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________________________________________________________________________ 
 
Most programs today are written not by professional software developers, but by people with expertise in other 
domains working towards goals for which they need computational support. For example, a teacher might write 
a grading spreadsheet to save time grading, or an interaction designer might use an interface builder to test some 
user interface design ideas. Although these end-user programmers may not have the same goals as professional 
developers, they do face many of the same software engineering challenges, including understanding their re-
quirements, as well as making decisions about design, reuse, integration, testing, and debugging. This article 
summarizes and classifies research on these activities, defining the area of End-User Software Engineering 
(EUSE) and related terminology. The article then discusses empirical research about end-user software engi-
neering activities and the technologies designed to support them. The article also addresses several crosscutting 
issues in the design of EUSE tools, including the roles of risk, reward, and domain complexity, and self-efficacy 
in the design of EUSE tools and the potential of educating users about software engineering principles. 
 
Categories and Subject Descriptors: D.2 [Software Engineering], D.3 [Programming Languages], H.5 [In-
formation Interfaces and Presentation], K.4 [Computers and Society], J.4 [Social and Behavioral Sci-
ences] 
General Terms: Reliability, Human Factors, Languages, Experimentation, Design 
Additional Key Words and Phrases: end-user software engineering, end-user programming, end-user develop-
ment, visual programming, human-computer interaction. 
________________________________________________________________________ 
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1. INTRODUCTION 

From the first digital computer programs in the 1940’s to today’s rapidly growing soft-

ware industry, computer programming has become a technical skill of millions. As this 

profession has grown, however, a second, perhaps more powerful trend has begun to take 

shape. According to statistics from the U.S. Bureau of Labor and Statistics, by 2012 in 

the United States there will be fewer than 3 million professional programmers, but more 

than 55 million people using spreadsheets and databases at work, many writing formulas 

and queries to support their job [Scaffidi et al. 2005]. There are also millions designing 

websites with Javascript, writing simulations in MATLAB [Gulley 2006], prototyping 

user interfaces in Flash [Myers et al. 2008], and using countless other platforms to sup-

port their work and hobbies. Computer programming, almost as much as computer use, is 

becoming a widespread, pervasive practice. 

What makes these “end-user programmers” different from their professional counter-

parts is their goals: professionals are paid to ship and maintain software over time; end 

users, in contrast, write programs to support some goal in their own domains of expertise. 

End-user programmers might be secretaries, accountants, children [Petre and Blackwell 

2007], teachers [Wiedenbeck 2005], interaction designers [Myers et al. 2008], scientists 

[Segal 2007] or anyone else who finds themselves writing programs to support their work 

or hobbies. Programming experience is an independent concern. For example, despite 

their considerable programming skills, many system administrators view programming as 

only a means to keeping a network and other services online [Barrett et al. 2004]. The 

same is true of many research scientists [Carver et al. 2007, Segal 2007]. 

Despite their differences in priorities from professional developers, end-user pro-

grammers face many of the same software engineering challenges. For example, they 

must choose which APIs, libraries, and functions to use [Ko et al. 2004]. Because their 

programs contain errors [Panko 1998], they test, verify and debug their programs. They 

also face critical consequences to failure. For example, a Texas oil firm lost millions of 

dollars in an acquisition deal through an error in a spreadsheet formula [Panko 1995]. 

The consequences are not just financial. Web applications created by small-business 

owners to promote their businesses do just the opposite if they contain bad links or pages 

that display incorrectly, resulting in loss of revenue and credibility [Rosson et al. 2005]. 
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Software resources configured by end users to monitor non-critical medical conditions 

can cause unnecessary pain or discomfort for users who rely on them [Orrick 2006]. 

Because of these quality issues, researchers have begun to study end-user program-

ming practices and invent new kinds of technologies that collaborate with end users to 

improve software quality. This research area is called end-user software engineering 

(EUSE). This topic is distinct from related topics in end-user development in its focus on 

software quality. For example, there have been prior surveys of novice programming en-

vironments [Kelleher and Pausch 2005], discussing systems that either help students ac-

quire computing skills or enable the creation of computational artifacts; while quality is a 

concern in these contexts, this work focuses largely on learning goals. There have also 

been surveys on end-user programming [Sutcliffe and Mehandjiev 2004, Lieberman et al. 

2006][Wulf et al. 2006], but these focus on the construction of programs to support other 

goals, but not on engineering activities peripheral to construction, such as requirements, 

specifications, reuse, testing, and debugging. 

In this article, these software engineering activities are our primary focus. We start by 

proposing definitions of programming, end-user programming, and end-user software 

engineering, focusing on differences in intents and priorities between end-user program-

ming and professional software development. We follow with a lifecycle-oriented treat-

ment of end-user software engineering research, organizing more than a decade of re-

search on incorporating requirements, design, testing, verification, and debugging into 

end users’ existing work practices. We then discuss a variety of crosscutting issues in 

end-user software engineering research, including the role of risk, reward, and domain of 

practice on end users’ decision-making, as well as strategies for persuading users to en-

gage in more rigorous software engineering activities as part of their normal work. We 

also discuss individual factors, such as self-efficacy and gender, and their influence on 

how effectively people use EUSE tools. 

What we found in our review of these research efforts were two different histories. 

First, studies of end-user software engineering concerns have had a consistently broad 

scope. Researchers have studied children [Petre and Blackwell 2007], middle-school stu-

dents [Baker 2007, Kelleher et al. 2007], system administrators [Barrett et al. 2004], peo-

ple at home [Blackwell 2004], knowledge workers in large companies [Bogart et al. 

2008, Scaffidi et al. 2006], interaction designers [Ko et al. 2004, Brandt et al. 2008, 

Myers et al. 2008], natural scientists [Carver et al. 2007, Segal 2007], software architects 

[Lakshminarayanan et al. 2006], bioinformatics professionals [Letondal 2006], web de-
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signers [Rode and Rosson 2003], and even volunteers helping with disaster relief [Scaf-

fidi et al. 2007]. 

In contrast to studies of EUSE, contributions to EUSE tools have historically had a 

narrow scope. Early work focused largely on spreadsheets and event-based computing 

paradigms and on perfective aspects of end-user software engineering, such as testing, 

verification and debugging. Part of this historical bias is due to the fact that doing re-

search on a particular paradigm has required mature and flexible programming languages, 

platforms, and IDEs on which to build more helpful software engineering tools, and most 

end-user programming platforms have not exhibited these properties. More recently how-

ever, this bias has been eliminated, with recent work focusing on a much broader set of 

domains and paradigms, including the web, mobile devices, personal information man-

agement, business processes, and programming in the home. Researchers have also ex-

tended their focus from perfective activities to design, including work on requirements, 

specifications, and reuse. Part of this shift is due to the advent of interactive web applica-

tions, as sharing code is becoming much more common. 

These trends, coupled with the fact that computing is rapidly being incorporated into 

an incredible array of human activities, suggest that EUSE research will become similarly 

diverse. This will pose many challenges for the field, since the various domains studied 

and supported by research may have little in common. This is also an opportunity, how-

ever, for researchers to identify what is common across these diverse areas of practice. 

This article represents an effort at identifying some of these fundamental challenges, 

grounded in lessons from prior work. 

2. DEFINITIONS 

One contribution of this article is to identify existing terms in EUSE research and fill in 

terminology gaps, creating a well-defined vocabulary upon which to build future re-

search. In this section, we start with a basic definition of programming and end with a 

definition of end-user software engineering. 

2.1. Programming and Programs 
We define programming similarly to modern English dictionaries, as the process of plan-

ning or writing a program. This leads to the need for a definition of the term program. 

Some definitions of “program” are in terms of the language, in which the program is writ-

ten, requiring, for example, that the notation be Turing complete, and able to specify se-

quence, conditional logic and iteration. However, definitions such as these are heavily 
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influenced by the type of activity being automated. To remove these somewhat arbitrary 

constraints from the definition, for the purposes of this paper we define a program as a 

collection of specifications that may take variable inputs, and that can be executed (or 

interpreted) by a device with computational capabilities. Note that the variability of input 

values requires that the program has the ability to execute on future values, which is one 

way it is different from simply doing a computation once manually. This definition cap-

tures general purpose languages in wide use, such as Java and C, but also notations as 

simple as VCR programs, written to record a particular show when the time of day (in-

put) satisfies the specified constraint, and combinations of HTML and CSS, which are 

interpreted to produce a specific visual rendering of shapes and text. It also captures the 

use of report generators, which take some abstract specification of the desired report and 

automatically create the finished report. 

2.2. End-User Programming 
We now turn to end-user programming, a phrase popularized by Nardi [1993] in her in-

vestigations into spreadsheet use in office workplaces. An end user1 is simply any com-

puter user. We then define end-user programming as programming to achieve the result 

of a program primarily for personal, rather public use. The important distinction here is 

that program itself is not primarily intended for use by a large number of users with vary-

ing needs. For example, a teacher may write a grades spreadsheet to track students’ test 

scores, a photographer might write a Photoshop script to apply the same filters to a hun-

dred photos, or a caretaker might write a script to help a person with cognitive disabilities 

be more independent [Carmien and Fischer 2008]. In these end-user programming situa-

tions, the program is a means to an end and only one of potentially many tools that could 

be used to accomplish a goal. This definition also includes a skilled software developer 

writing “helper” code to support some primary task. For example, a developer is engag-

ing in end-user programming when writing code to visualize a data structure to help di-

agnose a bug. Here, the tool and its output are intended to support the developers’ par-

ticular task, but not a broader group of users or use cases. 

In contrast to end-user programming, professional programming has the goal of pro-

ducing code for others to use. The intent might be to make money, or to write it for fun, 

or perhaps as a public service (as is the case for many free and open source projects). 

                                                           
1 The “end” in “end user” comes from economics and business, where the person who purchases a software 
product may be different from the “end user” who uses it. Our use of the phrase in this article is more for his-
torical consistency than because we need to make this distinction. 
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Therefore, the moment novice web designers move from designing a web page for them-

selves to designing a web page for someone else, the nature of their activity has changed. 

The same is true if the developer mentioned above decides to share the data structure 

visualization tool with the rest of his team. The moment this shift in intent occurs, the 

developer must plan and design for a broader range of possible uses, increasing the im-

portance of design and testing, and the prevalence of potential bugs.  

It is also important to clarify two aspects of this “intent”-based definition. First, our 

definition is not intended to be dichotomous, but continuous. After all, there is no clear 

distinction between a program intended for use by five people and a program intended for 

fifty. Instead, the key distinction is that as the number of intended uses of the program 

increases, a programmer will have to increasingly consider software engineering con-

cerns in order to satisfy increasingly complex and diverse constraints. Second, even if a 

programmer does not intend for a program to be used by others, circumstances may 

change: the program may have broader value, and the code which was originally un-

tested, hacked together, and full of unexercised bugs may suddenly require more rigorous 

software engineering attention. 

While our definition of end-user programming is a departure from previously pub-

lished definitions, we do so both to bring clarity to field and to discuss some of the under-

lying dimensions of historical use. For example, a number of connotations of the phrase 

have emerged in research, many using it to refer to “novice” programming or “non-

professional” programming, or system design that involves the participation of end users. 

Many have also used it to describe an individual’s identity [Nardi 1993]. We believe 

these connotations conflate a number of related, but non-equivalent concepts. 
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For example, consider its use as an identity. A wide variety of people may engage in 

end-user programming; Table 1 gives just a glimpse of the diversity of people’s computa-

tional creations. While it is natural to use the phrase “end-user programmers” to describe 

these groups, it is not always accurate, because a persons’ intent in programming can 

depend on their task. For example, an accountant may use spreadsheets at home to keep 

track of a family loan, but use and share a spreadsheet at work to manage annual tax 

preparation activities with other accountants. It would be inaccurate to call this account-

ant an end-user programmer in all situations, when the spreadsheet at home is intended 

for personal, short-term use, but the one at work is heavily maintained and repeatedly 

used by multiple people. Thus, when we use the phrase “end-user programmer” in this 

paper, we are indicating the intent behind a programming task, not a fundamental aspect 

of the programmer’s identity. 

