CodeBroker system watches the programmer type code

and guesses what API functions the programmer might benefit from knowing about [Ye

and Fischer 2005]. Other systems also attempt to predict which abstractions will benefit a

professional programmer [Mandelin et al. 2005, Bellettini et al. 1999]. Mica [Stylos and

Myers 2006] lets users search using domain-specific keywords. While all of these ap-

proaches are targeted at experienced programmers, many of the same ideas are beginning

to be applied to languages intended for end-user programming. For example, CoScrip-

ter’s support for sharing and finding others’ scripts not only helps users search for exam-

ples, but utilizes other meta data such as a users’ social network to help users find rele-

vant programs [Bogart et al. 2008].

3.3.2. Reusing Code. Even if end users are able to find reusable abstractions, in some

cases, they may have difficulty using abstractions that were packaged, documented, and

provided by an API. One study of students using Visual Basic.NET for user interface

prototype showed that most difficulties relate to determining how to use abstractions cor-

rectly, coordinating the use of multiple abstractions, and understanding why abstractions

produced certain output [Ko et al. 2004]. In fact, most of the errors that the students made

had more to do with the programming environment and API, and not the programming

language. For example, many students had difficulty knowing how to pass data from one

window to another programmatically, and they encountered null pointer exceptions and

other inappropriate program behavior. These errors were due primarily to choosing the

 25

wrong API construct or violating usage rules in the coordination of multiple API con-

structs. Studies of end-user programming in other domains, such as web programming

[Rode et al. 2003, Rosson et al. 2004], and numerical programming [Nkwocha and El-

baum 2005], have documented similar types of API usage errors.

There are several ways of addressing mismatch between code and the desired func-

tionality. In the case of code, one way is to simply modify the code itself, customizing it

for a particular purpose. A special case of adapting such examples is the concept of a

template. For example, Lin and Landay [2008], in their tool for prototyping user inter-

faces across multiple devices, provide a collection of design pattern examples [Beck

2007] that users can adapt, parameterize, and combine. Some end-user development plat-

forms, such as Adobe Flash, implement user interface components as modifiable tem-

plates. Templates have also been used to facilitate the creation of scripts for mobile de-

vices to support the independencies of people with cognitive disabilities [Carmien and

Fischer 2008].

The mismatch between code and desired functionality can sometimes be addressed

through tailoring by the end user. In this case, the user supplies parameters, rules, or even

more complex information to the component or application, thereby changing its behav-

ior. Tailoring enables component developers to offload some adaptive maintenance ac-

tivities onto end users [Dittrich et al. 2006], who essentially become asynchronous col-

laborators with the component developers [Mørch and Mehandjiev 2000]. In order for a

component to be tailorable, the component designer must engage in significant upfront

planning; in particular, the designer must consider how users in the target population will

differ from one another, then determine which aspects of the component should accord-

ingly be tailorable [Dittrich et al. 2006]. There are several ways to uncover user needs,

such as including users in the design and construction of the component [Letondal 2006],

performing ethnographies [Stevens et al. 2006], or interviewing users about their likely

requirements [Eagen and Stasko 2008]. Such approaches assume that the users involved

in component design can represent the diverse needs of the target population. Since users

often vary not only in their requirements, but also in their level of tailoring skill, some

component designers provide multiple mechanisms for tailoring, so that users with more

skill can take advantage of more complex mechanisms in order to effect more specialized

tailoring [Eagan and Stasko 2008, Morch and Mehandjiev 2000, Wulf 1999, Wulf et al.

2008]. Tailorability can be greatly facilitated by integrated support for collaborated tailor-

ing [Pipek and Kahler 2006], integrity checks for detecting tailoring mistakes [Won et al.

 26

2006, Wulf et al. 2008], and evaluation features for helping users to understand the im-

pact of tailoring [Won et al. 2006, Wulf et al. 2008].

Actually modifying the source code of APIs, libraries and other kinds of abstractions

is generally not possible, since the code for the abstraction itself is not usually available.

The programmer can sometimes write additional code to adapt an API [DeLine 1999],

but there are certain characteristics of APIs and libraries, such as performance, that are

difficult to adapt. Worse yet, when an end-user programmer is trying to decide whether

some API or library would be suitable for a task, it is difficult to know in advance

whether one will encounter such difficulties (this is also true for professionals [Garlan et

al. 1995]).

Another issue for API and abstraction use is whether future versions of the abstraction

will introduce mismatch because of changes to the implementation of the API behavior.

For example, ActionScript [DeHaan 2006] (the programming language for Adobe Flash)

and spreadsheet engine upgrades often change the semantics of existing programs’ be-

havior. In the world of professional programming, one popular approach to detecting

such changes is to create regression tests [Onoma et al. 1988]. Another possibility is to

proxy all interactions with the API and log the API’s responses; then, if future versions of

the API respond differently, the system can show an alert [Rakic and Medvidovic 2001].

Regression testing has been used in relation to spreadsheets [Fisher et al. 2002b]; beyond

this, these approaches have not been pursued in end-user development environments.

3.3.3. Creating and Sharing Reusable Code. Thus far, we have discussed reusing ex-

isting code, but most end-user programming environments also provide ways for users to

create new abstractions. Table 3 lists several examples of reusable abstractions, distin-

guishing between behavioral abstractions and data abstractions. Studies of certain classes

of end users suggest that data abstractions are the most commonly created type [Rosson

et al. 2005, Scaffidi et al. 2006].

 27

Although end users have the option of creating such reusable abstractions, examples

are the more common form of reusable code. Unfortunately, it is extremely time-

consuming to maintain a well-vetted repository of code. For example, Gulley [2006] de-

scribes the challenges in maintaining a repository of user-contributed Matlab examples,

with a rating system and other social networking features. For this reason, many organi-

zations do not explicitly invest in creating such repositories. In such cases, programmers

cannot rely on search tools but must instead share code informally [Segal 2007, Wieden-

beck 2005]. This spreads repository management across many individuals, who share the

work of vetting and explaining code.

Although it is common for end-user programmers to view the code they create as

“throw away,” in many cases such code becomes quite long-lived [Mackay 1990]. Some-

one might write a simple script to streamline some business process and then later, some-

one might reuse the script for some other purpose. This form of “accidental” sharing is

one way that end-user programmers face the same kinds of maintainability concerns as

professional programmers. In field studies of CoScripter [Leshed et al. 2008, Bogart et al.

2008], an end-user development tool for automating and sharing “how-to” knowledge,

scripts in the CoScripter repository were regularly copied and duplicated as starting

points for new scripts, even when the original author never intended such use [Bogart et

Environment Domain Behavioral abstractions Data abstractions

AutoHAN
[Blackwell and Hague 2001]

Home
automation

Channel Cubes can map to scripts
that call functions on appliances.

Aggregate Cubes can represent
a collection of other Media
Cubes.

BOOMS
[Balaban et al. 2002]

Music
editing

Functions record series of music
edits.

Structures contain notes and
phrases.

Forms/3
[Burnett et al. 2001]

Spread-
sheets

Forms simultaneously represent a
function and an activation record.

Types are structured collections
of cells and graphical objects.

Gamut
[McDaniel and Myers 1999]

Game
design

Behaviors are learned from posi-
tive and negative examples.

Decks of cards serve as graphi-
cal containers with properties.

Janus
[Fischer and Girgensohn 1990]

Floor plan
design

Critic rules encode algorithms for
deciding if a floor plan is “good.”

Instances of classes may pos-
sess attributes and sub-objects.

KidSim
[Smith et al. 1994]

Simulation
design

Graphical rewrite rules describe
agent behavior.

Agents possess properties and
are cloned for new instances.

Lapis
[Miller and Myers 2002]

Text edit-
ing

Scripts automate a series of edits. Text patterns can contain sub-
structure.

Pursuit
[Modugno and Myers 1994]

File man-
agement

Scripts automate a series of ma-
nipulations.

Filter sets contain files and
folders.

QUICK
[Douglas et al. 1990]

UI design Actions may be associated with
objects (that are then cloned).

Objects may have attributes and
be cloned and/or aggregated.

TEXAO
[Texier and Guittet 1999]

CAD Formulas may drive values of
attributes on cloneable objects.

Instances of classes may pos-
sess attributes and sub-objects.

Table 3. Behavioral and data abstractions in some end-user programming environments.

 28

al. 2008]. This unplanned sharing also means that improvements to the originally copied

or shared code do not propagate to the copies that need it. This distinction between

planned and unplanned reuse can demand different reuse technologies. For example,

many professional development tools that support copying, such as the “linked editing”

technology described by Toomim et al. [2004], require users to plan their copying activi-

ties.

3.3.4. Designing Reusable Code for End Users. One way to facilitate reuse by end us-

ers is to choose the right abstractions for their problem domains. This means choosing the

right concepts and choosing the right level of abstraction for such concepts. For example,

the designers of the Alice 3D programming system [Dann et al. 2006] consciously de-

signed their APIs to provide abstractions that more closely matched peoples’ expectations

about cameras, perspectives, and object movement. The designers of the Visual Ba-

sic.NET APIs based their API designs on a thorough study of the common programming

tasks of a variety of programmer populations [Green et al. 2006]. The Google Maps API

is related in that the key to its success has been the relative ease with which users can

annotate geographical images with custom data types.

In other cases, choosing the right abstractions for a problem domain involves under-

standing the data used in the domain, rather than the behavior. For example, Topes [Scaf-

fidi et al. 2008] is a framework for describing string data types unique to an organization,

such as room numbers, purchase order IDs, and phone number extensions (see Figure 6).

By supporting the design of these custom data types, end-user programmers can more

easily process and validate information, as well as transform information between differ-

ent formats. This is a fundamental problem in many new domains of end-user program-

ming, such as “mashup” design tools [Wong and Hong 2007] and RSS feed processors

(e.g., http://pipes.yahoo.com).

 29

Of course, as with any design, designing the right abstractions has tradeoffs. Special-

izing abstractions can result in a mismatch between the functionality of a reusable ab-

straction and the functionality needed by a programmer [Ye and Fischer 2005, Wieden-

beck 2005]. For example, many functional mismatches occur because specialized abstrac-

tions often have non-local effects on the state of a program [Biggerstaff and Richter

1989]. In addition to functional mismatch, non-functional issues can cause abstractions

not to mesh well with the new program [Ravichandran and Rothenberger 2003, Shaw

1995]. End-user software engineering research is only beginning to consider this space of

API and library design issues.

3.4. Is My Program Working Correctly? —Verification and Testing
There is a large range of ways to gain confidence about the correctness of a program,

including through verification, testing, or a number of other approaches. The goals of

testing and verification techniques are universal: they enable people to have a more ob-

jective and accurate level of confidence than they would if they were left unassisted.

Where EUSE and professional SE differ is that end-user programmers’ priorities often

lead to overconfidence in the correctness of their programs.

Figure 6. The Toped++ pattern editor [Scaffidi et al. 2008], allowing the creation of string data types that sup-
port recognition of matching strings and transformation between formats. Original figure obtained from authors.

 30

Research on testing and verification in end-user programming has primarily focused

on helping end users manage their overconfidence, and primarily for the spreadsheet

paradigm3. More recent work has broadened support for testing and verification to the

web and researchers are also beginning to generalize the spreadsheet-focused technolo-

gies to other paradigms and domains. In this section, we discuss these various contribu-

tions and organize research by the different approaches to helping end-user programmers

overcome overconfidence.

3.4.1. Oracles and Overconfidence. A central issue for any type of verification is the

decision about whether a particular program behavior or output is correct. The source of

such knowledge is usually referred to as an oracle. Oracles might be people, making

more or less formal decisions about the correctness of program behavior, or oracles can

be explicitly documented definitions of the correct and intended behavior.

People are typically imperfect oracles. Professional programmers are known to be

overconfident [Leventhal et al. 1994, Teasley and Leventhal 1994, Lawrance et al. 2005],

but such overconfidence subsides as they gain experience [Ko et al. 2007]. Some end-

user programmers, in comparison, are notoriously overconfident: many studies about

spreadsheets report that despite the high error rates in spreadsheets, spreadsheet develop-

ers are heedlessly confident about correctness [Panko 1998, Panko 2000, Hendry and

Green 1994]. In one study, overconfidence about the correctness of spreadsheet cell val-

ues was associated with a high degree of overconfidence about the spreadsheets’ overall

correctness [Wilcox 1997]. In fact, for spreadsheets, studies report that between 5% and

23% of the value judgments made by end-user programmers are incorrect [Ruthruff et al.

