1,

~denoted ". , remains at zero during execution of immediate!

FLCEL NFINIANCY

——en—

BON USER’S MANUAL
February 1, 1969
K. L. Thompson '
as told to ' b
M. D. McIlroy
R. Morris

H

Introduction

Bon is an interactive language. It uses concepts from
Several other languages, but it has a distinctive flavor of
its own. Because elaborate computations can be performed
with a small set of elementary constructs, Bon is a pleasant

and quite interesting language to use. It is a new

language, so comments will be welcomed.

2. Statement ' S ; j B f' SR _'ﬂ fw

2.1 Statement seguencing

| i
Bon executes statements one at a time, either immed iately.

from a typewriter or from a stored program, whose |

statements are numbered sequentially. A statement counter,f

statements, During execution of the stored program, the
statement counter counts upward after each statement has
been executed, Transfer of control may be effected by

assigning to .o . Normal statement sequencing is
interrupted by calling or returning from a function or when
an execution fault is encountered. For example, the Bon
statement :

. =0

will always place Bon in the immediate mode, and

will cause an infinite loop if it appears in the stored

program but has no effect if immediate. (":=" is the
assignment operator,)

2.2 Statement forms

Every Bon statement occupies one line. The simplest kind of
statement consists of a single expression:

PAGE 2

3

oo X
o o0 oo 4

5
(a := a+l) + a
(b

nt + print(a))

pr

The first statement, although legal, has no effect, since
the value of an expression occurring as a statement is
discarded. The second example is an ordinary assignment,
The third example shows that an assignment is a legitimate
component of an expression. The value of an assignment is
the value"of the expression on its right, The builtin
function print(...) prints the value of its argument as a
line of output and returns as its value the string value of
its argument, The fourth example thus prints two 1lines of

" ‘

output, 6" and "12

A statement may be prefixed with any number of identif iers,
each follwed by colon: ! i

joe: x 1= x + 3

Control may be transferred to the Statement labeled by "joe"

by the assignment

. :=‘joe

Any statement may be suffixed with one of these clauses:

;y while ...

H until ¢ o0

s 1f ...

; Uunless ,..

y init ...
In each case "..." stands for an expression, A suffixed
statement may have a suffix; thus any number of suffixes
are permitted, While and until specify congitiona%
repetition of the suffixegd statement; if and unless
specify conditional execution. Thus

i:=0

print(i := i+l); while i<l0

prints the integers 1 to 10. The termination test is made
" nare each repetition, including the first, The same thing

¢ .2 have been written in other ways,

i:=0
print(i := i+l); until i=10

print(i := i+ 1) while :afu"init

’

T S
B e e
BT Ry D
AT A

: FUR LT
i:=0 e

" PAGE 3

Suffix "init” specifies that the following expression is to
be executed before execution of the suffixed statement,
This facility makes possible quite elaborate comput at ions in
one line of code executed immediately, Init also makes it

posssible to supply initial values after the body of a loop
has been written. : .

3. Data
3.1 Data types

—

Quantities are manipulated in Bon (as in most languages)

by
referring to their names, Names commonly appear in programs
as identifiers or as subscr ipted identifiers. It is also

possible for the value of an expression to be a name. A

value may be assigned to a name whether that name is given |
an identifier or is computed. Identifiers consist of upper
case letters, lower case letters, digits, underlines, and

overstruck characters in these four classes; an identifier
may not begin with a digit,.

The type of any variable is determined dynamically rather
than by declaration. A variable has the type of the

‘quantity that was last assigned to it. There are 7 types of

data values: 1.

| ar it hmet ic

pointer

label

string

boolean

null

builtin

Every assignment has the form
name := value

If the expression on the right is actually a name, then its

current value is obtained before the assignment is made. A
name, such as the expression '

X
2ppear anywhere within an expression, but subexpressions
X 1= X
" has .the same value, can o

e a value had been assigne’ o X, while the latter two

' appear where ‘a value "is
.. Moreover the former exp.- ~ilon might make sense even -

o\
‘\plb\{‘f"k
~al!

: e -

el

i

PAGE 4

would not,

Arithmetic type : .
Arithmetic variables are either fixed or floating number s,
but the distinction should seldom be of concern. The type

of an arithmetic value can be forced by one of the built-jin
functions "fixed(...)" or "float(.,..)"

L]

Arithmet ic constants, look like Fortran constants, except
that integer—valueg gonstants without decimal points are
always fixed, and "+" is not allowed in exponents, Examples

1268 fixed
3.14152 float
10e3 fixed
e-2 float
.) . . v Lt . . .
[;he variable pi ztorts out with a sultable initial value,

Pointer type

The value of a2 pointer wvariable is a name, Indirect
addressing, i.e, extracting the value of a yuantity named by
a pointer is done by the uagry operator * ., The inverse of
this operator is the unary & , which yields a value that is

the name of its argument, Thus
a := &b
*a := 100
print(b)

"

prints 100", Indeod "#ga=a” is always true in Bon.