Class of people Activities of programming and tools and languages used 
System administrators Write scripts to glue systems together, using text editors and scripting languages 
Interaction designers Prototype user interfaces with tools like Visual Basic and Flash 
Artists Create interactive art with languages like Processing (http://processing.org) 
Teachers Teach science and math with spreadsheets [Niess et al. 2007] 
Accountants Tabulate and summarize financial data with spreadsheets 
Actuaries Calculate and assess risks using financial simulation tools like MATLAB 
Architects Model and design structures using FormZ and other 3D modelers 
Children Create animations and games with Alice [Dann et al. 2006] and Scratch 
Middle school girls Use Alice to tell stories [Kelleher and Pausch 2006, Kelleher and Pausch 2007] 
Webmasters Manage databases and websites using Access, FrontPage, HTML, Javascript 
Health care workers Write specifications to generate medical report forms  
Scientists/engineers Use MATLAB and Prograph [Cox et al. 1989] to perform tests and simulations 
E-mail users Write e-mail rules to manage, sort and filter e-mail 
Video game players Author “mods” for first person shooters, online multiplayer games, and The Sims 
Musicians Create digital music with synthesizers and musical dataflow languages  
VCR and TiVo users Record television programs in advance by specifying parameters and schedules 
Home owners Write control schedules for heating and lighting systems with X10 
Apple OS X users Automate workflow using AppleScript and Automator 
Calculator users Process and graph mathematical data with calculator scripting languages 
Managers Author and generate data-base backed reports with Crystal Reports 

Table 1. A partial list of class of people who write programs and the kinds of programs they write. 
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It is also important to not conflate end-user programming with inexperience. Profes-

sional developers with decades of experience can engage in end-user programming by 

writing code for personal use, with no intent to share their program with others. They 

may complete their end-user programming task more quickly and with fewer bugs, but 

they will not approach the work with the same quality goals that they would for produc-

tion code. To illustrate this distinction, consider Figure 1, which portrays programming 

experience and intent as two separate dimensions. Computer science students and profes-

sional programmers code with the intent of creating software for people to use (or grade), 

but vary in their experience. Similarly, end-user programming involves programming for 

personal use, but can include a wide range of programming expertise (of course, there are 

many more inexperienced programmers than experienced ones; we are not arguing that 

the distribution of experience is uniform). 

Similarly, it is important to not conflate end-user programming with the use of “sim-

ple” languages. Experienced developers may use general purpose languages like C++ to 

achieve end-user programming goals, and in fact, many scientists do use such languages 

to do exploratory scientific analyses, without the intent of sharing the code or polishing it 

for future use [Segal 2007]. Similarly, experienced developers may use simple markup 

languages such as HTML and CSS to design commercial web sites. In general, end-user 

programming can involve a wide range of languages, from macro recording, to domain-

specific languages, to conventional, general-purpose languages. The key distinction in the 

choice of language is whether it helps a person achieve their personal goal (e.g., “choos-

ing the right tool for the job”). 

Related to the choice of language, end-user programming should not be conflated 

 

Figure 1. Programming activities along dimensions of experience and intent. The diagram is not intended to 
suggest the distribution of programmers (as there are many more without experience than with), but simply the 

underlying dimensions that characterize programming activity. The upward slant in end-user programming 
indicates that people with more experience tend to plan for other uses of their code. 
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with the use of particular interaction technique for constructing code. Java programs can 

be written with a text editor or a visual editor [Ko and Myers 2006] and languages that 

are traditionally written with visual editors, such as dataflow languages like Yahoo Pipes 

(http://pipes.yahoo.com) and Prograph [Matwin & Petrzykowski 1985], can also be ex-

pressed in textual syntax. The use of visual code editors has more to do with the difficulty 

of learning and manipulating textual syntax than the intent of the programmer. 

There are a number of phrases related to “end-user programming” that are worth dis-

cussing relative to our definition. End-user development has been defined as “a set of 

methods, techniques, and tools that allow users of software systems, who are acting as 

non-professional software developers, at some point to create, modify, or extend a soft-

ware artifact” [Lieberman et al. 2006]. This notion of end-user development also focuses 

on the use and adaptations of software over time, and focuses on elements of the software 

lifecycle beyond the stage of creating a new program. More specifically, mutual-

development, co-development, and participatory design refer to activities in which end 

users are involved in a system design, but may or may not be involved in its actual coding 

[Henderson and Kyng 1991, Costabile et al. 2009, Mackay 1990]. These accounts of or-

ganizational, social, and collaborative perspectives on end-user development offer several 

valuable perspectives on how people appropriate and customize software, most of which 

are beyond the scope of this survey. 

Terms such as customization, configuring [Eagan and Stasko 2008], and tailoring 

[Trigg and Bødker 1994, Kahler 2001] include parameterization of existing programs, but 

not direct modification of a program’s source code. Visual programming refers to a set of 

interaction techniques and visual notations for expressing programs. The phrase often 

implies use by end-user programmers, but visual notations are not always targeted at a 

particular type of programming practice. Domain-specific languages are programming 

languages designed for writing programs for a particular kind of context or practice. End-

user programming may or may not involve such languages, since what defines end-user 

programming is the intent, not the choice of languages or tools. Finally, scripts and 

scripting languages are often distinguished from programs and programming languages 

by the use of machine interpretation rather than compilation and their “high-level” use in 

coordinating the functions of multiple programs or services. The phrase end-user pro-

gramming, because it is often conflated with inexperience, often connotes the use of 

scripting languages since these languages have the reputation of being easier to learn. 
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2.3. End-User Software Engineering 
With definitions of programming and end-user programming, we now turn to the central 

topic of this article, end-user software engineering. As we discussed in the previous sec-

tion, the intent behind programming is what distinguishes end-user programming from 

other activities. This is because programmers’ intents determine to what extent they con-

sider concerns such as reliability, reuse, and maintainability and the extent to which they 

engage in activities that reinforce these qualities, such as testing, verification, and debug-

ging. Therefore, if one defines software engineering as systematic and disciplined activi-

ties that address software quality issues2, the key difference between professional soft-

ware engineering and end-user software engineering is the amount attention given to 

software quality concerns. 

In professional software engineering, the amount of attention is much greater: if a 

program is intended for use by millions of users, all with varying concerns and unique 

contexts of use, a programmer must consider quality regularly and rigorously in order to 

succeed. This is perhaps why definitions of software engineering often imply rigor. For 

example, IEEE Standard 610.12 defines software engineering as “the application of sys-

tematic, disciplined, quantifiable approaches to the development, operation, and mainte-

nance of software.” Systematicity, discipline, and quantification all require significant 

time and attention, so much so that professional software developers spend more time 

testing and maintaining code than developing it [Tassey 2002] and they often structure 

their teams, communication, and tools around performing these activities [Ko et al. 

2007]. 

In contrast, end-user software engineering still involves systematic and disciplined 

activities that address software quality issues, but these activities are secondary to the 

goal that the program is helping to achieve. Because of this difference in priorities and 

                                                           
2

 Because the meaning of the phrase software engineering is still under much debate, we use the definition from 
current IEEE standards. 

Software Engineering Activity Professional SE End-user SE 

Requirements explicit implicit 

Specifications explicit implicit 

Reuse planned unplanned 

Testing and Verification cautious overconfident 

Debugging systematic opportunistic  

Table 2. Qualitative differences between professional and end-user software engineering. 
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because of the opportunistic nature end-user programming [Brandt et al. 2008], people 

who are engaging in end-user programming rarely have the time or interest in systematic 

and disciplined software engineering activities. For example, Segal [2007] reported on 

several teams of scientists engaging in end-user programming, finding that software itself 

is not valued, that the process of creating software was highly iterative and unpredictable, 

and that testing was not considered important relative other domain-specific risks [Segal 

2007]. These differences are coarsely summarized in Table 2, showing that end-user 

software engineering can be characterized by its unplanned, implicit, opportunistic na-

ture, due primarily to the priorities and intents of the programmer (but perhaps also to 

inexperience). 

Given these differences, the challenge of end-user software engineering research is to 

find ways to incorporate software engineering activities into users’ existing workflow, 

without requiring people to substantially change the nature of their work or their priori-

ties. For example, rather than expecting spreadsheet users to incorporate a testing phase 

into their programming efforts, tools can simplify the tracking of successful and failing 

inputs incrementally, providing feedback about software quality as the user edits the 

spreadsheet program. Approaches like these, and the ones reported throughout the rest of 

this article, allow users to stay focused on their primary goals (teaching children, record-

ing a television, making scientific discoveries, etc.), while still achieving software qual-

ity. 

It is important to note that we do not discuss the issue of educating users about soft-

ware engineering practices in this article. Many of the techniques discussed in our review 

may have the side effect of teaching users about the importance of testing, for example, 

but this is not the primary goal of these techniques. There is a case to be made that any-

one creating software with some potential for costly failure ought to engage in more rig-

orous and disciplined software engineering activities. This viewpoint and any research 

associated with it, is outside the scope of this article. 

3. END-USER SOFTWARE ENGINEERING RESEARCH 

End-user software engineering research is interdisciplinary, drawing from computer sci-

ence, software engineering, human-computer interaction, education, psychology and 

other disciplines. Therefore, there are several dimensions along which we could discuss 

the literature in this area, including tools, language paradigm, research approach, and so 

on. However, because we aim to contrast EUSE with professional software engineering, 
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we chose to organize the literature by software engineering activities commonly listed in 

software engineering textbooks (e.g., [Ghezzi et al. 2002]). For each of these, however, 

we frame the discussion from the perspective of an end user: 

1. Requirements. How the software should behave in the world. 

2. Design and specifications. How the software behaves internally to achieve the re-

quirements. 

3. Reuse. Using preexisting code to save time and avoid errors (including integration, 

extension, and other perfective maintenance). 

4. Testing and verification. Gaining confidence about correctness and identifying 

failures. 

5. Debugging. Repairing known failures by locating and correcting errors. 

In our discussion of each of these, we will review research in understanding and sup-

porting these activities, and characterize the historical emphasis on particular paradigms 

or end-user programming domains. In doing so, however, we do not imply that these ac-

tivities take place in sequence; indeed, the waterfall model [Ghezzi et al. 2002] is even 

less appropriate in end-user programming than it is in professional development. 

It is important to note that we do not explicitly discuss the implementation and use of 

end-user programs, even though these activities are a central part of end-user program-

ming activity. Surveys of implementation issues in end-user programming have been dis-

cussed extensively in previous literature [Sutcliffe and Mehandjiev 2004, Kelleher and 

Pausch 2005, Lieberman et al. 2006][Wulf et al. 2006]. The use of end-user programs 

depends largely on for what purpose they were created and most end-user software engi-

neering research has attempted to be independent of purpose. We do, however, discuss 

the maintenance of end-user programs in our discussion of sharing in Section 3.3. 

3.1. What Should My Program Do? — Requirements 
The term “requirements” refers to statements of how a program should behave in the 

world (as opposed to the internal behavior of a program, which is how it achieves these 

external concerns). For example, a requirement for a tax program might be “Create a 

properly formatted 1040 tax form based on my financial data.”  This is a statement of a 

desired result, but not of how the result is achieved. 
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In considering the history of work on this activity, the contributions have largely fo-

cused on understanding the sources and types of requirements of different domains of 

end-user programming and contrasting these with the role of requirements in professional 

software engineering. 

For example, in professional software engineering, projects usually involve a re-

quirements gathering phase that results in requirements specifications. These specifica-

tions can be helpful in anticipating project resource needs and for negotiating with cli-

ents. For end-user software engineering, however, the notion of requirements has to be 

reinvented. Because their motivations are not related to the software, but to some other 

goal, people engaging in end-user programming rarely have an interest in explicitly stat-

ing their requirements. This means they may be less likely to learn formal languages in 

which to express requirements or to follow structured development methodologies. Fur-

thermore, in many cases, end users may not know the requirements at the outset of a pro-

ject; the requirements may only become clear in the process of implementation [Costabile 

et al. 2006, Fischer and Giaccardi 2006, Mørch and Mehandjiev 2000, Segal 2007]. 