2005a, Ruthruff et al. 2005b, Phalgune et al. 2005]. In all of these studies, people were

much more likely to judge an incorrect value to be right than a correct value to be wrong.

These findings have implications for creators of error detection tools. The first is that

immediate feedback about the values a program computes, without feedback about cor-

rectness, leads to significantly higher overconfidence [Rothermel et al. 2000, Krishna et

al. 2001]. Second, because end users' negative judgments are more likely to be correct

than positive judgments, a tool should “trust” negative judgments more. One possible

strategy for doing so is to implement a “robustness” feature that guards against a large

3 One possible explanation for this bias is that Microsoft Excel, the most widely used spread-

sheet language, tends to produce output even in the presence of errors. This then leads to user over-
confidence in program correctness, which researchers have tried to remedy through better testing
tools. Furthermore, much of the original research on end-user software engineering was inspired by
Nardi‘s investigation of spreadsheet use in business contexts [1992].

 31

number of positive judgments swamping a small number of negative judgments, e.g., as

in [Ruthruff et al. 2005b]. This approach was empirically tested in [Phalgune et al. 2005]

and was found to significantly improve the tool’s feedback.

3.4.2. Detecting Errors with Testing. One approach to helping end-user programmers

detect errors is supporting testing. Testing is judging the correctness of programs based

on the correctness of program outputs. Systematic testing—testing according to a plan

that defines exactly what tests are needed and when enough testing has been done—is

crucial for success. Without it, the likelihood of missing important errors increases

[Rothermel et al. 2001]. Furthermore, stronger (and more expensive) systematic testing

techniques have a demonstrated tendency to outperform weaker ones [Frankl and Weiss

1993, Hutchins et al. 1994]. Unfortunately, being systematic is often in conflict with end-

user programmers’ goals, because it requires time on activities that they usually perceive

as irrelevant to success. Therefore, research on testing tools for end-user programmers

has focused on testing approaches that are integrated with users’ work and are incre-

mental in their feedback.

The most notable of these approaches is the “What You See Is What You Test”

(WYSIWYT) methodology for doing “white box” testing of spreadsheets [Rothermel et

al. 1998, Rothermel et al. 2001, Burnett et al. 2002]. With white box testing, the code is

available to the tester [Beizer 1990]; in the case of spreadsheets, the formulas are the

source code. Since testing most programs would require an infinite number of test cases

in order to actually prove correctness, most white box approaches include a test adequacy

criterion, which measures when “enough” testing has been done according to some code-

based measure. Some criteria include branch coverage (test cases that exercise every

branch), and statement coverage (exercising every statement in an imperative program)

[White 1987]. With WYSIWYT, the criterion used is definition-use coverage, which (in

the spreadsheet context) involves exercising every data dependency that could feasibly

execute [Rothermel et al. 1998, Rothermel et al. 2001].

With WYSIWYT, as users develop a spreadsheet, they can also test that spreadsheet

incrementally and systematically. At any point in the process of developing the spread-

sheet, the user can validate any value that he or she believes is correct (the issues of ora-

cles and overconfidence aside). Behind the scenes, these validations are used to measure

the quality of testing in terms of a test adequacy criterion based on data dependencies.

These measurements are then projected to the user using several different visual devices,

to help them direct their testing activities.

 32

For example, suppose that a teacher is creating a student grades spreadsheet and has

reached the point shown in Figure 7. During this process, whenever the teacher notices

that a value in a cell is correct, she can check it off in the decision box in the upper right

corner of that cell. A checkmark appears in the decision box, indicating that the cell’s

value has been validated under current inputs. The validated cell’s border also becomes

more blue, indicating that dependencies between the validated cell and cells it references

have been “exercised” in producing the validated values. Red borders mean untested,

blue borders mean tested, and any color in between means partially tested. From the bor-

der colors, the user is kept informed of which areas of the spreadsheet are tested and to

what extent. The tool also supports more fine-grained access to testing the data depend-

encies in the spreadsheet, as well as a “percent tested” bar at the top of the spreadsheet,

providing the user with an overview of her testing progress.

To help users think of values to test, users can invoke the “Help Me Test” utility to

automatically generate suitable test values [Fisher et al. 2002a, Fisher et al. 2006b]. This

approach finds values that follow unexplored paths in the spreadsheet’s dataflow, as well

as reuse prior test case values for regression testing after a spreadsheet has changed.

Abraham and Erwig describe an alternative approach to generating test values by back-

propagating constraints on cell values, showing that it can be more effective in terms of

efficiency and predictability [Abraham and Erwig 2006b].

WYSIWYT is the most mature error-detecting approach for end-user programmers.

It includes support for reasoning about regions of cells with shared formulas [Fisher et al.

2006b, Burnett et al. 2002] and also interacts with assertions (covered in Section 3.2),

Figure 7. The WYSIWYT testing approach. Checkmarks represent decisions about correct values. Empty boxes
indicate that a value has not been validated under the current inputs. Question marks indicate that validating the

cell would increase testedness [Burnett et al. 2002]. Original figure obtained from authors.

 33

fault localization, debugging (covered in Section 3.5), reuse of prior test cases [Fisher et

al. 2002b], and the “Help Me Test” functionality mentioned earlier. There has also been

research into how WYSIWYT can be applied to visual dataflow languages [Karam and

Smedley 2002] and to the kind of “screen transition” programming being developed for

web page design [Brown et al. 2003].

3.4.3. Checking Against Specifications. Another approach to detecting errors in pro-

grams is by checking values computed by the program against some form of specifica-

tion; these specifications then serve as the oracle for correctness. For example, as dis-

cussed in Section 3.2, one form of specifications that can be entered is assertions about

the values that a spreadsheet cell can have. Such assertions can be propagated to infer

new assertions, using interval arithmetic [Ayalew and Mittermeir 2003, Burnett et al.

2003]. Assertions that conflict with one another are also highlighted, showing errors in

the assertions or the formulas through which they propagated. Other approaches validate

string input against flexible data type definitions [Scaffidi et al. 2008]. In all of these ap-

proaches, values that do not conform to the assertions are highlighted.

Elbaum et al. [2005] describe an approach for capturing user session data from users

who utilize web applications, and using this data to distill relevant testing information.

The approach can be abstractly thought of as identifying specification information about

a web application in the form of an operational abstraction of usage of that application.

By focusing on usage, the approach allows verification relative to an (often shifting) op-

erational profile; this can detect errors not foreseen by developers of the application, who

often have unrealistic expectations about application usage.

 34

3.4.4. Consistency Checking. Instead of using a human oracle or external specifica-

tions, some systems define correctness heuristics about the internal consistency of a pro-

gram’s code. One approach for spreadsheets is a form of type inference called “unit in-

ference and checking systems” [Chambers and Erwig 2009, Abraham and Erwig 2004,

Abraham and Erwig 2007b, Ahmad et al. 2003, Antoniu et al. 2004, Coblenz et al. 2005].

These approaches are based on the idea that users’ layout of data, especially the labeled

row and column headers, offer a form of user defined type called a unit [Erwig and

Burnett 2002]. For example, the label (column head) “apples” would represent entries of

type apple. The “apples” label gets propagated to other formulas that use this value, and

the labels are combined in different ways depending on the operator. The program can

then be checked against these units for consistency. To illustrate, consider the spreadsheet

in Figure 8, using the UCheck system [Abraham and Erwig 2004, Abraham and Erwig

2007a]. Because a column is labeled “Apples,” the entries in that column can be consid-

ered of unit Apples. The approach begins with an analysis of spatial layout, also taking

into account referencing relationships in formulas, to determine the relationships among

header labels for rows and columns, their relationship to data entries, and how far in the

spreadsheet these labels apply. Because the row labeled “Total” contains sums of the

“Apples” entries, the system decides that “Total” marks the end of the “Apples” column.

The system can also reason about transformations that happen through formula opera-

tors/function calls, such as inferring that the sum of two Apples entries is also of type

Figure 8. The UCheck system for inferring units from headers. The arrows represent unit inferences based on
the column and row labels [Abraham and Erwig 2007b].

 35

Apples, even if it is not in the Apples column. These inferences can be crosschecked for

contradictions, and, just as in type inference, these contradictions are strong indications

of logic errors. For example, if the sum of two Apples entries occurs in the middle of the

Oranges column, the system could consider this to be a case of conflicting type informa-

tion and generate a unit error. Empirical studies suggest that end users are successful at

using these features to detect errors [Abraham and Erwig 2007b].

Another form of internal consistency checking is statistical outlier finding, which in-

volves identifying invalid data values that are mixed among a set of valid values. Miller

and Myers [2001] used this approach to help detect errors in text editing macros. Scaffidi

[2007] developed a similar algorithm that infers a format from an unlabeled collection of

examples that may contain invalid values. The generated format is presented in human-

readable notation, so end-user programmers can review and customize the format before

using it to find outliers that do not match the format. Raz et al. [2002] used anomaly de-

tection to monitor on-line data feeds incorporated in web-based applications for possible

erroneous inputs. All of these approaches use statistical analysis and interactive tech-

niques to direct end-user programmers’ attention to potentially problematic values.

Figure 9. A “data dependency flow” of a spreadsheet’s dependencies. Reproduced from [Ballinger et al. 2003]
with permission from authors.

 36

3.4.5. Visualizations. Another way to check the correctness of a program is to visual-

ize its behavior. Visualization tools enable end-user programmers to apply their knowl-

edge of correctness to certain features of their program’s behavior. For example, Igarashi

et al. present comprehension devices that can aid spreadsheet users in dataflow visualiza-

tion and editing tasks, and finding faults [1998]. More recent spreadsheet visualization

approaches include detecting semantic regions and classes [Clermont 2003, Clermont and

Mittermeir 2003, Fisher et al. 2006b], ways to visualize trends and “big picture” relation-

ships in spreadsheets that elide a number of low-level details [Ballinger et al. 2003] (see

Figure 9); and visual auditing features in which similar groups of cells are recognized

and shaded based on formula similarity [Sajaniemi 2000]. This latter technique builds on

earlier work on the Arrow Tool, a dataflow visualization device proposed by Davis

[1996].

While most of these visualization tools have been created for the spreadsheet para-

digm, there is a growing interest in allowing users to test and verify the behavior of ma-

chine learning algorithms. For example, Talbot et al. [2009] describe a system that allows

users to partition data, view weights on different classifiers, and use a confusion matrix

visualization to assess the behavior of the resulting classifier. Like the spreadsheet visu-

alizations, this system focuses on portraying more global trends in the program behavior.

3.5. Why is My Program Not Working? —Debugging
Whereas verification and testing detect the presence of errors, debugging is the process of

finding and removing errors. Debugging continues to be one of the most time-consuming

aspects of both professional and end-user programming [LaToza et al. 2007, Ko et al.

2005, Ko et al. 2007]. Although the process of debugging can involve a variety of strate-

gies, studies have shown across a range of populations that debugging is fundamentally a

hypothesis-driven diagnostic activity [Brooks 1977, Littman et al. 1986, Katz and Ander-

son 1988, Robillard et al. 2004, Gugerty and Olson 1986, Wiedenbeck 2004, Ko and

Myers 2004b]. What makes debugging difficult in general is that programmers typically

begin the process with a “why” question about their program’s behavior, but must trans-

late this question into a series of actions and queries using low-level tools such as break-

points and print statements [Ko and Myers 2008b].

A number of issues make debugging even more problematic for end-user program-

mers. Many lack accurate knowledge about how their programs execute and, as a result,

they often have difficulty conceiving of possible explanations for a program's failure [Ko

 37

and Myers 2004b]. Furthermore, because end users often prioritize their external goals

over software reliability, debugging strategies often involve “quick and dirty” solutions,

such as modifying their code until it appears to work. In the process of remedying exist-

ing errors, such strategies often lead to additional errors [Ko and Myers 2003, Beckwith

et al. 2005a].

Although prior studies of debugging have focused on a broad set of domains and lan-

guage paradigms, the technologies to support debugging have generally focused on

spreadsheets and event-based imperative languages. In this section, we organize ap-

proaches to supporting debugging in light of this historical bias and discuss their potential

to generalize beyond these paradigms.

3.5.1. Analyzing dependencies. Dependencies in a program’s execution can involve

control dependencies (such as a statement only executing if a particular condition is true)

and data dependencies (such as a variable’s depending on the sum of two other variables)

[Tip 1995]. Such dependencies are the basis of a number of end-user debugging tools.