Label type

Labels refer to statements, and unlike statement numbers,
they remain firnmly sttached even though other statements are
inserted or deleted from progrems. A variable may receive a
label value by appearing as the prefix of a statement, The
assignment is _made at the time the statement is typed in.
The quantity "," ig always of type label, For example

s := 0
i =
loop: 5 :1= 5 4+ ali] #p[i]
1= i+
. = loop

computes a dot product, though rather clumsily. (Square
brackets indicate subscripts,) LooP' here is not a
statement label in the traditional usage of other languages;
rather it is an ordinary variable that happens to have a

label for itz present value, It would be perfectly
reasonable later or to assign data of some other type to

loop , (Incidentally the loop weould break out to call the
typ@wziter‘when finall

Y a nonexistent_element,was}gccessed,),v,,,wbgy;

PAGE 5

Labels also serve to denote the entry points of functions.
Thus the expression ‘

process(x)

would invokg the fupction whose first 1line of code was
labeled by "process”. The expressions

are equally valid. The first invokes a function, whose
first line is to be read from the typewriter, with argument
a,b,c . The second picks the ith element from an array and
invokes it as a functicn with argument ' x .

string type | |

A string is an arbitrary sequence of ascii characters.
String constants may be written by enclosing ascii text that
does not contain newline characters in single quotes, or in
double quotes: :

print(Theta’s more neatly typed ‘©0°")

The identifiers "bs" and "nl" have string initial wvalues,
the ascii backspace and newline characters.

Boolean type

' There are only two Boolean values, Inigiallyn Bon assigns
~one to the name | true and the other to "false

L]

- Rull type .
There is a single null value denoted "()". Its principal
use is to supply empty arguments to function calls.

”

Builtin type »
Builtin functions are defined by code internal to Bon., The
names listed in Section 8 have builtin initial val ues,

List type
A list is a pair of values, or a pair of names. An element

of a list may also be a 1list, so general binary tree
structures may be constructed. A 1list is an expression,
thus

(x ==
i’. M

3),(y := 5)
i+1,loop

1] ”

are valid statements., (, is the list operator)

3.2 Arrays

Arrays in Bon have a comblétély éynamié'ﬁﬂferb?éfétiéﬁi ”fﬁéfﬁﬁ?hv*J

notation

PAGE 6

name[value]

stands for a distinct name, distinguished by a unique
combination of governing name and subscript value (cgmpargd
in the sense of ==, defined in 4,1). Thus All] ",

“Al1,2]", “A[1)[2]" fre all distinguishable names in Bon, as
are table[’cat’]”, table[“1°]", table[1] ",

3.3 Type conversions

The following table defines all legal converéions between
various types, Conversions may be caused by requirements on

arguments of builtin Ffunctions Oor by requirements on
operands of operators, :

- fixed float label String boolean

fixed | (1) (2) (3) (4)

float o (5) (6) (3) (4)

pointer (7)

label (83) (6) (9) (6)

string (10) (10)° (6) (6)

boolean (11) (6) (6) (12)

null (13)

- builtin }

. list ;
(1) Floating number of equal value,
(2) Label of line so nunbered, - .
(3) Convert to equivalent constant, prefixed by "-" jf
necessary. ‘
(4) Zero converts to false, all other values to true.
(5) Greatest integer not exceeding floating val uve.
(6) Convert via fixad, _
(7) "&" prefixed either to the name of the quantity pointed
to

» Or to the name of the array of which that guantity is an
element,

(8) The integer line number of the labeled statement,

(9) The line, as originally typed, to which the label is
attached.

(10) If the .String is an arithmetic constant, perhaps

prefixed by - » then the result 4is the corresponding
arithmetic value.

(11) 1 if true, © if false,

(12) LoFue if true, “false' if false.

(13) ()

4, Expressions

Expressions are made up of constants, of names, of unary and
binary operators, and of two kinds of parentheses, () and
(]". Parentheses serve their usual role of grouping,

Square parentheses “cause the value of “the. enclosed et

expression to be taken. In addition, round parentheses
surround the arguments of functions, and Sgquare parentheses

PAGE 7

surround the subscripts of arrays. The hierarchy of
operators, in increasing order of binding strength is

n

assignment
list formation
or
anrd
= equality comparison
>= > < <= < order comparison

i concatenat ion
mod

addit ion and subtraction
division
multiplication
exponentiat ion
unary plus, unary minus, pointer indirection,
string indirection, pointer Creation, not

R‘—-— -

B+ 33—V o
!

-~

- % § g

.

All binary operators associate from the left. = Thus the
following pairs are equivalent

a+b-c
a/b/c

1=h: =cC

ST T
n oo
U~
N ~—~—

/

N~
~ N~

-c
/c
)i=c)

The last pair is illegal, however, because in it a value
appears on the left of an assignment instead of a name.