While this is also true in Agile development [Coplien and Harrison 2004], Agile develop-

ers explicitly recognize that requirements will evolve and have tools and processes that 

plan for emergent requirements. In contrast, people engaging in end-user programming 

are unlikely to plan in this way. 

Another difference between requirements in professional and end-user software engi-

neering is the source of the requirements. In professional settings, the customers and us-

ers are usually different people from the developers themselves. In these situations, re-

quirements analysts use formal interviews and other methods [Beyer and Holtzblatt 1998] 

to arrive at the requirements.  End-user programmers, on the other hand, are usually pro-

gramming for themselves or for a friend or colleague. Therefore, end-user software engi-

neering is unlike other forms of software engineering, where the challenge of require-

ments definition is to understand the context, needs and priorities of other people and 

organizations. For end users, requirements are both more easily understood (because the 

requirements are their own) and more likely to change (because end users may need to 

negotiate such changes only with themselves). Furthermore, end users’ requirements are 

able to be implicit, and perhaps not even consciously recognized. 

The situation in which an end user programs also affects the type of requirements. For 

example, at an office, the requirements are often to automate repetitive operations (such 

as transferring or transforming pieces of information such as customer names, products, 
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accounts, or documents). In this context, a decision to write a program at all corresponds 

directly to real investment since time is money. End users who become successful at 

automating their own work often find that their programs are passed on to others, whether 

by simple sharing of tools between peers [MacLean et al. 1990], or as a means for man-

agers to define office procedures. These social contexts start to resemble the concerns of 

professional software developers, for whom requirements analysis extends to the defini-

tion and negotiation of work practices [Ko et al. 2007]. 

At home, end-user software engineering is seldom about efficiency (except in the case 

of office-like work that is done at home, such as taxes). Instead, typical tasks include 

automation of future actions, such as starting a cooker or recording television. It is often 

the case that one member of a household becomes expert in operating a particular appli-

ance, and assumes responsibility for programming it [Rode et al. 2005, Blackwell 2004]. 

In this context, requirements are negotiated within the social relations of the household, 

in a manner that might have some resemblance to professional software experiences. 

Sometimes there are no requirements to start with; for example, there is a long tradition 

of “tinkering,” in which hobbyists explore ways to reconfigure and personalize technol-

ogy with no definite end in mind [Blackwell 2006]. Even though these hobbyists might 

have envisioned some scenario of use when they made the purchase [Okada 2005], those 

motivations may be abandoned later. Instead, requirements evolve through experimenta-

tion, seeing what one can do, and perhaps motivated by the possibility of exhibiting the 

final product to others as a demonstration of skill and technical mastery. 

In online contexts, end users must often consider the users of the web site or service 

they are creating [Rode et al. 2006], demonstrating that the distinction between the intent 

behind end-user programming and professional programming is a continuum rather than 

a mutually exclusive categorization. Further, in some situations, requirements are shared 

and negotiated, as happens with professional software developers. For example, Scaffidi 

et al. interviewed six Hurricane Katrina site developers and found that three relied on 

teammates for evaluating what features should be present and whether the site was viable 

at all [Scaffidi et al. 2006]. In this same study, requirements were derived from beliefs 

about the users of the program. One writer on the aggregators' email distribution list rec-

ognized that this “loosey goosey data entry strategy” would provide end users with 

maximal flexibility. Unfortunately, the lack of validation led to semantic errors that soft-

ware propagated into the new database. 
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In educational contexts, programming is often used as a tool to educate students about 

mathematics and science. What makes these classroom situations unique is how require-

ments are delivered to and adapted by students. For example, Rosson et al. [2002] de-

scribe a participatory design workshop in which pairs of students and senior citizens cre-

ated simulation projects to promote discussion about community issues. In this situation, 

requirements emerged from interpersonal communication in conversation and then were 

later constrained by the capabilities of the simulation tool. This contrasts with a class-

room study of AgentSheets [Ioannidou et al. 2006], in which small groups of elementary 

school students followed a carefully designed curriculum to design biological simula-

tions. In this situation, the instructions set the scope of the programming and students 

chose the detailed requirements within this scope. In other contexts [Niess 2007], the 

teachers and the students are end-user programmers. The degree to which the teachers 

understood the abilities and limitations of spreadsheets affected not only the requirements 

they developed in lab activities, but also the degree to which the students understood the 

abilities and limitations of spreadsheets. 

In general, research has not attempted to explicitly support requirements capture, and 

the studies we have discussed should help reveal why. There are some techniques, how-

ever, that can be viewed as a form of requirements elicitation. For example, the Whyline 

[Ko and Myers 2004], which allows users to ask “why” questions about their program’s 

output, is an implicit way of learning about what behavior the user intended and did not 

intend. The same is true of the goal debugging work in the spreadsheet paradigm [Abra-

ham and Erwig 2007b], which allows users to inquire about incorrect values in spread-

sheet output. Both of these systems are a form of requirements elicitation, in which the 

requirements are used to support debugging. 

3.2. How Should My Program Work? — Design and Design Specifications  
In software engineering, design specifications specify the internal behavior of a system, 

whereas the requirements are external (in the world). In professional software engineer-

ing, software designers translate the ideas in the requirements into design specifications. 

These specifications can be helpful in coordinating implementation strategies and ensur-

ing the right prioritization of software qualities such as performance and reliability. De-

sign processes can ensure that all of the requirements have been accounted for. 

In end-user programming, the challenge of translating one’s requirements into a 

working program can be daunting. For example, interview studies of people who wanted 
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to develop web applications revealed that people are capable of envisioning simple inter-

active applications, but cannot imagine how to translate their requirements into working 

applications [Rosson et al. 2005].  Further, in end-user software engineering, the benefits 

of explicit design processes and specifications may be unclear to users. Most of the bene-

fits of being explicit come in the long term and at a large scale, whereas end users may 

not expect long-term usage of their programs, even though this is not particularly accu-

rate. For example, studies of spreadsheets have shown that end users are creating more 

and more complex spreadsheets [Shaw 2004], with typical corporate spreadsheets dou-

bling in size and formula content every three years [Whittaker 1999]. 

In general, research on incorporating specifications into end-user programming has 

been quite pragmatic. If systems have supported any form of specifications, they have 

been used (1) to support a particular kind of design process, such as prototyping or ex-

ploratory activities, (2) as the primary programming language, (3) or as an intermediate 

language that either makes it easier to generate correct programs or helps with program 

validation. Most of these technologies have focused on improving the creation and vali-

dation of spreadsheets, the prototyping of web sites, and the expression of preferences in 

the privacy domain. There is considerably less work on model- and specification-based 

approaches for interactive and web-based applications, though this is beginning to 

change. In the rest of this section, we review these approaches in light of the various 

imbalances and biases. 

3.2.1. Design Processes. Software design processes constrain how requirements are 

translated into design specifications and then implementations. They also involve a care-

ful consideration of tradeoffs among conflicting goals such as reliability, maintainability, 

performance and other software qualities. These processes are usually learned by profes-

sionals through experience or training. Many end-user programmers, however, are “silent 

designers” [Gorb and Dumas 1987], with no training in design and often seeing no bene-

fit to ensuring such qualities. 

Some have proposed dealing with this lack of design experience by enforcing particu-

lar design processes. For example, Ronen et al. propose a design process that focuses on 

ensuring that spreadsheets are reliable, auditable, and safe to update (without introducing 

errors) [Ronen et al. 1989]. Powell and Baker define strategies and best practices for 

spreadsheet design to improve the quality of created spreadsheets [Powell and Baker 

2004]. Outside of the spreadsheet domain, Rosson et al. tested a design process with end-

user web programmers based on scenarios and concept maps, finding that the process was 
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useful for orienting participants towards particular design solutions [Rosson et al. 2007]. 

One problem with dictating proper design practices is that end-user programmers often 

design alone, making it difficult to enforce such processes. 

An alternative to enforcing good behavior is to let end users work in the way they are 

used to working, but inject good design decisions into their existing practices. One cru-

cial difference between trained software engineers’ and end users’ approaches to problem 

solving is the extent to which they can anticipate design constraints on a solution. Soft-

ware engineers can use their experience and knowledge of design patterns to predict con-

flicts and dependencies in their design decisions [Lakshminarayanan et al. 2006]. End-

user programmers, however, often come to understand the constraints on their programs’ 

implementations only in the process of writing their program [Fischer and Giaccardi 

2006]. 

Because end-user programmers’ designs tend to be emergent, like their requirements, 

requirements and design in end-user programming are rarely separate activities. This is 

reflected in most design approaches that have been targeted at end-user programmers, 

which largely aim to support evolutionary and exploratory prototyping, rather than up-

front design. For example, DENIM, a sketching system for designing web sites, allows 

users to leave parts of the interface in a rough and ambiguous state [Newman et al. 2003]. 

This characteristic is called provisionality [Green et al. 2006], where elements of a design 

can be partially, and perhaps imprecisely stated. 
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Another approach to dealing with end users’ emergent designs is to constrain what 

can be designed to a particular domain. The WebSheets [Wolber et al. 2002] and Click 

[Rode et al. 2005] environments both strive to aid users in developing web applications at 

a level of abstraction that allows the environment to generate database-driven web appli-

cations, rather than write the necessary code at a lower level. There are several other 

commercial systems that impose similar constraints on design within a certain domain. 

Yahoo Pipes (http://pipes.yahoo.com), for example, allows the composition, selection and 

refinement of RSS feeds, but limits these activities to a pre-defined set of operators. Ap-

ple’s Automator is a similar system, enabling the construction of dataflow programs that 

process and operate on data with multiple applications, but limiting these operations to a 

pre-defined set. 

Supporting emergent designs under changing ideas of requirements can also be done 

by supporting asynchronous or synchronous collaborations between professional software 

developers and end-user programmers. Approaches that emphasize synchronous aspects 

view professional developers and end-user programmers as a team (e.g., [Costabile et al. 

2006, Fischer and Giaccardi 2006]). On the other hand, in strictly asynchronous ap-

proaches, the professional developer provides tailoring mechanisms for end-user pro-

grammers, thereby building in flexibility for end-user programmers to adjust the software 

over time as new requirements emerge [Bandini and Simone 2006, Dittrich et al. 2006, 

 

Figure 2. Links between web site content, sketched in DENIM, an informal web site sketching tool. Reprinted 
from [Newman et al. 2003] with permission from authors. 
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Letondal 2006, Stevens et al. 2006, Won et al. 2006, Wulf et al. 2008]. As Pipek and 

Kahler point out, tailorability is a rich area, including not only issues of how to support 

low-level tailoring, but also numerous collaborative and social aspects [Pipek & Kahler 

2006]. 

3.2.2. Writing Specifications. In professional software engineering, one way to ensure 

that requirements have been satisfied is to write explicit design specifications and then 

have tools check the program for inconsistencies with these specifications. In general, 

tools and languages for expressing specifications tend to be declarative in nature, allow-

ing users to express what they want to happen, but not necessarily how.  

In applying this idea to end-user software engineering, one approach is for a tool to 

require up-front design. For example, ViTSL separates the modeling and data-entry as-

pects of spreadsheet development [Erwig et al. 2005]. The spreadsheet model is captured 

as a template [Abraham et al. 2005] like the one in Figure 3. The ellipsis under row 3 

indicates that the row can be repeated downwards; each row stores the scores of a student 

enrolled in the course. These templates can then be imported into a system called Gencel 

[Erwig et al. 2005, Erwig et al. 2006], which can be used to generate spreadsheets that are 

guaranteed to conform to the model represented by the template. For example, an in-

stance of the template in Figure 3 is shown in Figure 4. The menu bar on the right allows 

the user to perform insertion and deletion, protecting the user against unintended changes. 

One limitation of this approach is that once a spreadsheet is generated from a template, 

edits to the generated spreadsheet cannot be propagated back to the template. (This same 

problem occurs in code generation systems in software engineering, where changes to the 

code are not reflected back to the specifications.) 