One approach in the spreadsheet domain is an extension to the WYSIWYT testing

framework, which was discussed in Section 3.4 [Ruthruff et al. 2005b]. To illustrate, see

Figure 10 and recall the grades spreadsheet example in Figure 7. Suppose in the process

of testing, the teacher notices that row 5’s Letter grade (“A”) is incorrect. The teacher

indicates that row 5’s letter grade is erroneous by “X'ing it out” instead of checking it off.

Row 5’s Course average is also wrong, so she X’s that one, too. As Figure 10 shows,

both cells now contain pink (gray in this paper), but Course is darker than Letter because

Course contributed to two incorrect values (its own and Letter’s) whereas Letter contrib-

Figure 10. After the teacher marks a few successful and unsuccessful test values, the system helps her narrow
down the most likely location of the erroneous formula [Ruthruff et al. 2005b]. Original figure obtained from

authors.

 38

uted to only its own. These colors reflect the likelihood that the cell formulas contain

faults, with darker shades reflecting greater likelihood. Although this example is too

small for the shadings to contribute a great deal, in one study, users who used the tech-

nique on larger examples did tend to follow the darkest cells and were better at finding

bugs than those without the tool [Ruthruff et al. 2005a].

To determine the colors from the X marks, three different algorithms have been used

to calculate the WYSIWYT-based fault likelihood colorings [Ruthruff et al. 2006]. All

three are based on variants of program slicing [Tip 1995]. The most effective algorithm is

based on the sheer number of successful and failed test cases that have contributed to a

cell's outcomes [Ruthruff et al. 2006]. Ayalew and Mittermeir [2003] devised a similar

method of fault tracing in spreadsheets based on “interval testing” and slicing. This strat-

egy reduces the search domain after it detects a failure, and selects a single cell as the

“most influential faulty”. It has some similarities to the assertions work presented in Sec-

tion 3.2.3 [Burnett et al. 2003], but it not only detects the presence of possible errors, but

also what cells are most likely to contain faulty formulas.

A new class of tools based on question asking rather than on test outcomes has re-

Figure 11. The Whyline for Alice. The user has asked why Pac Man failed to resize and the answer shows a
visualization of the events that prevented the resize statement from executing [Ko and Myers 2004a]. Original

figure obtained from authors.

 39

cently emerged and has proven effective. The first tool to take this approach was Ko and

Myers’ Whyline [2004a], which was prototyped for the Alice programming environment

[Dann et al. 2006] and is shown in Figure 11. Users execute their program, and when

they see a behavior they have a question about, they press a “Why” button. This brings up

a menu of “why did” and “why didn’t” questions, organized according to the structure of

the visible 3D objects manipulated by the program. Once the user selects a question, the

system analyzes the program’s execution history and generates an answer in terms of the

events that occurred during execution. In a user study, the Whyline reduced debugging

time by a factor of 8 and helped users get through 40% more tasks, when compared to

users without the Whyline [Ko and Myers 2004a]. In a similar approach, Myers et al.

[2006] describe a word processor that supports questions about the document and the

application state (such as preferences about auto-correction and styles). This system en-

abled the user to ask the system questions such as “why was teh replaced with the?” The

answers were given in terms of the user-modifiable document and application state that

ultimately influenced the undesirable behavior. Recent work has shown that these ques-

tion-asking tools, particularly those that answer “why” questions, can help users under-

stand software behavior more accurately and more in-depth than systems that support

“what if” and “how to” types of questions [Lim et al. 2009].

3.5.2. Change Suggestions. An entirely different approach to debugging goes a step

further in automation. GoalDebug is a semi-automatic debugger for spreadsheets [Abra-

ham and Erwig 2007a] that allows the user to select an erroneous value, give an expected

value, and get a list of changes to the spreadsheet’s formulas that would result in the cell

having the desired value. Users can interactively explore, apply, refine, or reject these

change suggestions. The computation of change suggestions is based on a formal infer-

ence system that propagates expected values backwards across formulas. Empirical re-

sults so far showed that the correct formula change was the first suggestion in 59% of the

cases, and among the first five in 80% of the cases [Abraham and Erwig 2007b]. Of

course, there will certainly be situations with such tools where the necessary change is far

too complex for the system to infer. This approach also suffers from the oracle problem

(Section 3.4.1), because it assumes that users can specify correct values.

3.5.3. Sharing Reasoning. Given the variety of debugging tools that both detect and

locate errors in spreadsheets, recent work has developed ways to combine the results of

multiple techniques. For example, Lawrance et al. [2006] developed a system to combine

the reasoning from UCheck [Abraham and Erwig 2004] and WYSIWYT [Ruthruff et al.

 40

2005b]. The combined reasoning demonstrated both the importance of the information

base used to locate faults and the mapping of this information into visual fault localiza-

tion feedback for end-user programmers, replicating the findings of [Ruthruff et al.

2005a]. They found that UCheck's static analysis of the spreadsheet effectively detected a

narrow class of faults, while WYSIWYT (which was driven by a probabilistic model of

users derived from previous work [Phalgune et al. 2005]) detected a broader range of

faults with moderate effectiveness, and that certain combinations of the two were more

effective than either alone. Additionally, by manipulating the mapping, they were able to

improve the effectiveness of the feedback.

3.5.4. Social and Cognitive Support. Aside from using tools to help end users debug,

there are other approaches that take advantage of human and social factors of debugging.

For example, a study of end-user debugging found that when end users worked in pairs

rather than alone, they were more systematic and objective in their hypothesis testing

[Chintakovid et al. 2006]. This approach was inspired by similar research on the benefits

of pair programming for professional programmers.

Kissinger et al. [2006] categorized people’s comments during a debugging task in the

lab, finding a number of questions that people ask of themselves, including “Am I smart

enough?” “Is this the right value?” and “What should I do next?” These questions dem-

onstrated the importance of supporting the individual’s questions about planning and

their meta-cognitive strategies, not just their questions about the debugging problem it-

self. These findings led to a video-based approach to teaching debugging strategies, in

which a user could ask for help from videotaped human assistants [Subrahmaniyan et al.

2007, Grigoreanu 2008]. In the study of this approach, participants chose better debug-

ging strategies as a result of viewing the videos in the context of their problems, and had

correspondingly more success at debugging.

4. CROSS-CUTTING ISSUES IN END-USER SOFTWARE ENGINEERING

As illustrated in the previous sections, there has been significant progress in understand-

ing and relieving the software engineering challenges that arise when people engage in

end-user programming. However, in addition to this collection of studies and technolo-

gies, researchers have also explored several crosscutting issues that affect the degree to

which people engage in software engineering activities or use software engineering tools.

For example, in addition to intent, there are many other factors that distinguish end-user

programming from professional software development. There are also many issues in

 41

how well tools can generalize across paradigms and user groups. Additionally, simply

creating EUSE tools is not enough: users must see the value in using them and they must

be able to use them effectively, despite individual differences in strategy. In this section,

we organize prior work on these issues and discuss the potential for future work.

4.1. Risk, reward, and the role of domain
While our definitions of end-user programming and end-user software engineering draw

a clear line at the intent behind programming, this definition almost certainly does not

capture the diversity of programming activities in the world. Some researchers have be-

gun to document programming activities in different domains [Scaffidi et al. 2006, Scaf-

fidi et al. 2007a, Rosson and Kase 2006, Wiedenbeck 2005, Carver et al. 2007, Segal

2007, Myers et al. 2008, Petre and Blackwell 2007], finding that a wide range of people

are engaging in programming to support their work or hobbies and not all of them are

novice programmers. Some are skilled professionals, such as scientists and analysts, who

also happen to have programming skills that they can apply to their work. It may not be

meaningful to group these professionals together with novice programmers with similar

intents, but different perceptions around learning new tools and a different willingness to

redefine their work practices.

Part of what underlies this distinction is that people vary in their tolerance and per-

ceptions of risk and reward. For example, some teachers may not be willing to learn a

new testing tool because they may not see the eventual payoff or may be skeptical about

their own success. A financial analyst faced with performing thousands of manual trans-

actions may see the situation differently. The costs involved in learning how to automate

a task may be so high that it may seem more economical to find a manual alternative (or

to persuade someone else to write the program). Blackwell’s Attention Investment model

[Blackwell and Green 1999, Blackwell 2002] provides a cognitive model of these in-

sights, describing individuals’ allocations of attention as cognitive “investments.” Ac-

cording to the model, a user weighs four factors (not necessarily explicitly) before taking

an action: (1) perceived benefits, (2) expected pay-off, (3) perceived cost, and (4) per-

ceived risks. For example, imagine that an administrator in a small art museum might be

considering adopting one of the spreadsheet verification tools in Section 3.4.2 to detect

errors, because of recent problems in inventory tracking. The administrator might see a

benefit in that the enhancement would allow her to find and fix errors more quickly. The

expected pay-off is that inventory tracking will be dependable thus relieving her from the

 42

additional effort of supplementary audits. The perceived cost is that she will have to

spend time learning to use the new features, while the perceived risk is that the features

do not aid her enough to make it worth her effort. According to the Attention Investment

model, her decision is based on a calculus of these factors. Some end-user programming

techniques have attempted to support this decision making by measuring a trade-off point

(for example, how many items must be processed manually before the time saved is more

than that needed to author the automation [Stylos et al. 2004, Miller and Myers 2001]).

The irony of attention investment is that even this careful thought involves the in-

vestment of attentional effort. It might even be the case that truly rigorous analysis of

requirements can be more costly than writing another program (a phenomenon that

plagues the advocates of formal specification languages). Users who have a choice be-

tween programming or manual procedures are likely to avoid such careful analysis of

requirements not because they are lazy or careless, but simply because it would be a poor

investment of attention to do so much thinking in advance, rather than making iterative

adjustments or simply reverting to manual procedures. A further risk in the attention in-

vestment equation is that the program may malfunction, failing to bring the anticipated

benefits of automation, or perhaps even resulting in damage. The effort involved in test-

ing or debugging to avoid this eventuality is yet another investment of attention.

In addition to differences in perceptions of risk and reward, the domain of practice

can also have a significant influence on how willing users are to engage in software engi-

neering activities. For example, the domain complexity, or the types of concepts modeled

by software, can vary in nature. Weather simulations, for instance, are likely more com-

plex than a teacher’s grading system and are likely to involve different types of computa-

tional patterns and different software architectures. A related factor is an end-user pro-

grammer’s domain familiarity. This is the difference between a banker writing banking

software and a professional programmer writing banking software. The banker would

have to learn to program, whereas the professional would have to learn banking concepts.

The domain for which a program is written and its underlying characteristics, are a fun-

damental part of Sutcliffe’s exploration of reuse [Sutcliffe 2002], in which he describes

the role of granularity (how “large” an abstraction is) and abstraction (how it is parti-

tioned). Both of these factors can influence how easily code can be appropriated for a

particular task.

Finally, people in different domains of practice may also collaborate differently. Pro-

fessional developers work in teams [Ko et al. 2007], which can change the constraints on

 43

programming decisions, but this is often not the case in end-user programming. Teachers

may work alone [Wiedenbeck 2005]; designers may work with other developers [Myers

2008]; web developers may work with users [Scaffidi et al. 2007]. The cultural values

around software development itself can also vary, influencing tool adoption and motiva-

tions to invest in learning software engineering concepts [Segal 2005]. Further, the end

user’s organizational context imposes constraints and values of its own [Mehandjiev et al.

2006].

4.2. Persuading people to use EUSE tools
Given the discussion in the previous section, and the lower priority of software engineer-

ing concerns in end-user programming, getting users to use EUSE tools at all is a signifi-

cant challenge. End users may be reluctant to use new, unknown features of a system,

because they may perceive the features as risky or unhelpful [Blackwell 2002]. Further-

more, because many people who engage in end-user programming lack training in soft-

ware engineering principles, they may not see immediate, or even long-term value in us-

ing software engineering tools.

One approach to this problem is to train end-user programmers about software engi-

neering and computer science principles rather than (or in addition to) trying to design

tools around end users’ existing habits. Some of the tools discussed in this survey have

the side effect of training users, but do not explicitly intend to train. For example, a cen-

tral issue in many of the tools described in this survey is the tension between formality

and accessibility. With more explicit requirements, tests, and verifications, come more

precise analysis, but more difficulty in expression (a related concept is provisionality

[Green et al. 1996], which is the ability in a tool or notation to express things tentatively

or imprecisely). Although this paper has demonstrated notations that are both accessible

and precise, there are only a few such examples [Beckwith et al. 2005b, Gross and Do

1996] and no work has assessed to what extent end users learn more general principles by

using these technologies.