Some systems are intended to support the exploration of specifications by supporting 

modeling for a particular type of application. For example, Berti et al. [2004] describe 

CTTE, a system that helps users convert natural language descriptions of tasks and sce-

narios into a hierarchy of subtasks. This is essentially a modeling language that helps 

users to express the design and underlying workflow of a user interface. In a similar sys-

tem, Lin and Landay [2008] describe Damask, a system that allows designers to proto-

type ubiquitous computing applications and test them with users. In both of these sys-

tems, the modeling languages were carefully designed with a particular domain and class 

of applications in mind. 
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Most other systems that support specification writing are used for later verification 

and checking, rather than generating programs. For example, Topes [Scaffidi et al. 2008] 

allowing users to define string-based data types that can be used to check the validity of 

data and operations in any programming language that stores information as strings. 

Other researchers have developed end-user specification languages for privacy and secu-

rity. For example, Dougherty et al. [2006] describe a framework for expressing access-

control policies in terms of domain concepts. These specifications are stated as “differ-

ences” rather than as absolutes. For example, rather than stating who gets privileges in a 

declarative form, the system supports statements such as “after this change, students 

should not gain any new privileges.” Cranor et al. [2006] describe Privacy Bird, a related 

approach, which includes a specification language for users to express their privacy pref-

erences in terms of the personal information being made accessible. Privacy Bird then 

uses these specifications to warn users about web sites’ violations of these preferences. 

  

Figure 3. A ViTSL template, specifying the underlying structure of a grading spreadsheet. The names appear in 
rows and the assignments appear in columns, with the ellipses indicating repetition. Reproduced from [Abraham 

and Erwig 2006c] with permission from authors. 
 

  

Figure 4. An instance of the grade sheet template from Figure 3 loaded into Excel. The operations in the toolbar 
on the right utilize the spreadsheet’s underlying structure to help users avoid introducing errors into the struc-

ture. Reproduced from [Abraham and Erwig 2006c] with permission from authors. 
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Finally, some approaches for writing specifications take a direct manipulation, what 

you see is what you get (WYSIWYG) approach, moving the description of behavior and 

appearance to the user’s language, rather than a machine language. For example, many 

WYSIWYG web site tools allow users to directly manipulate the design of a web site and 

then let the tool generate the HTML and CSS for use in a web browser (most notably at 

the time of this writing is Adobe’s Dreamweaver). To enable direct manipulation, such 

tools often limit the range of design possibilities to facilitate code generation, requiring 

users to learn the underlying language to express more complicated designs.  

3.2.3. Inferring specifications. One approach to the problem of how to support a de-

sign process is to eliminate it, replacing it with technologies that can determine require-

ments automatically through various forms of inference. 

Several systems have used a programming by example approach to this problem (such 

systems are described in detail in [Lieberman 2000]). These systems allow users to pro-

vide multiple examples of the program’s intended behavior and the tool observes the be-

havior and attempts to generalize from it. For example, Abraham and Erwig developed an 

approach for automatically inferring the templates discussed in the previous section from 

an example spreadsheet [Abraham and Erwig 2006a], allowing users more flexibility in 

redefining the spreadsheet template as requirements change. In the domain of event-based 

simulations, the AgentSheets environment [Repenning and Perrone 2000] lets the pro-

grammer specify that a new type of “part” is just like an existing part, except for its icon; 

the tool will then generate all of the instructions necessary for the new part. McDaniel 

and Myers [1999] describe an approach to inferring interaction specifications, allowing 

users to click and drag objects from one part of the screen to another to demonstrate a 

desired movement at runtime.  

Recent work has begun to apply programming by example to web sites. For example, 

Toomim et al. [2009] allow users to select example data from web sites and automatically 

generate a range of user interface enhancements. Nichols and Lau [2008] describe a simi-

lar system, which allows users to create a mobile version of a web site through a combi-

nation of navigating through the desired portion of the site and explicitly selecting con-

tent. Macias and Paterno [2008] take a similar approach, in which users directly modify 

the web page source code. These modifications are used as a specification of preferences, 

which are then generalized and applied to other pages on the same site. Yet another ap-

proach allows users to identify the same content with multiple markings, increasing the 

robustness of the inference [Lingham and Elbaum 2007]. 
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One problem with programming by example approaches is that the specifications in-

ferred are difficult to reuse in future programs, since most systems do not package the 

resulting program as a reusable component or a function There are some exceptions to 

this, however. For example, Scaffidi et al. [2007] describe an approach to inferring data 

type specifications from unlabeled textual examples and then allowing users to review 

and customize the specification. The specification can then be easily packaged and reused 

for use in other applications. Another counter example is [Smith et al. 2000]. 

An alternative to programming by example is to elicit aspects of the specification di-

rectly from end users. Burnett et al. [2003] describe an approach for spreadsheets, attach-

ing assertions to each cell to specify intended numerical values. In this approach, seen in 

Figure 5, users can specify an intended range of a cell’s value at any time. Then, the sys-

tem propagates these ranges through cell formulas, allowing the system to further reason 

about the correctness of the spreadsheet. If a conflict is found between a user-generated 

assertion and a system-generated assertion, the system circles the two assertions to indi-

cate the conflict. This assertions-based approach has been shown to increase people’s 

effectiveness at testing and debugging [Wilson et al. 2003, Burnett et al. 2003]. Scaffidi 

describes a similar approach for validating textual input [Scaffidi et al. 2008]; we de-

scribe this approach in Section 3.3.4. 

Other approaches take natural language descriptions of requirements and attempt to 

translate them into code. For example, Liu and Lieberman [2005] describe a system that 

 

Figure 5. An assertion conflict in Forms/3. The user wrote the assertion on the Celsius cell (0 to 100), which 
conflicts with the computer generated assertion (0 to 500). This prompts the user to check for errors in the cells’ 

formulas [Burnett et al. 2003]. Original figure obtained from authors. 
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takes descriptions of the intended behavior of a system and generates Python declarations 

of the objects and behaviors described in the descriptions. Little and Miller [2006] devel-

oped a similar approach for Chickenfoot [Bolin et al. 2005] (a web scripting language) 

and Microsoft Word’s Visual Basic for Applications. Their approach exploits the user’s 

familiarity with the vocabulary of the application domain to express commands in that 

domain. Users can state their goals in terms of the domain keywords that they are familiar 

with and the system generates the code. Other systems have attempted to teach com-

mands to users when their effect may not be visible, as in the case of scriptable group-

ware applications [Wulf 2000]. 

3.3. What Can I Use to Write My Program? — Reuse 
Reuse generally refers to either a form of composition, such as “gluing” together compo-

nents APIs, or libraries, or modification, such as changing some existing code to suit a 

new context or problem. In professional programming, most of the code that developers 

write involves reuse of some sort, whether copying code snippets, adapting example 

code, or using libraries and frameworks by invoking their APIs [Bellon et al. 2007]. Tra-

ditionally, the motivations for these various types of reuse are usually to save time, to 

avoid the risk of writing erroneous new code, and to support maintainability [Ye and 

Fischer 2005, Ravichandran and Rothenberger 2003]. 

While these practices are also true in end-user programming, in many ways they are 

made more difficult by end users’ shift in priorities. In particular, finding, reusing, and 

even sharing code becomes more opportunistic, as the goals of reuse are more to save 

time and less to achieve other software qualities. Furthermore, in end-user programming, 

reuse is often what makes a project possible, since it may be easier for an end user to per-

form a task manually or not at all than to have to write it from scratch without other code 

to reuse [Blackwell 2002a].  

Prior work on reuse has largely focused on studies of reuse in more conventional pro-

gramming languages with large APIs or object hierarchies. Consequently, many of the 

challenges that professionals face, end users face as well. Where these populations differ 

is in how APIs, libraries, and frameworks must be designed to support a certain popula-

tion. While APIs designed for professionals use often focus on optimizing flexibility, end 

users often need much more focused support for achieving their domain-specific goals. In 

this section, we characterize prior work on these different reuse activities and compare 

and contrast the role of reuse in end-user programming and professional development. 
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3.3.1. Finding Code to Reuse.  A fundamental challenge to reuse is finding code and 

abstractions to reuse or knowing that they exist at all [Ye and Fischer 2005]. For exam-

ple, Ko found that students using Visual Basic.NET to implement user interfaces strug-

gled when trying to use search tools to find relevant APIs, and instead relied on their 

more experienced peers for finding example code or APIs [Ko et al. 2004]. This is similar 

to Nardi’s finding that people often seek out slightly more experienced coworkers for 

programming help [Nardi 1993]. Example code and example programs are one of the 

greatest sources of help for discovering, understanding, and coordinating reusable ab-

stractions, both in professional programming [Rosson and Carroll 1996, Stylos and 

Myers 2006] and end-user programming [Wiedenbeck 2005, Rosson et al. 2005]. In 

many cases the examples are fully functional, so the programmer can try out the exam-

ples and better understand how they work [Rosson and Carroll 1996, Walpole and 

Burnett 1997]. 

Researchers have also invented a number of tools to help search for both example 

code and APIs. For example, the CodeBroker system watches the programmer type code 

and guesses what API functions the programmer might benefit from knowing about [Ye 

and Fischer 2005]. Other systems also attempt to predict which abstractions will benefit a 

professional programmer [Mandelin et al. 2005, Bellettini et al. 1999]. Mica [Stylos and 

Myers 2006] lets users search using domain-specific keywords. While all of these ap-

proaches are targeted at experienced programmers, many of the same ideas are beginning 

to be applied to languages intended for end-user programming. For example, CoScrip-

ter’s support for sharing and finding others’ scripts not only helps users search for exam-

ples, but utilizes other meta data such as a users’ social network to help users find rele-

vant programs [Bogart et al. 2008]. 

3.3.2. Reusing Code. Even if end users are able to find reusable abstractions, in some 

cases, they may have difficulty using abstractions that were packaged, documented, and 

provided by an API. One study of students using Visual Basic.NET for user interface 

prototype showed that most difficulties relate to determining how to use abstractions cor-

rectly, coordinating the use of multiple abstractions, and understanding why abstractions 

produced certain output [Ko et al. 2004]. In fact, most of the errors that the students made 

had more to do with the programming environment and API, and not the programming 

language. For example, many students had difficulty knowing how to pass data from one 

window to another programmatically, and they encountered null pointer exceptions and 

other inappropriate program behavior. These errors were due primarily to choosing the 
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wrong API construct or violating usage rules in the coordination of multiple API con-

structs. Studies of end-user programming in other domains, such as web programming 

[Rode et al. 2003, Rosson et al. 2004], and numerical programming [Nkwocha and El-

baum 2005], have documented similar types of API usage errors. 

There are several ways of addressing mismatch between code and the desired func-

tionality. In the case of code, one way is to simply modify the code itself, customizing it 

for a particular purpose. A special case of adapting such examples is the concept of a 

template. For example, Lin and Landay [2008], in their tool for prototyping user inter-

faces across multiple devices, provide a collection of design pattern examples [Beck 

2007] that users can adapt, parameterize, and combine. Some end-user development plat-

forms, such as Adobe Flash, implement user interface components as modifiable tem-

plates. Templates have also been used to facilitate the creation of scripts for mobile de-

vices to support the independencies of people with cognitive disabilities [Carmien and 

Fischer 2008]. 

The mismatch between code and desired functionality can sometimes be addressed 

through tailoring by the end user. In this case, the user supplies parameters, rules, or even 

more complex information to the component or application, thereby changing its behav-

ior. Tailoring enables component developers to offload some adaptive maintenance ac-

tivities onto end users [Dittrich et al. 2006], who essentially become asynchronous col-

laborators with the component developers [Mørch and Mehandjiev 2000]. In order for a 

component to be tailorable, the component designer must engage in significant upfront 

planning; in particular, the designer must consider how users in the target population will 

differ from one another, then determine which aspects of the component should accord-

ingly be tailorable [Dittrich et al. 2006]. There are several ways to uncover user needs, 

such as including users in the design and construction of the component [Letondal 2006], 

performing ethnographies [Stevens et al. 2006], or interviewing users about their likely 

requirements [Eagen and Stasko 2008]. Such approaches assume that the users involved 

in component design can represent the diverse needs of the target population. Since users 

often vary not only in their requirements, but also in their level of tailoring skill, some 

component designers provide multiple mechanisms for tailoring, so that users with more 

skill can take advantage of more complex mechanisms in order to effect more specialized 

tailoring [Eagan and Stasko 2008, Morch and Mehandjiev 2000, Wulf 1999, Wulf  et al. 