Some work has attempted to explicitly train end users in software engineering and

computer science principles. Umarji et al. [2008] explored one approach, focusing on

teaching quality assurance, reuse, and documentation best practices, but the training’s

influence on software quality is not yet known. The authors do suggest, however, that

training may help end users make more informed decisions about when and when not to

engage in software engineering activities, relative to their goals and priorities. Perhaps

 44

professional software developers develop similar instincts through experience and these

instincts could be distilled into advice that can be taught.

An alternative to explicitly training users in principles is to find “teachable moments”

to provide a concrete, contextual illustration of the benefits of software engineering ideas.

Surprise-Explain-Reward [Wilson et al. 2003, Robertson et al. 2004, Ruthruff et al. 2004]

is one such approach, aimed at changing end-user programmers’ perceptions of risk and

reward. The strategy consists of three basic steps:

1. Surprise the user in order to raise curiosity about a feature,

2. Provide explanations to satisfy the user’s curiosity and encourage trying out the fea-

ture, and

3. Give a reward for trying the feature, encouraging future use of the feature.

A simple example of Surprise-Explain-Reward is enticing users to try out the

WYSIWYT testing features [Ruthruff et al. 2004], described in Section 3.4.2. One of the

best ways to surprise users and get their attention is to violate their assumptions. For ex-

ample, the red border in cell Exam_Avg in Figure 12 (grey in this paper) may be surpris-

ing if the coloring is unexpected. If the user hovers over the surprising red cell border, a

tool tip pops up with an explanation that “0% of this cell has been tested,” a passive form

of feedback that allows, but does not require, the user to attend to it [Robertson et al.

2004]. The user may respond by examining the cell value, deciding that it is correct, and

placing a checkmark (√) in the decision box at the upper right corner of the cell. As de-

scribed in Section 3.4.2, this decision results in an increase of the cell’s testedness,

changing its color, and more importantly, an increase in the progress bar (at the top of

Figure 12). Some of these rewards are functional (e.g., carrying out a successful test), and

others are perceivable rewards that do not affect the outcome of the task (e.g., the pro-

gress bar that informs the user how close he or she is to completing the testing). Research

has shown that such perceivable rewards can significantly improve users’ understanding

and performance [Ruthruff et al. 2004].

 45

The same Surprise-Explain-Reward strategy was used in designing the assertions de-

scribed in Section 3.2.2. An empirical study of the feature [Wilson et al. 2003] found that

although users had no prior knowledge of assertions, they entered a high number of asser-

tions and viewed many explanations about assertions. Use of assertions was rewarded by

more correct spreadsheets, as well as users’ perceptions that assertions helped them to be

accurate.

One danger with such an approach may be that users may “game the system,” using

the system and its features in order to achieve goals, such as coloredness, other than the

intended one, namely correctness. This has been observed in studies of computer-based

learning environments [Baker 2007], where the primary goal is learning, but some stu-

dents learn how to manipulate the system to avoid learning. In the case of WYSIWYT,

this might mean checking off all of the cells as correct without actually assessing the cor-

rectness of the cells’ values, just to attain 100% testedness. Users might do this because

they do not understand the meaning of the system’s feedback, or possibly because the

system makes it difficult to avoid using a feature. Because of this possibility, the apho-

rism of “garbage-in garbage-out” comes into play. In lab studies, this behavior was not

enough to outweigh the effectiveness of WYSIWYT in helping users find errors [Burnett

et al. 2004].

Figure 12. The Surprise-Explain-Reward strategy in Forms/3. The changing colors surprise users, the tooltips
explain the potential rewards, and the further changes in colors and the percent testedness bar at the top are the

rewards [Wilson et al. 2003]. Original figure obtained from authors.

 46

4.3. Self-efficacy, gender, and strategy in EUSE tool use
Even if one accounts for perceptions of risk and reward and makes a significant effort to

train users about the benefits of a software engineering mindset, there is some evidence

that personal factors such as self-efficacy and problem solving strategies can significantly

influence how effective EUSE tools are at ensuring software quality. Researchers have

only recently begun to consider the role of these individual differences [Beckwith and

Burnett 2004, Grigoreanu et al. 2006, Beckwith et al. 2007, Subrahmaniyan et al. 2008,

Grigoreanu et al. 2008].

Some of these investigations have been done in the context of self-efficacy, a psy-

chology construct that represents an individual’s belief in their ability to accomplish a

specific task [Bandura 1977] (not to be confused with self-confidence, which refers to

one’s more general sense of self-worth). Research has linked it closely with performance

accomplishments, level of effort, and the persistence a person is willing to expend on a

task [Bandura 1977]. Because software development is a challenging task, a person with

low self-efficacy may be less likely to persist when a task becomes challenging or may

calculate attention investment tradeoffs differently [Blackwell et. al. 2009].

One study considered the self-efficacy of males and females in a spreadsheet debug-

ging task and how it interacted with participants’ use of the WYSIWYT test-

ing/debugging features present in the environment [Beckwith et al. 2005a]. The result in

this study and others that followed [Beckwith et al. 2006, Beckwith et al. 2007] was that

self-efficacy was predictive of the females’ ability to use the debugging features effec-

tively, but it was not predictive for males. The females, who had significantly lower self-

efficacy, also were less likely than males to engage with the features they had been unfa-

miliar with prior to the study (regardless of whether the feature had been taught in the

tutorial). Females expressed that they were afraid it would take them too long to learn

about one of these features, but they actually understood the features as well as the males

did. Because the females chose to rely on features they were familiar with already, they

used formula editing rather than the debugging features to debug and, as a result, inserted

more formula errors than the males.

Another study considered gender differences in “tinkering,” a form of playful experi-

mentation encouraged in educational settings because of its documented learning benefits

[Rowe 1978]. Research suggests that tinkering is more common among males [Jones et

al. 2000, Martinson 2005, Van Den Heuvel-Panheizen 1999], especially in computing

[Rode 2008]. Findings such as these prompted an experiment investigating the effects of

 47

tinkering and gender on end-user debugging [Beckwith et al. 2006]. The results found

that females’ tinkering was positively related to success, whereas the males’ tinkering

was negatively related to success. This was because females were more likely to pause

between their actions than the males were, leaving more time for analysis and interpreta-

tion of the changes that occurred due to their action. Also, males tinkered more and were

less likely to pause.

These gender difference results led to the design of a new variant of these features,

which adds explicitly “tentative” versions of the WYSIWYT features, aimed primarily at

benefiting low-confidence females [Beckwith et al. 2005b]. These changes also slightly

raise the cost of tinkering, aimed at reducing males’ tendency to tinker excessively. Fol-

low-on monitoring of feature usage showed encouraging trends toward closing of the

gender gap in feature usage [Beckwith et al. 2007], and a lab study combining that fea-

ture enhancement with strategy explanation support showed significant reduction in the

gender gap in feature usage and tinkering by improving females’ usage without negative

impact to males [Grigoreanu et al. 2008].

In a separate line of research, Kelleher investigated issues of motivation in the domain

of animations and storytelling [Kelleher and Pausch 2006]. The goal was not to identify

gender differences in performance, but to identify design considerations that would moti-

vate middle school girls to tell stories using interactive animations. To do this, girls were

asked to create detailed storyboards of stories they wanted to tell and annotate them with

textual descriptions. Analyses of the storyboards revealed a small number of animations

necessary to support storytelling, including speech bubbles for talking and thinking,

walking, changing body positions, and touching other objects. These features resulted in

most of the participants of a study sneaking in extra time during class breaks to work on

their storytelling projects [Kelleher and Pausch 2007]. Kafai has also studied gender dif-

ferences in programming, but for a different audience in a different domain: ten-year-old

children programming video games. Her work reported significant gender differences in

game character development and in the kind of game feedback that the children pro-

grammed [Kafai 1997].

The implications of these findings on the design of end-user software engineering

tools reach more broadly than just gender: it suggests that there are barriers to success at

end-user software engineering activities for males and females. The body of work also

suggests that the designs for features to support end-users can be done in a way that helps

to remove these barriers, regardless of whether the person encountering them is male or

 48

female. Future work should better understand not only these barriers, but also ways of

detecting when such barriers are encountered.

5. CONCLUSIONS

Most programs today are written not by professional software developers, but by people

with expertise in other domains working towards goals supported by computation. This

article has offered definitions that distinguish this practice from professional software

development and it has organized decades of research on incorporating requirements,

design, testing, verification, and debugging concerns into users’ existing work practices.

What we have found in our review is an early and in-depth focus on testing and de-

bugging in spreadsheets and imperative event-based languages. Recent work, however, is

moving in several directions at once: (1) to more platforms and paradigms, including the

web and mobile devices, (2) to explore a broader array of software engineering concerns,

including specification and reuse, and (3) to a focus more broadly on application do-

mains, rather than language paradigm alone. The web in particular is becoming a domi-

nant platform on which to study and support end-user programming, with much of the

work occurring in the past few years [Little et al. 2007][Macias and Paterno

2008][Nichols et al. 2008][Toomim et al. 2009]. This is probably due to the rapid in-

crease in the use of the web (as opposed to offline desktop applications) to support com-

putational work.

In general, this recent surge in the diversity of end-user software engineering research

is both a blessing and a curse. The sheer diversity of domains that researchers are study-

ing may lead researchers to find that the truly difficult problems in end-user software

engineering arise from the domain itself, and not from the software engineering chal-

lenges. If this is the case, research in end-user software engineering will likely shift to

better understanding particular domains of practice, rather than on particular paradigms

or technologies. However, this diversity is also an opportunity: if among these widely

diverse domains of practice there are fundamental software engineering challenges, the

field of software engineering research has the opportunity to dramatically improve the

broader use of computational tools in human endeavors.

Part of this challenge is to consider the generalizability of software engineering tools.

For example, do these groups need different fundamental software engineering support,

or do they just need software engineering support tailored to their domain of practice?

For example, the Whyline [Ko and Myers 2004a], which began as a debugging tool for

 49

end-user programming of animations in the Alice environment, was successfully adapted

for professional Java programmers [Ko and Myers 2008a]. The differences between these

two approaches are not in the larger concept, but in how the concept was tailored to the

differing information needs of the two target user populations. Other tools, such as the

testing and verification approaches described in Section 3.4, transform “batch” testing

techniques to incremental approaches. Others still are traditional concepts that exploit

properties of a particular language or the types of programs created with a language (for

example, exploiting the layout of spreadsheets in a grid). Therefore, it is possible that the

primary challenges in tool design are not fundamental conceptual differences in software

engineering, but the adaptation of these concepts to particular domains of practice and

differing priorities. This makes the previously mentioned work on motivation even more

important, in that the adaptations may be primarily in reframing the presentation and in-

teraction of more general software engineering tool concepts.

 Another type of tool generalizability is the extent to which software engineering con-

cepts can transfer between paradigms. For example, the notion of interrogating program

output [Ko and Myers 2004a] was adapted to the spreadsheet paradigm [Abraham and

Erwig 2007] successfully, but the two prototypes have a number of differences. For ex-

ample, the Whyline focused on finding the code that caused or prevented a particular out-

put. In contrast, in spreadsheets, finding the formula that caused a problem is generally

trivial. Instead, Abraham and Erwig transformed the concept from one of asking ques-

tions to one of stating an expected value. The implementations of these systems were

non-trivial and have little in common. Therefore, it is possible that while the general con-

cepts involved in bringing software engineering concerns to end-user programming may

generalize, very little else may transfer. Future work will reveal to what extent ideas that

support other aspects of software engineering, such as specification and reuse, can gener-

alize between paradigms and domains.

Finally, in all of this research, it is important to remember that the programs that end-

user programmers create are just small parts of the much larger contexts of their lives at

work and at home. Understanding how programming fits into end users’ everyday lives is

central to not only the design of the EUSE tools, but our understanding of why people

program at all. The research on motivations and perceptions presented in Section 4 is just

a glimpse of the contextual factors that influence programming activity. We expect that

future work will discover and explain an even greater number of these factors and better

inform the design of end-user software engineering tools.

 50

ACKNOWLEDGEMENTS

This work was supported in part by the EUSES Consortium via NSF grants ITR-

0325273/0324861/0324770/0324844/0405612 and also by NSF grants ITWF-0420533

and IIS-0329090. The first author was also supported by a National Defense Science and

Engineering Grant and an NSF Graduate Research Fellowship. Any opinions, findings

and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

ABRAHAM R. AND ERWIG M. 2004. Header and unit inference for spreadsheets through spatial analyses. IEEE
Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, September, 165–172.

ABRAHAM R., ERWIG M., KOLLMANSBERGER S., AND SEIFERT E. 2005. Visual specifications of correct spread-
sheets. IEEE International Symposium on Visual Languages and Human-Centric Computing, Dallas,
Texas, September, 189-196.

ABRAHAM R. AND ERWIG M. 2006. Inferring templates from spreadsheets. International Conference on Soft-
ware Engineering, Shanghai, China, May, 182-191.

ABRAHAM R. AND ERWIG M. 2006. AutoTest: A tool for automatic test case generation in spreadsheets. Visual
Languages and Human-Centric Computing, Brighton, UK, September, 43-50.

ABRAHAM R. AND ERWIG M. 2006. Type Inference for Spreadsheets. ACM International Symposium on Princi-
ples and Practice of Declarative Programming, 73-84.

ABRAHAM R. AND ERWIG M. 2007. GoalDebug: A spreadsheet debugger for end users. International Confer-
ence on Software Engineering, Minneapolis, Minnesota, May, 251-260.

ABRAHAM R. AND ERWIG M. 2007. UCheck: A spreadsheet unit checker for end users. Journal of Visual Lan-
guages and Computing, 18(1), 71-95.

ABRAHAM R., ERWIG M. AND ANDREW S. 2007. A type system based on end-user vocabulary. IEEE Symposium
on Visual Languages and Human-Centric Computing, 215-222.

AHMAD Y., ANTONIU T., GOLDWATER S., AND KRISHNAMURTHI S. 2003. A type system for statically detecting
spreadsheet errors. International Conference on Automated Software Engineering, Montreal, Quebec,
Canada, October, 174-183.

ANTONIU T., STECKLER P.A., KRISHNAMURTHI S., NEUWIRTH E., AND FELLEISEN M. 2004. Validating the unit
correctness of spreadsheet programs. International Conference on Software Engineering, Edinberg, Scot-
land, May, 439-448.

AYALEW Y. AND MITTERMEIR R. 2003. Spreadsheet debugging. European Spreadsheet Risks Interest Group,
Dublin, Ireland, July 24–25.

BAKER S.J. 2007. Modeling and understanding students’ off-task behavior in intelligent tutoring systems. ACM
Conference on Human Factors in Computer Systems, San Jose, California, April, 1059-1068.

BALABAN M., BARZILAY E., AND ELHADAD M. 2002. Abstraction as a means for end user computing in creative
applications. IEEE Transactions on Systems, 32(6), November, 640-653.

BALLINGER D., BIDDLE R., AND NOBLE J. 2003. Spreadsheet visualisation to improve end-user understanding.
Asia-Pacific Symposium on Information Visualisation, 24, 99-109.

BANDINI S. AND SIMONE C. 2006. EUD as integration of components off-the-shelf. In End-User Development
H. Lieberman, F. Paterno, and V. Wulf (eds).. Springer, 183-205.

BANDURA A. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 8(2),
191-215.

 51

BARRETT R., KANDOGAN E., MAGLIO P.P., HABER E.M., TAKAYAMA L.A., PRABAKER M. 2004. Field studies
of computer system administrators: analysis of system management tools and practices. ACM Conference
on Computer Supported Cooperative Work, Chicago, Illinois, USA, 388-395.

BECK, K. 2007. Implementation Patterns. Addison-Wesley.

BECKWITH L. AND BURNETT, M. 2004. Gender: An important factor in problem-solving software? IEEE Sym-
posium on Visual Languages and Human-Centric Computing Languages and Environments, September,
Rome, Italy, September, 107-114.

BECKWITH L., BURNETT M., WIEDENBECK S., COOK C., SORTE S., AND HASTINGS M. 2005. Effectiveness of
end-user debugging features: Are there gender issues? ACM Conference on Human Factors in Computing
Systems, Portland, Oregon, USA, April, 869-878.

BECKWITH L., SORTE S., BURNETT M., WIEDENBECK S., CHINTAKOVID T., AND COOK C. 2005. Designing fea-
tures for both genders in end-user programming environments, IEEE Symposium on Visual Languages
and Human-Centric Computing, Dallas, TX, Sept., 153-160.

BECKWITH L., KISSINGER C., BURNETT M., WIEDENBECK S., LAWRANCE J., BLACKWELL A. AND COOK C.
2006. Tinkering and gender in end-user programmers’ debugging. ACM Conference on Human Factors in
Computing Systems, Montreal, Quebec, Canada, April, 231-240.

BECKWITH, L., INMAN D., RECTOR K. AND BURNETT M. 2007. On to the real world: Gender and self-efficacy in
Excel. IEEE Symposium on Visual Languages and Human-Centric Computing, September 23-27, 119-
126.

BECKWITH, L. 2007. Gender HCI issues in end-user programming, Ph.D. Thesis, Oregon State University.

BEIZER B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York, NY.

BELLETTINI C., DAMIANI E., AND FUGINI M. 1999. User opinions and rewards in reuse-based development
system. Symposium on Software Reusability, Los Angeles, California, USA, May, 151-158.

BELLON S., KOSCHKE R., ANTONIOL G., KRINKE J. AND MERLO E. 2007. Comparison and evaluation of clone
detection tools. IEEE Transactions on Software Engineering, 33(9), September, 577-591.

BERTI, S., PATERNÒ, F., SANTORO, C. 2006. Natural development of nomadic interfaces based on conceptual
descriptions. End User Development, 143-160.

BEYER H. & HOLTZBLATT, K. 1998. Contextual Design: Defining Customer-Centered Systems. San Francisco:
Morgan Kaufmann.

BEYER S., RYNES K., PERRAULT J., HAY K. AND HALLER S. 2003. Gender differences in computer science stu-
dents. Special Interest Group on Computer Science Education, Reno, Nevada, USA, February, 49-53.

BIGGERSTAFF T. AND RICHTER C. 1989. Reusability Framework, Assessment, and Directions. Software Reus-
ability: Vol. 1, Concepts and Models, 1-17.

BLACKWELL A. AND GREEN T. R. G. 1999. Investment of attention as an analytic approach to cognitive dimen-
sions. In Green, T.R.G, Abdullah T., and Brna P. (Eds.), 11th Workshop of the Psychology of Program-
ming Interest Group, 24-35.

BLACKWELL A., AND HAGUE, R. 2001. AutoHAN: An architecture for programming the home. IEEE Symposia
on Human Centric Computing Languages and Environments, Arlington, Virginia, USA, September, 150-
157.

BLACKWELL, A. F. 2002. First steps in programming: A rationale for attention investment models. IEEE Sym-
posia on Human-Centric Computing Languages and Environments, Arlington, Virginia, USA, September,
2-10.

BLACKWELL A. AND BURNETT M. 2002. Applying attention investment to end-user programming. IEEE Sympo-
sia on Human-Centric Computing Languages and Environments, Arlington, Virginia, USA, September, 1-
4.

BLACKWELL, A.F. 2004. End user developers at home. Communications of the ACM 47(9), 65-66.

BLACKWELL, A.F. 2006. Gender in domestic programming: From bricolage to séances d'essayage. Presentation
at CHI Workshop on End User Software Engineering.

 52

BLACKWELL, A.F., RODE, J.A. AND TOYE, E.F. 2009. How do we program the home? Gender, attention invest-
ment, and the psychology of programming at home. International Journal of Human Computer Studies 67,
324-341.

BOEHM, B.W. 1988. A spiral model of software development and enhancement. IEEE Computer, 21(5), May,
61-72.

BOGART C., BURNETT M.M., CYPHER A. AND SCAFFIDI C. 2008. End-user programming in the wild: A field
study of CoScripter scripts. IEEE Symposium on Visual Languages and Human-Centric Computing, to
appear.

BOLIN M. AND WEBBER M. AND RHA P. AND WILSON, T. AND MILLER, R. 2005. Automation and customization
of rendered web pages. ACM Symposium on User Interface Software and Technology, Seattle, Washing-
ton, October, 163-172.

BRANDT J., GUO P., LEWENSTEIN J., AND KLEMMER S.R. 2008. Opportunistic programming: How rapid ideation
and prototyping occur in practice. Workshop on End-User Software Engineering (WEUSE), Leipzig, Ger-
many.

BROOKS R. 1977. Towards a theory of the cognitive processes in computer programming, International Journal
of Human-Computer Studies, 51, 197-211.

BROWN D., BURNETT M., ROTHERMEL G., FUJITA, H. AND NEGORO F. 2003. Generalizing WYSIWYT visual
testing to screen transition languages. IEEE Symposium on Human-Centric Computing Languages and
Environments, Auckland, New Zealand, October, 203-210.

BURNETT M. 2001. Software engineering for visual programming languages, in Handbook of Software Engi-
neering and Knowledge Engineering, World Scientific Publishing Company, volume 2.

BURNETT M., CHEKKA, S. K. AND PANDEY, R. 2001. FAR: An end-user language to support cottage e-services.
IEEE Symposium on Human-Centric Computing, Stresa, Italy, September, 195-202.

BURNETT M., ATWOOD J., DJANG R.W., GOTTFRIED H., REICHWEIN J., YANG S. 2001. Forms/3: A first-order
visual language to explore the boundaries of the spreadsheet paradigm. Journal of Functional Program-
ming 11(2), March, 155-206.

BURNETT M., SHERETOV A., REN B., ROTHERMEL G. 2002. Testing homogeneous spreadsheet grids with the
'What You See Is What You Test' methodology. IEEE Transactions on Software Engineering, June, 576-
594.

BURNETT M., COOK C., PENDSE O., ROTHERMEL G., SUMMET J., AND WALLACE C. 2003. End-user software
engineering with assertions in the spreadsheet paradigm. International Conference on Software Engineer-
ing, Portland, Oregon, May, 93-103.

BURNETT M., COOK C., AND ROTHERMEL G. 2004. End-user software engineering. Communications of the
ACM, September, 53-58.

BUSCH T. 1995. Gender differences in self-efficacy and attitudes toward computers. Journal of Educational
Computing Research, 12: 147-158.

BUXTON, B. 2007. Sketching user experiences: Getting the design right and the right design. Morgan Kauf-
mann.

CARMIEN, S.P., FISCHER, G. 2008. Design, adoption, and assessment of a socio-technical environment support-
ing independence for persons with cognitive disabilities. ACM Conference on Human Factors in Comput-
ing Systems, Florence, Italy, 597 – 606.

CARVER J., KENDALL R., SQUIRES S., AND POST D. 2007. Software engineering environments for scientific and
engineering software: a series of case studies. International Conference on Software Engineering, Min-
neapolis, MN, May, 550-559.

CHAMBERS, C. AND ERWIG, M.: Automatic Detection of Dimension Errors in Spreadsheets. Journal of
Visual Languages and Computing, 20, 2009.

CHINTAKOVID T., WIEDENBECK S., BURNETT M., GRIGOREANU V. 2006. Pair collaboration in end-user debug-
ging. IEEE Symposium on Visual Languages and Human-Centric Computing, Brighton, UK, September,
3-10.

CLERMONT M., HANIN C., AND MITTERMEIR R. 2002. A spreadsheet auditing tool evaluated in an industrial
context. Spreadsheet Risks, Audit, and Development Methods, 3, 35-46.

 53

CLERMONT M. 2003. Analyzing large spreadsheet programs. Working Conference on Reverse Engineering,
November, 306–315.

CLERMONT M. AND MITTERMEIR R. 2003. Auditing large spreadsheet programs. International Conference on
Information Systems Implementation and Modeling, April, Brno, Czech Republic, February, 87-97.

COBLENZ M.J., KO A.J., AND MYERS B.A. 2005. Using objects of measurement to detect spreadsheet errors.
IEEE Symposium on Visual Languages and Human-Centric Computing, Dallas, Texas, September 23-26,
314-316.

COPLIEN J.O., AND HARRISON N.B. 2004. Organizational patterns of Agile Software Development. Prentice-
Hall, Inc., Upper Saddle River, NJ.

COOPER A. AND REIMANN R. 2003. About Face 2.0: The Essentials of Interaction Design. Indianapolis, IN,
Wiley.

COSTABILE M.F., FOGLI D., MUSSIO P., AND PICCINNO A. 2006. End-user development: The software shaping
workshop approach. In End-User Development, H. Lieberman, F. Paterno, and V. Wulf (eds.) Springer,
183-205.

COSTABILE M.F., MUSSIO P., PROVENZA L.P., AND PICCINNO A. 2009. Supporting end users to be co-designers
of their tools. 2nd International Symposium on End-User Development (LNCS 5435), Siegen, Germany,
Springer-Verlag, Berlin Heidelberg, March 2-4, 70-85.