2008]. Tailorability can be greatly facilitated by integrated support for collaborated tailor-

ing [Pipek  and Kahler 2006], integrity checks for detecting tailoring mistakes [Won et al. 
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2006, Wulf et al. 2008], and evaluation features for helping users to understand the im-

pact of tailoring [Won et al. 2006, Wulf et al. 2008]. 

Actually modifying the source code of APIs, libraries and other kinds of abstractions 

is generally not possible, since the code for the abstraction itself is not usually available. 

The programmer can sometimes write additional code to adapt an API [DeLine 1999], 

but there are certain characteristics of APIs and libraries, such as performance, that are 

difficult to adapt. Worse yet, when an end-user programmer is trying to decide whether 

some API or library would be suitable for a task, it is difficult to know in advance 

whether one will encounter such difficulties (this is also true for professionals [Garlan et 

al. 1995]). 

Another issue for API and abstraction use is whether future versions of the abstraction 

will introduce mismatch because of changes to the implementation of the API behavior. 

For example, ActionScript [DeHaan 2006] (the programming language for Adobe Flash) 

and spreadsheet engine upgrades often change the semantics of existing programs’ be-

havior. In the world of professional programming, one popular approach to detecting 

such changes is to create regression tests [Onoma et al. 1988]. Another possibility is to 

proxy all interactions with the API and log the API’s responses; then, if future versions of 

the API respond differently, the system can show an alert [Rakic and Medvidovic 2001]. 

Regression testing has been used in relation to spreadsheets [Fisher et al. 2002b]; beyond 

this, these approaches have not been pursued in end-user development environments. 

3.3.3. Creating and Sharing Reusable Code. Thus far, we have discussed reusing ex-

isting code, but most end-user programming environments also provide ways for users to 

create new abstractions. Table 3 lists several examples of reusable abstractions, distin-

guishing between behavioral abstractions and data abstractions. Studies of certain classes 

of end users suggest that data abstractions are the most commonly created type [Rosson 

et al. 2005, Scaffidi et al. 2006]. 
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Although end users have the option of creating such reusable abstractions, examples 

are the more common form of reusable code. Unfortunately, it is extremely time-

consuming to maintain a well-vetted repository of code. For example, Gulley [2006] de-

scribes the challenges in maintaining a repository of user-contributed Matlab examples, 

with a rating system and other social networking features. For this reason, many organi-

zations do not explicitly invest in creating such repositories. In such cases, programmers 

cannot rely on search tools but must instead share code informally [Segal 2007, Wieden-

beck 2005]. This spreads repository management across many individuals, who share the 

work of vetting and explaining code. 

Although it is common for end-user programmers to view the code they create as 

“throw away,” in many cases such code becomes quite long-lived [Mackay 1990]. Some-

one might write a simple script to streamline some business process and then later, some-

one might reuse the script for some other purpose. This form of “accidental” sharing is 

one way that end-user programmers face the same kinds of maintainability concerns as 

professional programmers. In field studies of CoScripter [Leshed et al. 2008, Bogart et al. 

2008], an end-user development tool for automating and sharing “how-to” knowledge, 

scripts in the CoScripter repository were regularly copied and duplicated as starting 

points for new scripts, even when the original author never intended such use [Bogart et 

Environment Domain Behavioral abstractions Data abstractions 

AutoHAN 
[Blackwell and Hague 2001] 

Home 
automation 

Channel Cubes can map to scripts 
that call functions on appliances. 

Aggregate Cubes can represent 
a collection of other Media 
Cubes. 

BOOMS 
[Balaban et al. 2002] 

Music 
editing 

Functions record series of music 
edits. 

Structures contain notes and 
phrases.  

Forms/3 
[Burnett et al. 2001]  

Spread-
sheets  

Forms simultaneously represent a 
function and an activation record. 

Types are structured collections 
of cells and graphical objects. 

Gamut 
[McDaniel  and Myers 1999] 

Game 
design 

Behaviors are learned from posi-
tive and negative examples. 

Decks of cards serve as graphi-
cal containers with properties. 

Janus 
[Fischer and Girgensohn 1990] 

Floor plan 
design 

Critic rules encode algorithms for 
deciding if a floor plan is “good.” 

Instances of classes may pos-
sess attributes and sub-objects. 

KidSim 
[Smith et al. 1994] 

Simulation 
design 

Graphical rewrite rules describe 
agent behavior. 

Agents possess properties and 
are cloned for new instances. 

Lapis 
[Miller and Myers 2002] 

Text edit-
ing 

Scripts automate a series of edits. Text patterns can contain sub-
structure. 

Pursuit 
[Modugno  and Myers 1994] 

File man-
agement 

Scripts automate a series of ma-
nipulations. 

Filter sets contain files and 
folders. 

QUICK 
[Douglas et al. 1990] 

UI design Actions may be associated with 
objects (that are then cloned). 

Objects may have attributes and 
be cloned and/or aggregated. 

TEXAO 
[Texier  and Guittet 1999] 

CAD Formulas may drive values of 
attributes on cloneable objects. 

Instances of classes may pos-
sess attributes and sub-objects. 

Table 3. Behavioral and data abstractions in some end-user programming environments. 
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al. 2008]. This unplanned sharing also means that improvements to the originally copied 

or shared code do not propagate to the copies that need it. This distinction between 

planned and unplanned reuse can demand different reuse technologies. For example, 

many professional development tools that support copying, such as the “linked editing” 

technology described by Toomim et al. [2004], require users to plan their copying activi-

ties. 

3.3.4. Designing Reusable Code for End Users. One way to facilitate reuse by end us-

ers is to choose the right abstractions for their problem domains. This means choosing the 

right concepts and choosing the right level of abstraction for such concepts. For example, 

the designers of the Alice 3D programming system [Dann et al. 2006] consciously de-

signed their APIs to provide abstractions that more closely matched peoples’ expectations 

about cameras, perspectives, and object movement. The designers of the Visual Ba-

sic.NET APIs based their API designs on a thorough study of the common programming 

tasks of a variety of programmer populations [Green et al. 2006]. The Google Maps API 

is related in that the key to its success has been the relative ease with which users can 

annotate geographical images with custom data types. 

In other cases, choosing the right abstractions for a problem domain involves under-

standing the data used in the domain, rather than the behavior. For example, Topes [Scaf-

fidi et al. 2008] is a framework for describing string data types unique to an organization, 

such as room numbers, purchase order IDs, and phone number extensions (see Figure 6). 

By supporting the design of these custom data types, end-user programmers can more 

easily process and validate information, as well as transform information between differ-

ent formats. This is a fundamental problem in many new domains of end-user program-

ming, such as “mashup” design tools [Wong and Hong 2007] and RSS feed processors 

(e.g., http://pipes.yahoo.com). 
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Of course, as with any design, designing the right abstractions has tradeoffs. Special-

izing abstractions can result in a mismatch between the functionality of a reusable ab-

straction and the functionality needed by a programmer [Ye and Fischer 2005, Wieden-

beck 2005]. For example, many functional mismatches occur because specialized abstrac-

tions often have non-local effects on the state of a program [Biggerstaff and Richter 

1989]. In addition to functional mismatch, non-functional issues can cause abstractions 

not to mesh well with the new program [Ravichandran and Rothenberger 2003, Shaw 

1995]. End-user software engineering research is only beginning to consider this space of 

API and library design issues. 

3.4. Is My Program Working Correctly? —Verification and Testing 
There is a large range of ways to gain confidence about the correctness of a program, 

including through verification, testing, or a number of other approaches. The goals of 

testing and verification techniques are universal: they enable people to have a more ob-

jective and accurate level of confidence than they would if they were left unassisted. 

Where EUSE and professional SE differ is that end-user programmers’ priorities often 

lead to overconfidence in the correctness of their programs. 

 

Figure 6. The Toped++ pattern editor [Scaffidi et al. 2008], allowing the creation of string data types that sup-
port recognition of matching strings and transformation between formats. Original figure obtained from authors. 
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Research on testing and verification in end-user programming has primarily focused 

on helping end users manage their overconfidence, and primarily for the spreadsheet 

paradigm3. More recent work has broadened support for testing and verification to the 

web and researchers are also beginning to generalize the spreadsheet-focused technolo-

gies to other paradigms and domains. In this section, we discuss these various contribu-

tions and organize research by the different approaches to helping end-user programmers 

overcome overconfidence. 

3.4.1. Oracles and Overconfidence. A central issue for any type of verification is the 

decision about whether a particular program behavior or output is correct. The source of 

such knowledge is usually referred to as an oracle. Oracles might be people, making 

more or less formal decisions about the correctness of program behavior, or oracles can 

be explicitly documented definitions of the correct and intended behavior. 

People are typically imperfect oracles. Professional programmers are known to be 

overconfident [Leventhal et al. 1994, Teasley and Leventhal 1994, Lawrance et al. 2005], 

but such overconfidence subsides as they gain experience [Ko et al. 2007]. Some end-

user programmers, in comparison, are notoriously overconfident: many studies about 

spreadsheets report that despite the high error rates in spreadsheets, spreadsheet develop-

ers are heedlessly confident about correctness [Panko 1998, Panko 2000, Hendry and 

Green 1994]. In one study, overconfidence about the correctness of spreadsheet cell val-

ues was associated with a high degree of overconfidence about the spreadsheets’ overall 

correctness [Wilcox 1997]. In fact, for spreadsheets, studies report that between 5% and 

23% of the value judgments made by end-user programmers are incorrect [Ruthruff et al. 

2005a, Ruthruff et al. 2005b, Phalgune et al. 2005].  In all of these studies, people were 

much more likely to judge an incorrect value to be right than a correct value to be wrong. 

These findings have implications for creators of error detection tools.  The first is that 

immediate feedback about the values a program computes, without feedback about cor-

rectness, leads to significantly higher overconfidence [Rothermel et al. 2000, Krishna et 

al. 2001]. Second, because end users' negative judgments are more likely to be correct 

than positive judgments, a tool should “trust” negative judgments more.  One possible 

strategy for doing so is to implement a “robustness” feature that guards against a large 

                                                           
3 One possible explanation for this bias is that Microsoft Excel, the most widely used spread-

sheet language, tends to produce output even in the presence of errors. This then leads to user over-
confidence in program correctness, which researchers have tried to remedy through better testing 
tools. Furthermore, much of the original research on end-user software engineering was inspired by 
Nardi‘s investigation of spreadsheet use in business contexts [1992]. 
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number of positive judgments swamping a small number of negative judgments, e.g., as 

in [Ruthruff et al. 2005b]. This approach was empirically tested in [Phalgune et al. 2005] 

and was found to significantly improve the tool’s feedback. 

3.4.2. Detecting Errors with Testing. One approach to helping end-user programmers 

detect errors is supporting testing. Testing is judging the correctness of programs based 

on the correctness of program outputs.  Systematic testing—testing according to a plan 

that defines exactly what tests are needed and when enough testing has been done—is 

crucial for success. Without it, the likelihood of missing important errors increases 

[Rothermel et al. 2001]. Furthermore, stronger (and more expensive) systematic testing 

techniques have a demonstrated tendency to outperform weaker ones [Frankl and Weiss 

1993, Hutchins et al. 1994]. Unfortunately, being systematic is often in conflict with end-

user programmers’ goals, because it requires time on activities that they usually perceive 

as irrelevant to success. Therefore, research on testing tools for end-user programmers 

has focused on testing approaches that are integrated with users’ work and are incre-

mental in their feedback. 