COX P.T., GILES F.R. AND PIETRZYKOWSKI T. 1989. Prograph: a step towards liberating programming from
textual conditioning. IEEE Workshop on Visual Languages, 150-156.

CRANOR, L. F., GUDURU, P., AND ARJULA, M. 2006. User interfaces for privacy agents. ACM Transactions on
Computer-Human Interaction. 13(2), June, 135-178.

DANN W., COOPER S., PAUSCH R. 2006. Learning to program with Alice. Prentice Hall.

DAVIS J.S. 1996. Tools for spreadsheet auditing. International Journal on Human-Computer Studies, 45, 429-
442.

DELINE R. 1999. A Catalog of Techniques for Resolving Packaging Mismatch. Symposium on Software Reus-
ability, Los Angeles, California, USA, 44-53.

DITTRICH Y., LINDEBERG O., AND LUNDBERG L. 2006. End-user development as adaptive maintenance. In End-
User Development, H. Lieberman, F. Paterno, and V. Wulf (eds.) Springer, 295-313.

DOUGHERTY D.J., FISLER K., KRISHNAMURTHI S. 2006. Specifying and reasoning about dynamic access-control
policies. International Joint Conference on Automated Reasoning, Seattle, Washington, USA, 632-646.

DOUGLAS S., DOERRY E., AND NOVICK D. 1990. Quick: A user-interface design kit for non-programmers. ACM
Symposium on User Interface Software and Technology, 1990, Snowbird, Utah, USA, 47-56.

EAGAN, J. R. AND STASKO, J.T. 2008. The buzz: supporting user tailorability in awareness applications. ACM
Conference on Human Factors in Computing Systems, Florence, Italy, April 05 - 10, 1729-1738.

ELBAUM S., ROTHERMEL G., KARRE S. AND FISHER II M. 2005. Leveraging user session data to support web
application testing. IEEE Transactions on Software Engineering, 31(3), March, 187-202.

ERWIG M., AND BURNETT, M. 2002. Adding apples and oranges. 4th International Symposium on Practical
Aspects of Declarative Languages, LNCS 2257, Portland, Oregon, January, 173-191.

ERWIG M., ABRAHAM R., COOPERSTEIN I., AND KOLLMANSBERGER S. 2005. Automatic generation and mainte-
nance of correct spreadsheets. International Conference on Software Engineering, St. Louis, Missouri,
May, 136-145.

ERWIG M., ABRAHAM R., KOLLMANSBERGER S., AND COOPERSTEIN I. 2006. Gencel—A program generator for
correct spreadsheets. Journal of Functional Programming, 16(3): 293-325.

EZRAN M., MORISIO M., TULLY C. 2002. Practical Software Reuse, Springer.

FISCHER G. AND GIRGENSOHN A. 1990. End user modifiability in design environments. ACM Conference on
Human Factors in Computing Systems, Seattle, Washington, USA, April, 183-192.

FISCHER, G. AND GIACCARDI, E. 2006. Meta-design: A framework for the future of end user development. In H.
Lieberman, F. Paternò, & V. Wulf (Eds.), End User Development — Empowering people to flexibly em-

 54

ploy advanced information and communication technology, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 427-457.

FISHER II M., CAO M., ROTHERMEL G., COOK C.R., AND BURNETT M.M. 2002. Automated test case generation
for spreadsheets. International Conference on Software Engineering, Orlando, Florida, May 19-25, 141-
151.

FISHER II M., JIN D., ROTHERMEL G., AND BURNETT M. 2002. Test reuse in the spreadsheet paradigm. IEEE
International Symposium on Software Reliability Engineering, Raleigh, North Carolina, USA, November,
257-264.

FISHER II M., ROTHERMEL G., CREELAN T. AND BURNETT M. 2006. Scaling a dataflow testing methodology to
the multiparadigm world of commercial spreadsheets. IEEE International Symposium on Software Reli-
ability Engineering, Raleigh, North Carolina, USA, November, 13-22.

FISHER II M., CAO M., ROTHERMEL G., BROWN D., COOK C.R., AND BURNETT M.M. 2006. Integrating auto-
mated test generation into the WYSIWYT spreadsheet testing methodology. ACM Transactions on Soft-
ware Engineering and Methodology 15(2), 150-194, April.

FRANKL P.G. AND WEISS S.N. 1993. An experimental comparison of the effectiveness of branch testing and
data flow testing. IEEE Transactions on Software Engineering, 19(8), August, 774-787.

GARLAN D., ALLEN R., AND OCKERBLOOM J. 1995. Architectural mismatch or why it's hard to build systems
out of existing parts. International Conference on Software Engineering, Seattle, Washington, April, 179-
185.

GHEZZI, C., JAZAYERI, M., MANDRIOLI D. 2002. Fundamentals of software engineering. Prentice Hall: NJ,
USA.

GORB, P. AND DUMAS, A. 1987. ‘Silent Design’, Design Studies, 8, 150-156.

GREEN T.R.G., BLANDFORD A., CHURCH L. ROAST C., CLARKE S. 2006. Cognitive Dimensions: achievements,
new directions, and open questions. Journal of Visual Languages and Computing, 17(4), 328-365

GRIGOREANU, V., BECKWITH, L., FERN, X., YANG, S., KOMIREDDY, C., NARAYANAN, V., COOK, C., BURNETT,
M.M. 2006. Gender differences in end-user debugging, revisited: What the miners found. IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, 19-26.

GRIGOREANU, V., CAO, J., KULESZA, T., BOGART, C., RECTOR, K., BURNETT, M., WIEDENBECK, S. 2008. Can
feature design reduce the gender gap in end-user software development environments? IEEE Symposium
on Visual Languages and Human-Centric Computing, Herrsching am Ammersee, Germany, September.

GROSS, M. D. AND DO, E. Y. 1996. Ambiguous intentions: a paper-like interface for creative design. ACM Sym-
posium on User interface Software and Technology, Seattle, Washington, November 6-8, 183-192.

GUGERTY, L. AND OLSON, G. M. 1986. Comprehension differences in debugging by skilled and novice pro-
grammers. Empirical Studies of Programmers, Soloway, E. and Iyengar, S., Washington, DC: Ablex Pub-
lishing Corporation, 13-27.

GULLY, N. 2006. Improving the Quality of Contributed Software on the MATLAB File Exchange. Second
Workshop on End-User Software Engineering, in conjunction with the ACM Conference on Human Fac-
tors in Computing, Montreal, Quebec.

HENDERSON, A., AND KYNG, M. 1991. There's no place like home: Continuing design in use. In J. Greenbaum,
& M. Kyng (Eds.), Design At Work (pp. 219-240). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

HENDRY, D. G. AND GREEN, T. R. G. 1994. Creating, comprehending, and explaining spreadsheets: A cognitive
interpretation of what discretionary users think of the spreadsheet model. International Journal of Human-
Computer Studies, 40(6), 1033-1065.

HUTCHINS M., FOSTER H., GORADIA T. AND OSTRAND T. 1994. Experiments on the effectiveness of dataflow-
and controlflow-based test adequacy criteria. International Conference on Software Engineering, May,
191-200

IGARASHI T., MACKINLAY J.D., CHANG B.-W., AND ZELLWEGER P.T. 1998. Fluid visualization of spreadsheet
structures. IEEE Symposium on Visual Languages, Halifax, Nova Scotia, September 1–4, 118–125.

IOANNIDOU, A., RADER, C., REPENNING, A., LEWIS, C., & CHERRY, G. 2003. Making constructionism work in
the classroom. International Journal of Computers for Mathematical Learning, 8(1), 63-108.

 55

JONES, M. G., BRADER-ARAJE, L., CARBONI, L. W., CARTER, G., RUA, M. J., BANILOWER, E. AND HATCH, H.
2000. Tool time: Gender and students’ use of tools, control, and authority. Journal of Research in Science
Teaching 37(8), 760-783.

KAFAI, Y. 1996. Gender differences in children’s constructions of video games. In Interacting with Video, P.
Greenfield and R. Cocking (Eds.), Greenwood Publishing Group, 39-66.

KAHLER, H. 2001. More Than WORDs - Collaborative tailoring of a word processor. Journal of Universal
Computer Science, 7(9), 826-847.

KARAM M. AND SMEDLEY T. 2002. A Testing methodology for a dataflow based visual programming language.
IEEE Symposia on Human-Centric Computing, Arlington, Virginia, September 3-6, 86–89.

KATZ I.R. AND ANDERSON J.R. 1988. Debugging: An analysis of bug-location strategies, Human Computer
Interaction, 3, 351-399.

KELLEHER C. AND PAUSCH R. 2005. Lowering the barriers to programming: A taxonomy of programming envi-
ronments and languages for novice programmers. ACM Computing Surveys 37(2), 83-137.

KELLEHER, C.; PAUSCH, R. 2006. Lessons learned from designing a programming system to support middle
school girls creating animated stories. IEEE Symposium on Visual Languages and Human-Centric Com-
puting, 165-172.

KELLEHER, C., PAUSCH, R., AND KIESLER, S. 2007. Storytelling Alice motivates middle school girls to learn
computer programming. ACM Conference on Human Factors in Computing Systems, San Jose, California,
1455-1464.

KISSINGER C., BURNETT M., STUMPF S., SUBRAHMANIYAN N., BECKWITH L., YANG S., AND ROSSON M.B.
2006. Supporting end-user debugging: What do users want to know? Advanced Visual Interfaces,
Venezia, Italy, 135-142.

KO A.J. AND MYERS B.A. 2003. Development and evaluation of a model of programming errors. IEEE Sympo-
sium Human-Centric Computing Languages and Environments, Auckland, New Zealand, October,7-14.

KO A.J., AND MYERS B.A. 2004. Designing the Whyline: A debugging interface for asking questions about
program failures. ACM Conference on Human Factors in Computing Systems, Vienna, Austria, April,
151-158.

KO A. J., MYERS B. A., AND AUNG, H.H. 2004. Six learning barriers in end-user programming systems. IEEE
Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, September 26-29, 199-
206.

KO A.J. AND MYERS B.A. 2005. A Framework and methodology for studying the causes of software errors in
programming systems. Journal of Visual Languages and Computing, 16(1-2), 41-84.

Ko, A.J. and Myers, B. A. 2006. Barista: An implementation framework for enabling new tools, interaction
techniques and views for code editors. ACM Conference on Human Factors in Computing Systems, Mont-
real, Canada, April, 387-396.

KO, A. J. DELINE, R., VENOLIA, G. 2007. Information needs in collocated software development teams. Interna-
tional Conference on Software Engineering, Minneapolis, MN, May 20-26, 344-353.

KO, A.J. AND MYERS, B.A. 2008. Debugging reinvented: Asking and answering why and why not questions
about program behavior. International Conference on Software Engineering (ICSE), Leipzig, Germany,
May 10-18, 301-310.

KO, A.J. 2008. Asking and answering questions about the causes of software behaviors, Ph.D. thesis, Human-
Computer Interaction Institute Technical Report CMU-CS-08-122, May.

KRISHNA V., COOK C., KELLER D., CANTRELL J., WALLACE C., BURNETT M., AND ROTHERMEL G. 2001. Incor-
porating incremental validation and impact analysis into spreadsheet maintenance: An empirical study.
IEEE International Conference on Software Maintenance, Washington, DC, November, 72-81.

KRISHNAMURTHI S., FINDLER R.B., GRAUNKE P. AND FELLEISEN M. 2006. Modeling web interactions and
errors. In Goldin, D., Smolka S. and Wegner P., (Eds.) Interactive Computation: The New Paradigm,
Springer Lecture Notes in Computer Science. Springer-Verlag.

LAKSHMINARAYANAN V., LIU W., CHEN C.L., M. EASTERBROOK S. AND PERRY D. E. 2006. Software architects
in practice: Handling requirements. 16th International Conference of the IBM Centers for Advanced Stud-
ies, Toronto, Canada, 16-19.

 56

LATOZA T., VENOLIA G. AND DELINE R. 2006. Maintaining mental models: A study of developer work habits,
International Conference on Software Engineering, Shanghai, China, 492-501.

LAWRANCE J., CLARKE S., BURNETT M., AND ROTHERMEL G. 2005. How well do professional developers test
with code coverage visualizations? An empirical study. IEEE Symposium on Visual Languages and Hu-
man-Centric Computing, Dallas, Texas, September, 53-60.

LAWRANCE J., ABRAHAM R., BURNETT M., AND ERWIG M. 2006. Sharing reasoning about faults in spread-
sheets: An empirical study. IEEE Symposium on Visual Languages and Human-Centric Computing,
Brighton, UK, September, 35-42.

LESHED, G., HABER, E. M., MATTHEWS, T., AND LAU, T. 2008. CoScripter: automating & sharing how-to
knowledge in the enterprise. ACM Conference on Human Factors in Computing Systems, Florence, Italy,
April 05 – 10, 1719-1728.

LETONDAL, C. 2006. Participatory programming: Developing programmable bioinformatics tools for end users.
In End-User Development, H. Lieberman, F. Paterno, and V. Wulf (eds.) Springer, 207-242.

LEVENTHAL L.M., TEASLEY B.E. AND ROHLMAN D.S. 1994. Analyses of factors related to positive test bias in
software testing. International Journal of Human-Computer Studies, 41, 717-749.

LIEBERMAN H. AND FRY C. 1995. Bridging the gulf between code and behavior in programming. ACM Confer-
ence on Human Factors in Computing, Denver, Colorado, 480-486.

LIEBERMAN H. AND FRY C. 1997. ZStep 95: A reversible, animated, source code stepper, in Software Visualiza-
tion: Programming as a Multimedia Experience, Stasko, J., Domingue, J. Brown, M. and Price, B. eds.,
MIT Press, Cambridge, MA.

LIEBERMAN H. (ed.) 2000. Your Wish is My Command: Giving Users the Power to Instruct their Software. San
Francisco: Morgan Kaufmann.

LIEBERMAN H., PATERNO F. AND WULF V. (eds) 2006. End-User Development. Kluwer/ Springer.

LINGAM, S. AND ELBAUM, S. 2007. Supporting end-users in the creation of dependable web clips. International
Conference on World Wide Web, Banff, Alberta, Canada, May 953-962.

LIM B., DEY A., AVRAHAMI D. 2009. Why and why not explanations improve the intelligibility of context-
aware intelligent systems. ACM Conference on Human Factors in Computing Systems, Boston, MA, Apr.
4-9, 2119-2128.

LIN J. AND LANDAY J.A. 2008. Employing Patterns and Layers for Early-Stage Design and Prototyping of
Cross-Device User Interfaces. ACM Conference on Human Factors in Computing Systems, Florence, It-
aly, 1313–1322.

LITTLE, G., LAU, T. A., CYPHER, A., LIN, J., HABER, E. M., AND KANDOGAN, E. (2007). Koala: capture, share,
automate, personalize business processes on the web. ACM Conference on Human Factors in Computing
Systems, San Jose, California, USA, April 943-946.

LITTLE G. AND MILLER R.C. 2006. Translating keyword commands into executable code. ACM Symposium on
User Interface Software and Technology, Montreux, Switzerland, October, 135-144.

LITTMAN D.C., PINTO J., LETOVSKY S. AND SOLOWAY, E. 1986. Mental models and software maintenance,
Empirical Studies of Programmers, 1st Workshop, Washington, DC, 80-98.

LIU H. AND LIEBERMAN H. 2005. Programmatic semantics for natural language interfaces. ACM Conference on
Human Factors in Computing, Portland, Oregon, USA, April, 1597-1600.

MACÍAS J.A. AND PATERNÒ F. 2008. Customization of web applications through an intelligent environment
exploiting logical interface descriptions. Interacting with Computers, 20(1): 29-47.

MACKAY, W. E. 1990. Patterns of sharing customizable software. ACM Conference on Computer-Supported
Cooperative Work, Los Angeles, CA, USA, October, 209-221.

MACLEAN, A., CARTER, K., LÖVSTRAND, L. AND MORAN, T. 1990. User-tailorable systems: Pressing the issue
with buttons. ACM Conference on Human Factors in Computing Systems, April, 175-182.

MANDELIN D., XU L., AND BODIK R., AND KIMELMAN D. 2005. Jungloid mining: Helping to navigate the API
jungle. ACM SIGPLAN Conference on Programming Language Design and Implementation, Chicago, Il-
linois, June 12-15, 48-61.

MARGOLIS J. AND FISHER A. 2003. Unlocking the Clubhouse, MIT Press, Cambridge, MA.

 57

MARTINSON A.M. 2005. Playing with technology: Designing gender sensitive games to close the gender gap.
Working Paper SLISWP-03-05, School of Library and Information Science, Indiana University.

MATWIN, S. AND PIETRZYKOWSKI, T. 1985. Prograph: a preliminary report. Computer Languages 10(2): 91–
126.

MCDANIEL R., AND MYERS B. 1999. Getting more out of programming-by-demonstration. ACM Conference on
Human Factors in Computing Systems, Pittsburgh, Pennsylvania, USA, May, 442-449.

MEHANDJIEV N., SUTCLIFFE A. AND LEE, D. 2006. Organizational view of end-user development. In End-User
Development, H. Lieberman, F. Paterno, and V. Wulf (eds.) Springer, 371-399.

MILLER R. AND MYERS B.A. 2001. Outlier finding: Focusing user attention on possible errors. ACM Symposium
on User Interface Software and Technology, Orlando, Florida, USA, November, 81-90.

MILLER R. AND MYERS B.A. 2001. Interactive simultaneous editing of multiple text regions. USENIX Annual
Technical Conference, Boston, MA, June, pp. 161-174.

MILLER R., AND MYERS B. 2002. LAPIS: Smart editing with text structure. ACM Conference on Human Factor
in Computing Systems, Minneapolis, Minnesota, USA, April, 496-497.

MITTERMEIR R. AND CLERMONT M. 2002. Finding high-level structures in spreadsheet programs. Working
Conference on Reverse Engineering, Richmond, Virginia, USA, October, 221-232.

MODUGNO F., AND MYERS B. 1994. Pursuit: Graphically representing programs in a demonstrational visual
shell. ACM Conference on Human Factors in Computing Systems, Boston, Massachusetts, USA, April,
455-456.

MØRCH A. AND MEHANDJIEV N.D. 2000. Tailoring as collaboration: The mediating role of multiple representa-
tions and application units, Computer Supported Cooperative Work 9(1), 75-100.

MYERS B., PARK S., NAKANO Y., MUELLER G., AND KO. A.J. 2008. How designers design and program interac-
tive behaviors. IEEE Symposium on Visual Languages and Human-Centric Computing, Sept 15-18, 2008,
Herrsching am Ammersee, Germany, to appear.

NARDI B.A. 1993. A Small Matter of Programming: Perspectives on End User Computing. Cambridge, MA:
The MIT Press.

NEWMAN M.W., LIN J., HONG J.I., AND LANDAY J.A. 2003. DENIM: An informal web site design tool inspired
by observations of practice. Human-Computer Interaction, 18(3), 259-324.

NICHOLS J., AND LAU T. 2008. Mobilization by demonstration: using traces to re-author existing web sites.
Intelligent User Interfaces, Maspalomas, Gran Canaria, Spain.,January, 149-158.

NIESS, M., SADRI, P., AND LEE, K. 2007. Dynamic Spreadsheets as Learning Technology Tools: Developing
Teachers' Technology Pedagogical Content Knowledge (TPCK). American Educational Research Asso-
ciation.

NKWOCHA F. AND ELBAUM F. 2005. Fault patterns in Matlab. International Conference on Software Engineer-
ing, 1st Workshop on End-user Software Engineering, St. Louis, MI, May, 1-4.

OKADA, E.M. 2005. Justification effects on consumer choice of hedonic and utilitarian goods. Journal of Mar-
keting Research, 62, 43-53.

ONOMA K., TSAI W-T, POONAWALA M. AND SUGANUMA H. 1988. Regression testing in an industrial environ-
ment. Communications of the ACM, 41(5), May, 81-86.

ORRICK E. 2006. Position Paper, Second Workshop on End-User Software Engineering, in conjunction with the
ACM Conference on Human Factors in Computing, Montreal, Quebec.

PANKO R. 1995. Finding spreadsheet errors: most spreadsheet models have design flaws that may lead to long-
term miscalculation. Information Week, May, 100.

PANKO R. 1998. What we know about spreadsheet errors. Journal of End User Computing, 2, 15–21.

PANKO R. 2000. Spreadsheet errors: what we know. what we think we can do. Spreadsheet Risk Symposium,
July 2000.

PETRE, M. AND BLACKWELL, A.F. 2007. Children as unwitting end-user programmers. IEEE Symposium on
Visual Languages and Human-Centric Computing, 239-242.

 58

PHALGUNE A., KISSINGER C., BURNETT M., COOK C., BECKWITH L., AND RUTHRUFF J.R. 2005. Garbage in,
garbage out? An empirical look at oracle mistakes by end-user programmers. IEEE Symposium on Visual
Languages and Human-Centric Computing, Dallas, TX, September, 45-52.

PIPEK V. AND KAHLER H. 2006. Supporting collaborative tailoring. In End-User Development, H. Lieberman, F.
Paterno, and V. Wulf (eds.) Springer, 315-345.

POWELL S. G. AND BAKER K.R. 2004. The Art of Modeling with Spreadsheets: Management Science, Spread-
sheet Engineering, and Modeling Craft, Wiley.

PRABHAKARARAO S., COOK C., RUTHRUFF J., CRESWICK E., MAIN M., DURHAM,M., AND BURNETT M. 2003.
Strategies and behaviors of end-user programmers with interactive fault localization. IEEE Symposium on
Human-Centric Computing Languages and Environments, Auckland, New Zealand, September, 15-22.

RAKIC M. AND MEDVIDOVIC N. 2001. Increasing the confidence in off-the-shelf components: A software con-
nector-based approach. ACM SIGSOFT Software Engineering Notes, 26(3), 11-18.

RAVICHANDRAN T. AND ROTHENBERGER M. 2003. Software reuse strategies and component markets. Commu-
nications of the ACM, 46(8), 109-114.

RAZ O., KOOPMAN P. AND SHAW M. 2002. Semantic anomaly detection in online data sources. International
Conference on Software Engineering, Orlando, Florida, May, 302-312.

REPENNING, A. AND SULLIVAN, J. 2003. The pragmatic web: Agent-based multimodal web interaction with no
browser in sight. International Conference on Human-Computer Interaction, Zurich, Switzerland.

REPENNING A. AND IOANNIDOU A. 1997. Behavior processors: Layers between end users and Java virtual ma-
chine. IEEE Symposium on Visual Languages, Isle of Capri, Italy, September, 23-26.

REPENNING A. AND PERRONE C. 2000. Programming by analogous examples. Communications of the ACM,
43(3), 90-97.

ROBERTSON T. J., PRABHAKARARAO S., BURNETT M., COOK C., RUTHRUFF J. R., BECKWITH L., AND
PHALGUNE A. 2004. Impact of interruption style on end-user debugging. ACM Conference on Human
Factors in Computing systems, Vienna, Austria, April, 287-294.

ROBILLARD M.P., COELHO W., AND MURPHY G.C. 2004. How effective developers investigate source code: An
exploratory study. IEEE Transactions on Software Engineering, 30, 12, 889-903, 2004.

RODE J. AND ROSSON M.B. 2003. Programming at runtime: Requirements and paradigms for nonprogrammer
web application development. IEEE Symposium on Human-Centric Computing Languages and Environ-
ments, Auckland, New Zealand, September, 23-30.

RODE J. AND BHARDWAJ Y. AND PEREZ-QUINONES M.A. AND ROSSON M.B. AND HOWARTH J. 2005. As easy as
“Click”: End-user web engineering. International Conference on Web Engineering, Sydney, Australia,
July, 478-488.

RODE J., ROSSON M.B. AND QUINONES M.A.P. 2006. End user development of web applications, In Lieberman
H., Paterno F., and Wulf V. (Eds.), End-User Development. Springer-Verlag.

RODE J.A., TOYE E.F., AND BLACKWELL A.F. 2004. The fuzzy felt ethnography—understanding the program-
ming patterns of domestic appliances. Personal Ubiquitous Computing. 8, 3-4, 161-176.

RODE, J.A., TOYE, E.F. AND BLACKWELL, A.F. 2005. The domestic economy: A broader unit of analysis for
end-user programming. ACM Conference on Human Factors in Computing Systems, April, 1757-1760.

RODE, J.A. 2008. An ethnographic examination of the relationship of gender & end-user programming, Ph.D.
Thesis, University of California Irvine.

RONEN B. AND PALLEY M.A. AND LUCAS JR. H.C. 1989. Spreadsheet analysis and design, Communications of
the ACM, 32(1):84-93.

ROSSON M. AND CARROLL J. 1996. The reuse of uses in Smalltalk programming. ACM Transactions on Com-
puter-Human Interaction, 3(3), 219-253.