The most notable of these approaches is the “What You See Is What You Test” 

(WYSIWYT) methodology for doing “white box” testing of spreadsheets [Rothermel et 

al. 1998, Rothermel et al. 2001, Burnett et al. 2002]. With white box testing, the code is 

available to the tester [Beizer 1990]; in the case of spreadsheets, the formulas are the 

source code. Since testing most programs would require an infinite number of test cases 

in order to actually prove correctness, most white box approaches include a test adequacy 

criterion, which measures when “enough” testing has been done according to some code-

based measure.  Some criteria include branch coverage (test cases that exercise every 

branch), and statement coverage (exercising every statement in an imperative program) 

[White 1987].  With WYSIWYT, the criterion used is definition-use coverage, which (in 

the spreadsheet context) involves exercising every data dependency that could feasibly 

execute [Rothermel et al. 1998, Rothermel et al. 2001]. 

With WYSIWYT, as users develop a spreadsheet, they can also test that spreadsheet 

incrementally and systematically. At any point in the process of developing the spread-

sheet, the user can validate any value that he or she believes is correct (the issues of ora-

cles and overconfidence aside). Behind the scenes, these validations are used to measure 

the quality of testing in terms of a test adequacy criterion based on data dependencies. 

These measurements are then projected to the user using several different visual devices, 

to help them direct their testing activities. 
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For example, suppose that a teacher is creating a student grades spreadsheet and has 

reached the point shown in Figure 7. During this process, whenever the teacher notices 

that a value in a cell is correct, she can check it off in the decision box in the upper right 

corner of that cell. A checkmark appears in the decision box, indicating that the cell’s 

value has been validated under current inputs. The validated cell’s border also becomes 

more blue, indicating that dependencies between the validated cell and cells it references 

have been “exercised” in producing the validated values. Red borders mean untested, 

blue borders mean tested, and any color in between means partially tested. From the bor-

der colors, the user is kept informed of which areas of the spreadsheet are tested and to 

what extent. The tool also supports more fine-grained access to testing the data depend-

encies in the spreadsheet, as well as a “percent tested” bar at the top of the spreadsheet, 

providing the user with an overview of her testing progress.  

To help users think of values to test, users can invoke the “Help Me Test” utility to 

automatically generate suitable test values [Fisher et al. 2002a, Fisher et al. 2006b]. This 

approach finds values that follow unexplored paths in the spreadsheet’s dataflow, as well 

as reuse prior test case values for regression testing after a spreadsheet has changed. 

Abraham and Erwig describe an alternative approach to generating test values by back-

propagating constraints on cell values, showing that it can be more effective in terms of 

efficiency and predictability [Abraham and Erwig 2006b]. 

WYSIWYT is the most mature error-detecting approach for end-user programmers.  

It includes support for reasoning about regions of cells with shared formulas [Fisher et al. 

2006b, Burnett et al. 2002] and also interacts with assertions (covered in Section 3.2), 

 

Figure 7. The WYSIWYT testing approach. Checkmarks represent decisions about correct values. Empty boxes 
indicate that a value has not been validated under the current inputs. Question marks indicate that validating the 

cell would increase testedness [Burnett et al. 2002]. Original figure obtained from authors. 
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fault localization, debugging (covered in Section 3.5), reuse of prior test cases [Fisher et 

al. 2002b], and the “Help Me Test” functionality mentioned earlier.  There has also been 

research into how WYSIWYT can be applied to visual dataflow languages [Karam and 

Smedley 2002] and to the kind of “screen transition” programming being developed for 

web page design [Brown et al. 2003]. 

3.4.3. Checking Against Specifications. Another approach to detecting errors in pro-

grams is by checking values computed by the program against some form of specifica-

tion; these specifications then serve as the oracle for correctness. For example, as dis-

cussed in Section 3.2, one form of specifications that can be entered is assertions about 

the values that a spreadsheet cell can have. Such assertions can be propagated to infer 

new assertions, using interval arithmetic [Ayalew and Mittermeir 2003, Burnett et al. 

2003]. Assertions that conflict with one another are also highlighted, showing errors in 

the assertions or the formulas through which they propagated. Other approaches validate 

string input against flexible data type definitions [Scaffidi et al. 2008]. In all of these ap-

proaches, values that do not conform to the assertions are highlighted. 

Elbaum et al. [2005] describe an approach for capturing user session data from users 

who utilize web applications, and using this data to distill relevant testing information. 

The approach can be abstractly thought of as identifying specification information about 

a web application in the form of an operational abstraction of usage of that application. 

By focusing on usage, the approach allows verification relative to an (often shifting) op-

erational profile; this can detect errors not foreseen by developers of the application, who 

often have unrealistic expectations about application usage. 
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3.4.4. Consistency Checking. Instead of using a human oracle or external specifica-

tions, some systems define correctness heuristics about the internal consistency of a pro-

gram’s code. One approach for spreadsheets is a form of type inference called “unit in-

ference and checking systems” [Chambers and Erwig 2009, Abraham and Erwig 2004, 

Abraham and Erwig 2007b, Ahmad et al. 2003, Antoniu et al. 2004, Coblenz et al. 2005]. 

These approaches are based on the idea that users’ layout of data, especially the labeled 

row and column headers, offer a form of user defined type called a unit [Erwig and 

Burnett 2002]. For example, the label (column head) “apples” would represent entries of 

type apple. The “apples” label gets propagated to other formulas that use this value, and 

the labels are combined in different ways depending on the operator. The program can 

then be checked against these units for consistency. To illustrate, consider the spreadsheet 

in Figure 8, using the UCheck system [Abraham and Erwig 2004, Abraham and Erwig 

2007a]. Because a column is labeled “Apples,” the entries in that column can be consid-

ered of unit Apples.  The approach begins with an analysis of spatial layout, also taking 

into account referencing relationships in formulas, to determine the relationships among 

header labels for rows and columns, their relationship to data entries, and how far in the 

spreadsheet these labels apply.  Because the row labeled “Total” contains sums of the 

“Apples” entries, the system decides that “Total” marks the end of the “Apples” column.  

The system can also reason about transformations that happen through formula opera-

tors/function calls, such as inferring that the sum of two Apples entries is also of type 

 

Figure 8. The UCheck system for inferring units from headers. The arrows represent unit inferences based on 
the column and row labels [Abraham and Erwig 2007b]. 
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Apples, even if it is not in the Apples column. These inferences can be crosschecked for 

contradictions, and, just as in type inference, these contradictions are strong indications 

of logic errors.  For example, if the sum of two Apples entries occurs in the middle of the 

Oranges column, the system could consider this to be a case of conflicting type informa-

tion and generate a unit error. Empirical studies suggest that end users are successful at 

using these features to detect errors [Abraham and Erwig 2007b]. 

Another form of internal consistency checking is statistical outlier finding, which in-

volves identifying invalid data values that are mixed among a set of valid values. Miller 

and Myers [2001] used this approach to help detect errors in text editing macros. Scaffidi 

[2007] developed a similar algorithm that infers a format from an unlabeled collection of 

examples that may contain invalid values. The generated format is presented in human-

readable notation, so end-user programmers can review and customize the format before 

using it to find outliers that do not match the format. Raz et al. [2002] used anomaly de-

tection to monitor on-line data feeds incorporated in web-based applications for possible 

erroneous inputs. All of these approaches use statistical analysis and interactive tech-

niques to direct end-user programmers’ attention to potentially problematic values. 

 

Figure 9. A “data dependency flow” of a spreadsheet’s dependencies. Reproduced from [Ballinger et al. 2003] 
with permission from authors. 
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3.4.5. Visualizations. Another way to check the correctness of a program is to visual-

ize its behavior. Visualization tools enable end-user programmers to apply their knowl-

edge of correctness to certain features of their program’s behavior. For example, Igarashi 

et al. present comprehension devices that can aid spreadsheet users in dataflow visualiza-

tion and editing tasks, and finding faults [1998]. More recent spreadsheet visualization 

approaches include detecting semantic regions and classes [Clermont 2003, Clermont and 

Mittermeir 2003, Fisher et al. 2006b], ways to visualize trends and “big picture” relation-

ships in spreadsheets that elide a number of low-level details [Ballinger et al. 2003] (see 

Figure 9); and visual auditing features in which similar groups of cells are recognized 

and shaded based on formula similarity [Sajaniemi 2000]. This latter technique builds on 

earlier work on the Arrow Tool, a dataflow visualization device proposed by Davis 

[1996]. 

While most of these visualization tools have been created for the spreadsheet para-

digm, there is a growing interest in allowing users to test and verify the behavior of ma-

chine learning algorithms. For example, Talbot et al. [2009] describe a system that allows 

users to partition data, view weights on different classifiers, and use a confusion matrix 

visualization to assess the behavior of the resulting classifier. Like the spreadsheet visu-

alizations, this system focuses on portraying more global trends in the program behavior. 

3.5. Why is My Program Not Working? —Debugging 
Whereas verification and testing detect the presence of errors, debugging is the process of 

finding and removing errors. Debugging continues to be one of the most time-consuming 

aspects of both professional and end-user programming [LaToza et al. 2007, Ko et al. 

2005, Ko et al. 2007]. Although the process of debugging can involve a variety of strate-

gies, studies have shown across a range of populations that debugging is fundamentally a 

hypothesis-driven diagnostic activity [Brooks 1977, Littman et al. 1986, Katz and Ander-

son 1988, Robillard et al. 2004, Gugerty and Olson 1986, Wiedenbeck 2004, Ko and 

Myers 2004b]. What makes debugging difficult in general is that programmers typically 

begin the process with a “why” question about their program’s behavior, but must trans-

late this question into a series of actions and queries using low-level tools such as break-

points and print statements [Ko and Myers 2008b].   

A number of issues make debugging even more problematic for end-user program-

mers. Many lack accurate knowledge about how their programs execute and, as a result, 

they often have difficulty conceiving of possible explanations for a program's failure [Ko 
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and Myers 2004b]. Furthermore, because end users often prioritize their external goals 

over software reliability, debugging strategies often involve “quick and dirty” solutions, 

such as modifying their code until it appears to work. In the process of remedying exist-

ing errors, such strategies often lead to additional errors [Ko and Myers 2003, Beckwith 

et al. 2005a]. 

Although prior studies of debugging have focused on a broad set of domains and lan-

guage paradigms, the technologies to support debugging have generally focused on 

spreadsheets and event-based imperative languages. In this section, we organize ap-

proaches to supporting debugging in light of this historical bias and discuss their potential 

to generalize beyond these paradigms. 

3.5.1. Analyzing dependencies. Dependencies in a program’s execution can involve 

control dependencies (such as a statement only executing if a particular condition is true) 

and data dependencies (such as a variable’s depending on the sum of two other variables) 

[Tip 1995]. Such dependencies are the basis of a number of end-user debugging tools. 

One approach in the spreadsheet domain is an extension to the WYSIWYT testing 

framework, which was discussed in Section 3.4 [Ruthruff et al. 2005b]. To illustrate, see 

Figure 10 and recall the grades spreadsheet example in Figure 7. Suppose in the process 

of testing, the teacher notices that row 5’s Letter grade (“A”) is incorrect. The teacher 

indicates that row 5’s letter grade is erroneous by “X'ing it out” instead of checking it off. 

Row 5’s Course average is also wrong, so she X’s that one, too. As Figure 10 shows, 

both cells now contain pink (gray in this paper), but Course is darker than Letter because 

Course contributed to two incorrect values (its own and Letter’s) whereas Letter contrib-

 

Figure 10. After the teacher marks a few successful and unsuccessful test values, the system helps her narrow 
down the most likely location of the erroneous formula [Ruthruff et al. 2005b]. Original figure obtained from 

authors. 
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uted to only its own. These colors reflect the likelihood that the cell formulas contain 

faults, with darker shades reflecting greater likelihood. Although this example is too 

small for the shadings to contribute a great deal, in one study, users who used the tech-

nique on larger examples did tend to follow the darkest cells and were better at finding 

bugs than those without the tool [Ruthruff et al. 2005a].   

To determine the colors from the X marks, three different algorithms have been used 

to calculate the WYSIWYT-based fault likelihood colorings [Ruthruff et al. 2006].  All 

three are based on variants of program slicing [Tip 1995]. The most effective algorithm is 

based on the sheer number of successful and failed test cases that have contributed to a 

cell's outcomes [Ruthruff et al. 2006]. Ayalew and Mittermeir [2003] devised a similar 

method of fault tracing in spreadsheets based on “interval testing” and slicing. This strat-

egy reduces the search domain after it detects a failure, and selects a single cell as the 

“most influential faulty”. It has some similarities to the assertions work presented in Sec-

tion 3.2.3 [Burnett et al. 2003], but it not only detects the presence of possible errors, but 

also what cells are most likely to contain faulty formulas. 

A new class of tools based on question asking rather than on test outcomes has re-

 

Figure 11. The Whyline for Alice. The user has asked why Pac Man failed to resize and the answer shows a 
visualization of the events that prevented the resize statement from executing [Ko and Myers 2004a]. Original 

figure obtained from authors. 
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cently emerged and has proven effective. The first tool to take this approach was Ko and 

Myers’ Whyline [2004a], which was prototyped for the Alice programming environment 

[Dann et al. 2006] and is shown in Figure 11. Users execute their program, and when 

they see a behavior they have a question about, they press a “Why” button. This brings up 

a menu of “why did” and “why didn’t” questions, organized according to the structure of 

the visible 3D objects manipulated by the program. Once the user selects a question, the 

system analyzes the program’s execution history and generates an answer in terms of the 

events that occurred during execution. In a user study, the Whyline reduced debugging 

time by a factor of 8 and helped users get through 40% more tasks, when compared to 

users without the Whyline [Ko and Myers 2004a]. In a similar approach, Myers et al. 

[2006] describe a word processor that supports questions about the document and the 

application state (such as preferences about auto-correction and styles). This system en-

abled the user to ask the system questions such as “why was teh replaced with the?” The 

answers were given in terms of the user-modifiable document and application state that 

ultimately influenced the undesirable behavior. Recent work has shown that these ques-

tion-asking tools, particularly those that answer “why” questions, can help users under-

stand software behavior more accurately and more in-depth than systems that support 

“what if” and “how to” types of questions [Lim et al. 2009]. 

3.5.2. Change Suggestions. An entirely different approach to debugging goes a step 

further in automation. GoalDebug is a semi-automatic debugger for spreadsheets [Abra-

ham and Erwig 2007a] that allows the user to select an erroneous value, give an expected 

value, and get a list of changes to the spreadsheet’s formulas that would result in the cell 

having the desired value. Users can interactively explore, apply, refine, or reject these 

change suggestions. The computation of change suggestions is based on a formal infer-

ence system that propagates expected values backwards across formulas.  Empirical re-

sults so far showed that the correct formula change was the first suggestion in 59% of the 

cases, and among the first five in 80% of the cases [Abraham and Erwig 2007b]. Of 

course, there will certainly be situations with such tools where the necessary change is far 

too complex for the system to infer. This approach also suffers from the oracle problem 

(Section 3.4.1), because it assumes that users can specify correct values. 

3.5.3. Sharing Reasoning. Given the variety of debugging tools that both detect and 

locate errors in spreadsheets, recent work has developed ways to combine the results of 

multiple techniques. For example, Lawrance et al. [2006] developed a system to combine 

the reasoning from UCheck [Abraham and Erwig 2004] and WYSIWYT [Ruthruff  et al. 
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2005b]. The combined reasoning demonstrated both the importance of the information 

base used to locate faults and the mapping of this information into visual fault localiza-

tion feedback for end-user programmers, replicating the findings of [Ruthruff et al. 

2005a]. They found that UCheck's static analysis of the spreadsheet effectively detected a 

narrow class of faults, while WYSIWYT (which was driven by a probabilistic model of 

users derived from previous work [Phalgune et al. 2005]) detected a broader range of 

faults with moderate effectiveness, and that certain combinations of the two were more 

effective than either alone. Additionally, by manipulating the mapping, they were able to 

improve the effectiveness of the feedback. 

3.5.4. Social and Cognitive Support. Aside from using tools to help end users debug, 

there are other approaches that take advantage of human and social factors of debugging. 

For example, a study of end-user debugging found that when end users worked in pairs 

rather than alone, they were more systematic and objective in their hypothesis testing 

[Chintakovid et al. 2006]. This approach was inspired by similar research on the benefits 

of pair programming for professional programmers. 

Kissinger et al. [2006] categorized people’s comments during a debugging task in the 

lab, finding a number of questions that people ask of themselves, including “Am I smart 

enough?” “Is this the right value?” and “What should I do next?” These questions dem-

onstrated the importance of supporting the individual’s questions about planning and 

their meta-cognitive strategies, not just their questions about the debugging problem it-

self. These findings led to a video-based approach to teaching debugging strategies, in 

which a user could ask for help from videotaped human assistants [Subrahmaniyan et al. 

2007, Grigoreanu 2008]. In the study of this approach, participants chose better debug-

ging strategies as a result of viewing the videos in the context of their problems, and had 

correspondingly more success at debugging. 

4. CROSS-CUTTING ISSUES IN END-USER SOFTWARE ENGINEERING 

As illustrated in the previous sections, there has been significant progress in understand-

ing and relieving the software engineering challenges that arise when people engage in 

end-user programming. However, in addition to this collection of studies and technolo-

gies, researchers have also explored several crosscutting issues that affect the degree to 

which people engage in software engineering activities or use software engineering tools. 

For example, in addition to intent, there are many other factors that distinguish end-user 

programming from professional software development. There are also many issues in 
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how well tools can generalize across paradigms and user groups. Additionally, simply 

creating EUSE tools is not enough: users must see the value in using them and they must 

be able to use them effectively, despite individual differences in strategy. In this section, 

we organize prior work on these issues and discuss the potential for future work. 

4.1. Risk, reward, and the role of domain 
While our definitions of end-user programming and end-user software engineering draw 

a clear line at the intent behind programming, this definition almost certainly does not 

capture the diversity of programming activities in the world. Some researchers have be-

gun to document programming activities in different domains [Scaffidi et al. 2006, Scaf-

fidi et al. 2007a, Rosson and Kase 2006, Wiedenbeck 2005, Carver et al. 2007, Segal 

2007, Myers et al. 2008, Petre and Blackwell 2007], finding that a wide range of people 

are engaging in programming to support their work or hobbies and not all of them are 

novice programmers. Some are skilled professionals, such as scientists and analysts, who 

also happen to have programming skills that they can apply to their work. It may not be 

meaningful to group these professionals together with novice programmers with similar 

intents, but different perceptions around learning new tools and a different willingness to 

redefine their work practices. 

Part of what underlies this distinction is that people vary in their tolerance and per-

ceptions of risk and reward. For example, some teachers may not be willing to learn a 

new testing tool because they may not see the eventual payoff or may be skeptical about 

their own success. A financial analyst faced with performing thousands of manual trans-

actions may see the situation differently. The costs involved in learning how to automate 

a task may be so high that it may seem more economical to find a manual alternative (or 

to persuade someone else to write the program). Blackwell’s Attention Investment model 

[Blackwell and Green 1999, Blackwell 2002] provides a cognitive model of these in-

sights, describing individuals’ allocations of attention as cognitive “investments.” Ac-

cording to the model, a user weighs four factors (not necessarily explicitly) before taking 

an action: (1) perceived benefits, (2) expected pay-off, (3) perceived cost, and (4) per-

ceived risks. For example, imagine that an administrator in a small art museum might be 

considering adopting one of the spreadsheet verification tools in Section 3.4.2 to detect 

errors, because of recent problems in inventory tracking. The administrator might see a 

benefit in that the enhancement would allow her to find and fix errors more quickly. The 

expected pay-off is that inventory tracking will be dependable thus relieving her from the 
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additional effort of supplementary audits. The perceived cost is that she will have to 

spend time learning to use the new features, while the perceived risk is that the features 

do not aid her enough to make it worth her effort. According to the Attention Investment 

model, her decision is based on a calculus of these factors. Some end-user programming 

techniques have attempted to support this decision making by measuring a trade-off point 

(for example, how many items must be processed manually before the time saved is more 

than that needed to author the automation [Stylos et al. 2004, Miller and Myers 2001]). 

The irony of attention investment is that even this careful thought involves the in-

vestment of attentional effort. It might even be the case that truly rigorous analysis of 

requirements can be more costly than writing another program (a phenomenon that 

plagues the advocates of formal specification languages). Users who have a choice be-

tween programming or manual procedures are likely to avoid such careful analysis of 

requirements not because they are lazy or careless, but simply because it would be a poor 

investment of attention to do so much thinking in advance, rather than making iterative 

adjustments or simply reverting to manual procedures. A further risk in the attention in-

vestment equation is that the program may malfunction, failing to bring the anticipated 

benefits of automation, or perhaps even resulting in damage. The effort involved in test-

ing or debugging to avoid this eventuality is yet another investment of attention. 

In addition to differences in perceptions of risk and reward, the domain of practice 

can also have a significant influence on how willing users are to engage in software engi-

neering activities. For example, the domain complexity, or the types of concepts modeled 

by software, can vary in nature. Weather simulations, for instance, are likely more com-

plex than a teacher’s grading system and are likely to involve different types of computa-

tional patterns and different software architectures. A related factor is an end-user pro-

grammer’s domain familiarity. This is the difference between a banker writing banking 

software and a professional programmer writing banking software. The banker would 

have to learn to program, whereas the professional would have to learn banking concepts. 

The domain for which a program is written and its underlying characteristics, are a fun-

damental part of Sutcliffe’s exploration of reuse [Sutcliffe 2002], in which he describes 

the role of granularity (how “large” an abstraction is) and abstraction (how it is parti-

tioned). Both of these factors can influence how easily code can be appropriated for a 

particular task. 

Finally, people in different domains of practice may also collaborate differently. Pro-

fessional developers work in teams [Ko et al. 2007], which can change the constraints on 
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programming decisions, but this is often not the case in end-user programming. Teachers 

may work alone [Wiedenbeck 2005]; designers may work with other developers [Myers 

2008]; web developers may work with users [Scaffidi et al. 2007]. The cultural values 

around software development itself can also vary, influencing tool adoption and motiva-

tions to invest in learning software engineering concepts [Segal 2005]. Further, the end 

user’s organizational context imposes constraints and values of its own [Mehandjiev et al. 

2006]. 

4.2. Persuading people to use EUSE tools 
Given the discussion in the previous section, and the lower priority of software engineer-

ing concerns in end-user programming, getting users to use EUSE tools at all is a signifi-

cant challenge. End users may be reluctant to use new, unknown features of a system, 

because they may perceive the features as risky or unhelpful [Blackwell 2002]. Further-

more, because many people who engage in end-user programming lack training in soft-

ware engineering principles, they may not see immediate, or even long-term value in us-

ing software engineering tools. 

One approach to this problem is to train end-user programmers about software engi-

neering and computer science principles rather than (or in addition to) trying to design 

tools around end users’ existing habits. Some of the tools discussed in this survey have 

the side effect of training users, but do not explicitly intend to train. For example, a cen-

tral issue in many of the tools described in this survey is the tension between formality 

and accessibility. With more explicit requirements, tests, and verifications, come more 

precise analysis, but more difficulty in expression (a related concept is provisionality 

[Green et al. 1996], which is the ability in a tool or notation to express things tentatively 

or imprecisely). Although this paper has demonstrated notations that are both accessible 

and precise, there are only a few such examples [Beckwith et al. 2005b, Gross and Do 

1996] and no work has assessed to what extent end users learn more general principles by 

using these technologies. 

Some work has attempted to explicitly train end users in software engineering and 

computer science principles. Umarji et al. [2008] explored one approach, focusing on 

teaching quality assurance, reuse, and documentation best practices, but the training’s 

influence on software quality is not yet known. The authors do suggest, however, that 

training may help end users make more informed decisions about when and when not to 

engage in software engineering activities, relative to their goals and priorities. Perhaps 
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professional software developers develop similar instincts through experience and these 

instincts could be distilled into advice that can be taught. 