ROSSON, M.B., CARROLL, J.M., SEALS, C., & LEWIS, T. 2002. Community design of community simulations.
Proceedings of Designing Interactive Systems, 74-83.

ROSSON M.B. AND CARROLL J.M. 2003. Scenario-based design. In Jacko J.A. and Sears A. (Eds.), The Human-
Computer Interaction Handbook. Mahwah, NJ, Lawrence Erlbaum, 1032-1050.

 59

ROSSON M.B., BALLIN J., AND NASH H. 2004. Everyday programming: Challenges and opportunities for infor-
mal web development. IEEE Symposium on Visual Languages and Human-Centric Computing Languages
and Environments, Rome, Italy, September, 123-130.

ROSSON M.B., BALLIN J., AND RODE J. 2005. Who, what, and how: A survey of informal and professional web
developers. IEEE Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, Septem-
ber, 199-206.

ROSSON, M.B., KASE, S. 2006. Work, play, and in-between: Exploring the role of work context for informal
web developers. IEEE Symposium on Visual Languages and Human-Centric Computing, 151-156.

ROSSON, M.B., SINHA H., BHATTACHARYA, M., AND ZHAO, D. 2007. Design planning in end-user web devel-
opment. IEEE Symposium on Visual Languages and Human-Centric Computing, 189-196.

ROTHERMEL G., LI L., DUPUIS C., AND BURNETT M. 1998. What you see is what you test: A methodology for
testing form-based visual programs. International Conference on Software Engineering, Kyoto, Japan,
April, 198-207.

ROTHERMEL G., BURNETT M., LI L., DUPUIS C. AND SHERETOV A. 2001. A Methodology for testing spread-
sheets. ACM Transactions on Software Engineering Methodologies, 10(1), 110-147.

ROTHERMEL G., HARROLD M.J., VON RONNE J., AND HONG C. 2002. Empirical studies of test suite reduction.
Journal of Software Testing, Verification, and Reliability, 4(2), December.

ROTHERMEL K., COOK C., BURNETT M., SCHONFELD J., GREEN T.R.G., AND ROTHERMEL G. 2000. WYSIWYT
testing in the spreadsheet paradigm: An empirical evaluation. International Conference on Software Engi-
neering, Limerick, Ireland, June, 230-239.

ROWE M.D. 1978. Teaching Science as Continuous Inquiry: A Basic (2nd ed.). McGraw-Hill, New York, NY.

RUTHRUFF J., CRESWICK E., BURNETT M., COOK C., PRABHAKARARAO S., FISHER II M., AND MAIN M. 2003.
End-user software visualizations for fault localization. ACM Symposium on Software Visualization, San
Diego, California, USA, June, 123-132.

RUTHRUFF J.R., PHALGUNE A., BECKWITH L., BURNETT M., AND COOK C. 2004. Rewarding “good” behavior:
End-user debugging and rewards. IEEE Symposium on Visual Languages and Human-Centered Comput-
ing, Rome, Italy, September, 115-122.

RUTHRUFF J., BURNETT M., AND ROTHERMEL G. 2005. An empirical study of fault localization for end-user
programmers. International Conference on Software Engineering, St. Louis, Missouri, May, 352-361.

RUTHRUFF J., PRABHAKARARAO S. REICHWEIN J., COOK C., CRESWICK E. AND BURNETT M. 2005. Interactive,
visual fault localization support for end-user programmers. Journal of Visual Languages and Computing
16(1-2), 3-40, February/April.

RUTHRUFF J.R., BURNETT M., AND ROTHERMEL G. 2006. Interactive fault localization techniques in an end-user
programming environment. IEEE Transactions on Software Engineering, 32(4), 213-239, April.

SAJANIEMI J. 2000. Modeling spreadsheet audit: A rigorous approach to automatic visualization. Journal of
Visual Languages and Computing, 11(1), 49–82.

SCAFFIDI C., SHAW M., AND MYERS B.A. 2005. Estimating the numbers of end users and end user program-
mers. IEEE Symposium on Visual Languages and Human-Centric Computing, Brighton, UK, September,
207-214.

SCAFFIDI C., KO A.J., MYERS B., SHAW M. 2006. Dimensions characterizing programming feature usage by
information workers. IEEE Symposium on Visual Languages and Human-Centric Computing, Brighton,
UK, September, 59-62.

SCAFFIDI C. 2007. Unsupervised inference of data formats in human-readable notation. Proceedings of 9th
International Conference on Enterprise Integration Systems, HCI Volume, 236-241.

SCAFFIDI C., MYERS B., AND SHAW M. 2007. Trial by water: creating Hurricane Katrina “person locator” web
sites. In Weisband S., Leadership at a Distance: Research in Technologically-Supported Work (ed), Law-
rence Erlbaum.

SCAFFIDI C., MYERS B.A., AND SHAW M. 2008. Topes: Reusable abstractions for validating data. International
Conference on Software Engineering, Leipzig, Germany, May 2008, 1-10.

 60

SEGAL J. 2005. When software engineers met research scientists: A case study. Empirical Software Engineer-
ing, 10, 517–536, 2005.

SEGAL, J. 2007. Some problems of professional end user developers. IEEE Symposium on Visual Languages
and Human-Centric Computing, 111-118.

SHAW M. 1995. Architectural issues in software reuse: It's not just the functionality, it's the packaging. Sympo-
sium on Software Reusability, Seattle, Washington, USA, April, 3-6.

SHAW, M. 2004. Avoiding costly errors in your spreadsheets. Contractor’s Management Report 11, 2-4.

SMITH D., CYPHER A., AND SPOHRER J. 1994. KidSim: Programming agents without a programming language.
Communications of ACM, 37(7), July, 54-67.

SMITH D., CYPHER A., AND TESLER L. 2000. Programming by example: Novice programming comes of age.
Communications of the ACM, 43(3), 75-81.

STEVENS G., QUAISSER G., AND KLANN M. 2006. Breaking it up: An industrial case study of component-based
tailorable software design. In End-User Development, H. Lieberman, F. Paterno, and V. Wulf (eds.).
Springer, 269-294.

STYLOS J. AND MYERS B.A. 2006. Mica: A web-search tool for finding API components and examples. IEEE
Symposium on Visual Languages and Human-Centric Computing, Brighton, UK, September, 195-202.

STYLOS J., MYERS B.A., AND FAULRING A. 2004. Citrine: Providing intelligent copy-and-paste. ACM Sympo-
sium on User Interface Software and Technology, Santa Fe, NM, October 24-27, pp. 185-188.

SUBRAHMANIYAN N., KISSINGER C., RECTOR K., INMAN D., KAPLAN J., BECKWITH L., AND BURNETT M.M.
2007. Explaining debugging strategies to end-user programmers. IEEE Symposium on Visual Languages
and Human-Centric Computing, Couer dAlene, Idaho, Sept. 23-27, 127-134.

SUBRAHMANIYAN, N., BECKWITH, L., GRIGOREANU, V., BURNETT, M., WIEDENBECK, S., NARAYANAN, V.,
BUCHT, K., DRUMMOND, R., AND FERN, X. 2008. Testing vs. code inspection vs. what else?: male and fe-
male end users' debugging strategies. ACM Conference on Human Factors in Computing Systems, Flor-
ence, Italy, April 05 – 10, 617-626.

SUTCLIFFE A. AND MEHANDJIEV, N. 2004. End-user development. Communications of the ACM , 47(9), 31-32.

SUTCLIFFE, A. G. 2002. The domain theory: patterns for knowledge and software reuse. Mahwah NJ: Lawrence
Erlbaum Associates.

TALBOT, J., LEE, B., KAPOOR, A., AND TAN, D. S. 2009. EnsembleMatrix: interactive visualization to support
machine learning with multiple classifiers. ACM Conference on Human Factors in Computing Systems,
Boston, MA, April, 1283-1292.

TASSEY, G. 2002. The economic impacts of inadequate infrastructure for software testing. National Institute of
Standards and Technology, RTI Project Number 7007.011.

TEASLEY B. AND LEVENTHAL L. 1994. Why software testing is sometimes ineffective: Two applied studies of
positive test strategy. Journal of Applied Psychology 79(1), 142-155.

TEXIER G., AND GUITTET L. 1999. User defined objects are first class citizens. International Conference on
Computer-Aided Design of User Interfaces, Louvain-la-Neuve, Belgium, October, 231-244.

TIP F. 1995. A survey of program slicing techniques. Journal of Programming Languages 3(3), 121-189.

TOOMIM, M., DRUCKER, S. M., DONTCHEVA, M., RAHIMI, A., THOMSON, B., AND LANDAY, J. A. 2009. Attach-
ing UI enhancements to websites with end users. ACM Conference on Human Factors in Computing Sys-
tems Boston, MA, April 1859-1868.

TOOMIM, M., BEGEL, A., GRAHAM, S.L. 2004. Managing duplicated code with linked editing. IEEE Symposium
on Visual Languages and Human Centric Computing, 173-180, September.

TRIGG, R. H. AND BØDKER, S. 1994. From implementation to design: tailoring and the emergence of systemati-
zation in CSCW. ACM Conference on Computer Supported Cooperative Work, Chapel Hill, North Caro-
lina, October 45-54.

UMARJI, M., POHL, M., SEAMAN, C., KORU, A. G., AND LIU, H. 2008. Teaching software engineering to end-
users. International Workshop on End-User Software Engineering, Leipzig, Germany, May 40-42.

 61

VAN DEN HEUVEL-PANHEIZEN, M. 1999. Girls’ and boys’ problems: Gender differences in solving problems in
primary school mathematics in the Netherlands. In Nunes T. and Bryant P. (Eds.), Learning and Teaching
Mathematics: An International Perspective, 223-253. Psychology Press, UK.

WALPOLE R. AND BURNETT M. 1997. Supporting reuse of evolving visual code. IEEE Symposium on Visual
Languages, Isle of Capri, Italy, September, 68-75.

WHITE L.J. 1987. Software testing and verification. In Advances in Computers. Academic Press, Boston, MA,
335-390.

WHITTAKER, D. 1999. Spreadsheet errors and techniques for finding them. Management Accounting 77(9), 50–
51.

WIEDENBECK S. AND ENGEBRETSON A. 2004. Comprehension strategies of end-user programmers in an event-
driven application. IEEE Symposium on Visual Languages and Human Centric Computing, Rome, Italy,
September, 207-214.

WIEDENBECK S. 2005. Facilitators and inhibitors of end-user development by teachers in a school environment.
IEEE Symposium on Visual Languages and Human-Centric Computing, Dallas, Texas, September, 215-
222.

WILCOX E., ATWOOD J., BURNETT M., CADIZ J., AND COOK, C. 1997. Does continuous visual feedback aid
debugging in direct-manipulation programming systems? ACM Conference on Human Factors in Comput-
ing Systems, Atlanta, Georgia, USA, March 258-265.

WILSON A., BURNETT M., BECKWITH L., GRANATIR O., CASBURN L., COOK C., DURHAM M., AND ROTHERMEL
G. 2003. Harnessing curiosity to increase correctness in end-user programming. ACM Conference on Hu-
man Factors in Computing Systems, Fort Lauderdale, Florida, USA, April, 305-312.

WOLBER D. AND SU Y. AND CHIANG Y.T. 2002. Designing dynamic web pages and persistence in the
WYSIWYG interface. International Conference on Intelligent User Interfaces, San Francisco, California,
USA, January, 228-229.

WON M., STIEMERLING O., AND WULF V. 2006. Component-based approaches to tailorable systems. In End-
User Development, H. Lieberman, F. Paterno, and V. Wulf (eds.) Springer, 115-141.

WONG, J. AND HONG J.I. 2007. Making mashups with Marmite: Re-purposing web content through end-user
programming. Proceedings of ACM Conference on Human Factors in Computing Systems.

WULF, V. 1999. “Let's see your search-tool!”—collaborative use of tailored artifacts in groupware. ACM
SIGGROUP Conference on Supporting Group Work, Phoenix, AZ, United States, November, 50-59.

WULF, V. 2000. Exploration environments: Supporting users to learn groupware functions. Interacting with
Computers, 13, pp. 265 – 299.

WULF V. PATERNO F. AND LIEBERMAN H. 2006, Eds. End User Development. Kluwer Academic Publishers.

WULF V., PIPEK V., AND WON, M. 2008. Component-based tailorability: Enabling highly flexible software
applications. International Journal of Human-Computer Studies 66, 1-22.

YE Y. AND FISCHER G. 2005. Reuse-conducive development environments. International Journal of Automated
Software Engineering, 12(2), 199-235.