An alternative to explicitly training users in principles is to find “teachable moments” 

to provide a concrete, contextual illustration of the benefits of software engineering ideas. 

Surprise-Explain-Reward [Wilson et al. 2003, Robertson et al. 2004, Ruthruff et al. 2004] 

is one such approach, aimed at changing end-user programmers’ perceptions of risk and 

reward. The strategy consists of three basic steps: 

1. Surprise the user in order to raise curiosity about a feature,  

2. Provide explanations to satisfy the user’s curiosity and encourage trying out the fea-

ture, and 

3. Give a reward for trying the feature, encouraging future use of the feature. 

A simple example of Surprise-Explain-Reward is enticing users to try out the 

WYSIWYT testing features [Ruthruff et al. 2004], described in Section 3.4.2. One of the 

best ways to surprise users and get their attention is to violate their assumptions. For ex-

ample, the red border in cell Exam_Avg in Figure 12 (grey in this paper) may be surpris-

ing if the coloring is unexpected. If the user hovers over the surprising red cell border, a 

tool tip pops up with an explanation that “0% of this cell has been tested,” a passive form 

of feedback that allows, but does not require, the user to attend to it [Robertson et al. 

2004]. The user may respond by examining the cell value, deciding that it is correct, and 

placing a checkmark (√) in the decision box at the upper right corner of the cell. As de-

scribed in Section 3.4.2, this decision results in an increase of the cell’s testedness, 

changing its color, and more importantly, an increase in the progress bar (at the top of 

Figure 12). Some of these rewards are functional (e.g., carrying out a successful test), and 

others are perceivable rewards that do not affect the outcome of the task (e.g., the pro-

gress bar that informs the user how close he or she is to completing the testing). Research 

has shown that such perceivable rewards can significantly improve users’ understanding 

and performance [Ruthruff et al. 2004]. 
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The same Surprise-Explain-Reward strategy was used in designing the assertions de-

scribed in Section 3.2.2. An empirical study of the feature [Wilson et al. 2003] found that 

although users had no prior knowledge of assertions, they entered a high number of asser-

tions and viewed many explanations about assertions. Use of assertions was rewarded by 

more correct spreadsheets, as well as users’ perceptions that assertions helped them to be 

accurate. 

One danger with such an approach may be that users may “game the system,” using 

the system and its features in order to achieve goals, such as coloredness, other than the 

intended one, namely correctness. This has been observed in studies of computer-based 

learning environments [Baker 2007], where the primary goal is learning, but some stu-

dents learn how to manipulate the system to avoid learning. In the case of WYSIWYT, 

this might mean checking off all of the cells as correct without actually assessing the cor-

rectness of the cells’ values, just to attain 100% testedness. Users might do this because 

they do not understand the meaning of the system’s feedback, or possibly because the 

system makes it difficult to avoid using a feature. Because of this possibility, the apho-

rism of “garbage-in garbage-out” comes into play. In lab studies, this behavior was not 

enough to outweigh the effectiveness of WYSIWYT in helping users find errors [Burnett 

et al. 2004]. 

 

Figure 12. The Surprise-Explain-Reward strategy in Forms/3. The changing colors surprise users, the tooltips 
explain the potential rewards, and the further changes in colors and the percent testedness bar at the top are the 

rewards [Wilson et al. 2003]. Original figure obtained from authors. 
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4.3. Self-efficacy, gender, and strategy in EUSE tool use 
Even if one accounts for perceptions of risk and reward and makes a significant effort to 

train users about the benefits of a software engineering mindset, there is some evidence 

that personal factors such as self-efficacy and problem solving strategies can significantly 

influence how effective EUSE tools are at ensuring software quality. Researchers have 

only recently begun to consider the role of these individual differences [Beckwith and 

Burnett 2004, Grigoreanu et al. 2006, Beckwith et al. 2007, Subrahmaniyan et al. 2008, 

Grigoreanu et al. 2008]. 

Some of these investigations have been done in the context of self-efficacy, a psy-

chology construct that represents an individual’s belief in their ability to accomplish a 

specific task [Bandura 1977] (not to be confused with self-confidence, which refers to 

one’s more general sense of self-worth). Research has linked it closely with performance 

accomplishments, level of effort, and the persistence a person is willing to expend on a 

task [Bandura 1977]. Because software development is a challenging task, a person with 

low self-efficacy may be less likely to persist when a task becomes challenging or may 

calculate attention investment tradeoffs differently [Blackwell et. al. 2009]. 

One study considered the self-efficacy of males and females in a spreadsheet debug-

ging task and how it interacted with participants’ use of the WYSIWYT test-

ing/debugging features present in the environment [Beckwith et al. 2005a]. The result in 

this study and others that followed [Beckwith et al. 2006, Beckwith et al. 2007] was that 

self-efficacy was predictive of the females’ ability to use the debugging features effec-

tively, but it was not predictive for males. The females, who had significantly lower self-

efficacy, also were less likely than males to engage with the features they had been unfa-

miliar with prior to the study (regardless of whether the feature had been taught in the 

tutorial). Females expressed that they were afraid it would take them too long to learn 

about one of these features, but they actually understood the features as well as the males 

did. Because the females chose to rely on features they were familiar with already, they 

used formula editing rather than the debugging features to debug and, as a result, inserted 

more formula errors than the males.  

Another study considered gender differences in “tinkering,” a form of playful experi-

mentation encouraged in educational settings because of its documented learning benefits 

[Rowe 1978]. Research suggests that tinkering is more common among males [Jones et 

al. 2000, Martinson 2005, Van Den Heuvel-Panheizen 1999], especially in computing 

[Rode 2008]. Findings such as these prompted an experiment investigating the effects of 
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tinkering and gender on end-user debugging [Beckwith et al. 2006]. The results found 

that females’ tinkering was positively related to success, whereas the males’ tinkering 

was negatively related to success. This was because females were more likely to pause 

between their actions than the males were, leaving more time for analysis and interpreta-

tion of the changes that occurred due to their action. Also, males tinkered more and were 

less likely to pause. 

These gender difference results led to the design of a new variant of these features, 

which adds explicitly “tentative” versions of the WYSIWYT features, aimed primarily at 

benefiting low-confidence females [Beckwith et al. 2005b]. These changes also slightly 

raise the cost of tinkering, aimed at reducing males’ tendency to tinker excessively.  Fol-

low-on monitoring of feature usage showed encouraging trends toward closing of the 

gender gap in feature usage [Beckwith et al. 2007], and a lab study combining that fea-

ture enhancement with strategy explanation support showed significant reduction in the 

gender gap in feature usage and tinkering by improving females’ usage without negative 

impact to males [Grigoreanu et al. 2008]. 

In a separate line of research, Kelleher investigated issues of motivation in the domain 

of animations and storytelling [Kelleher and Pausch 2006]. The goal was not to identify 

gender differences in performance, but to identify design considerations that would moti-

vate middle school girls to tell stories using interactive animations. To do this, girls were 

asked to create detailed storyboards of stories they wanted to tell and annotate them with 

textual descriptions. Analyses of the storyboards revealed a small number of animations 

necessary to support storytelling, including speech bubbles for talking and thinking, 

walking, changing body positions, and touching other objects. These features resulted in 

most of the participants of a study sneaking in extra time during class breaks to work on 

their storytelling projects [Kelleher and Pausch 2007]. Kafai has also studied gender dif-

ferences in programming, but for a different audience in a different domain: ten-year-old 

children programming video games.  Her work reported significant gender differences in 

game character development and in the kind of game feedback that the children pro-

grammed [Kafai 1997].  

The implications of these findings on the design of end-user software engineering 

tools reach more broadly than just gender: it suggests that there are barriers to success at 

end-user software engineering activities for males and females. The body of work also 

suggests that the designs for features to support end-users can be done in a way that helps 

to remove these barriers, regardless of whether the person encountering them is male or 
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female. Future work should better understand not only these barriers, but also ways of 

detecting when such barriers are encountered. 

5. CONCLUSIONS 

Most programs today are written not by professional software developers, but by people 

with expertise in other domains working towards goals supported by computation. This 

article has offered definitions that distinguish this practice from professional software 

development and it has organized decades of research on incorporating requirements, 

design, testing, verification, and debugging concerns into users’ existing work practices. 

What we have found in our review is an early and in-depth focus on testing and de-

bugging in spreadsheets and imperative event-based languages. Recent work, however, is 

moving in several directions at once: (1) to more platforms and paradigms, including the 

web and mobile devices, (2) to explore a broader array of software engineering concerns, 

including specification and reuse, and (3) to a focus more broadly on application do-

mains, rather than language paradigm alone. The web in particular is becoming a domi-

nant platform on which to study and support end-user programming, with much of the 

work occurring in the past few years [Little et al. 2007][Macias and Paterno 

2008][Nichols et al. 2008][Toomim et al. 2009]. This is probably due to the rapid in-

crease in the use of the web (as opposed to offline desktop applications) to support com-

putational work. 

In general, this recent surge in the diversity of end-user software engineering research 

is both a blessing and a curse. The sheer diversity of domains that researchers are study-

ing may lead researchers to find that the truly difficult problems in end-user software 

engineering arise from the domain itself, and not from the software engineering chal-

lenges. If this is the case, research in end-user software engineering will likely shift to 

better understanding particular domains of practice, rather than on particular paradigms 

or technologies. However, this diversity is also an opportunity: if among these widely 

diverse domains of practice there are fundamental software engineering challenges, the 

field of software engineering research has the opportunity to dramatically improve the 

broader use of computational tools in human endeavors. 

Part of this challenge is to consider the generalizability of software engineering tools. 

For example, do these groups need different fundamental software engineering support, 

or do they just need software engineering support tailored to their domain of practice? 

For example, the Whyline [Ko and Myers 2004a], which began as a debugging tool for 
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end-user programming of animations in the Alice environment, was successfully adapted 

for professional Java programmers [Ko and Myers 2008a]. The differences between these 

two approaches are not in the larger concept, but in how the concept was tailored to the 

differing information needs of the two target user populations. Other tools, such as the 

testing and verification approaches described in Section 3.4, transform “batch” testing 

techniques to incremental approaches. Others still are traditional concepts that exploit 

properties of a particular language or the types of programs created with a language (for 

example, exploiting the layout of spreadsheets in a grid). Therefore, it is possible that the 

primary challenges in tool design are not fundamental conceptual differences in software 

engineering, but the adaptation of these concepts to particular domains of practice and 

differing priorities. This makes the previously mentioned work on motivation even more 

important, in that the adaptations may be primarily in reframing the presentation and in-

teraction of more general software engineering tool concepts. 

 Another type of tool generalizability is the extent to which software engineering con-

cepts can transfer between paradigms. For example, the notion of interrogating program 

output [Ko and Myers 2004a] was adapted to the spreadsheet paradigm [Abraham and 

Erwig 2007] successfully, but the two prototypes have a number of differences. For ex-

ample, the Whyline focused on finding the code that caused or prevented a particular out-

put. In contrast, in spreadsheets, finding the formula that caused a problem is generally 

trivial. Instead, Abraham and Erwig transformed the concept from one of asking ques-

tions to one of stating an expected value. The implementations of these systems were 

non-trivial and have little in common. Therefore, it is possible that while the general con-

cepts involved in bringing software engineering concerns to end-user programming may 

generalize, very little else may transfer. Future work will reveal to what extent ideas that 

support other aspects of software engineering, such as specification and reuse, can gener-

alize between paradigms and domains. 

Finally, in all of this research, it is important to remember that the programs that end-

user programmers create are just small parts of the much larger contexts of their lives at 

work and at home. Understanding how programming fits into end users’ everyday lives is 

central to not only the design of the EUSE tools, but our understanding of why people 

program at all. The research on motivations and perceptions presented in Section 4 is just 

a glimpse of the contextual factors that influence programming activity. We expect that 

future work will discover and explain an even greater number of these factors and better 

inform the design of end-user software engineering tools.  
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