Unary operators associate from the right, for example
~¥x means -(*x)

All operators expect values for their oper ands except

w'n ©eXpects its left operand to be a name
& expects a name

» Aaccepts both operands as names, in which case the
result is a name list, Otherwise the values of the operands
are taken and the result is a value list

4.1 Operations

Assignment =

he operator := linteracts with the whole language, so its
effect is described throughout this manual. In particular
its syntactic behavior is described in section 2, its

distribution over lists in section 4,2,

Assignment to ", " during the execution of any statement
suppresses the incrementation of . that would ordinarily
occur at the end of the statement.

Arithmetic operations v e e S S Sl
Binary arithmetic operators, + , - B S/, and ' all, .-

L] $. .
worX in a mathematically reasonable way. Each (except " t")

PAGE 8

demands operands of identical type, fixed or floating, and
converts both to floating if they differ. The result is of
the same type as the forced oper ands, except in the case of

/ which always yields a floating result. The wunary
operators + ang W demand arithmetic arguments. The
binary operator ! accepts operands of mixed type; its

result is fixed only if the first argument is fixed and the
second arqument is a non-negative fixed or floating integer.

The mod operation %" is defined by

a o means a - fixed(a/b)*b

”

‘'where "fixed(...) is the greatest integer function.

4 AYat 3y e
Legical operations . —

The operations &, 1" and convert operands to
Boolean., They behave in the usual way.

String ogerggggg
""
{

Concatenation @ || converts both arguments to strings and
gives the usual result,.

Equality comparisons

The operators "=~ and ""=" (not egual) work between pairs of
~values. If the values are of different type, both are

~converted to arithmetic type. The result of comparison is
~the expected Boolean value,

" "

%The operator == (identically ‘equal) tests both oper ands
- for identity in type as well as value, It is unique in not
ov '

distributing er , (see Lists below),

order ccmparisom§ . -
The operators >, >=, (greater than or equal to), >

(not greater than), "<", "<=" ""<" convert both arguments
to arithmetic unless both are strings, Arithmetic
comparison is dene algebraically, string comparison

lexicographically. The result is the expected Boolean.

Indirection operators

The operator w-“‘—'_"—-e'xpgcts a pointer argument and returns that

pointer as a name,

The operation "$" expects a string operand. The string is
interpreted as an identifier, and the result is the
corresponding name,

Pointer creation oneration

The operator & expects a name as argument., It returns a
pointer designating that name.

List creation

PAGE 9

The operator "," between two expressions makes a list, If
either operand is a value, both are made values, and the
result is a value list. Otherwise the result is a name

list. Comma like all other operators is left associative,
That is :

a,b,c means ((a,b),c)

4.2 Distributive laws
All unary operators and many builtin functions of one
argument, when applied to a list, yield a list of results of
elementwise applications of the operator:

~-(1,2,2) means -1

-2,-3

Subscripts distribute similarly over a list of names:
(a,b)[1,2] means all1,2],p[1,2)]

If any binary operator (other than "==") appears between two
lists, then the result is the same as a list of results of
the operator appearing pairwise between elements of the two
lists, As a consequence of the convention of left
association, pairing in incompletely parenthesized lists is -
done from right to left, If one list is shorter than the
other, its leftmost element is repeated enough to make wup
the difference., With one exception for := , this rule
applies even in the degenerate case where one operand is not
a list at all:

2%(a,b,c) means 2%a,2%p 2% ¢
(1,2)~(a,b,c) means l-a, 1-b,2-c
The operator "==" compares its operands for identity of

type, dimension (number of elements), and value, It is the
only operator that never distributes over . e
The operator " :=" with a list on the right and a nonlist on
the left causes the list to be assigned as a whole to the

name on the left. 1In other respects the distribution rules
for := are regular.

All the elements of a list are evaluated before the list is
vsed as a list of values, so that in particular

a,b := b,a
performs an interchange of two quantities, Even more

exotic, the code

Alt], 1,5 = j,al4],45 while 17=0; indt 4,5 :=1,0 .

PAGE 10

reverses the sense of a chain of links threading the vector
A from A[l] until a zero link is encountered.

5. Creation of a Bon program

Program input is accepted in two modes, immediate and
stored. Bon starts in the immediate mode in which every
statement is executed as soon as it has been typed. The
stored program is creategd by calling the builtin function

append(label)

This function causes following lines from the typewriter to
"be stored as program, just after the specified line. If the
label is null, the the storced code is appended to the end of
already stored toxt, . The end cf stored input mode L1s
signaled by the appearance of a line consisting of

alone.

For example, the following sequence starting in immediate

mode stores a two line program and then transfers to it
twice,

append()

start: print(‘no’ || A || A)
. =0

A,. := ‘nse’ start

A,. = ' no’,start

- The output of this fragment, which appears interleaved with
the last two inpu: lines, is

nonsgnse
IO nC no

Stored program may be modified by deletion as well as
appending. For this purpose there is a function

delete(label)

One could use this function *o wipe out the whole stored
program this way:

delete(l); while true
To print a stored statement, use the form
print(label)

This works because label-to-string conversion yields the
statement so labeled, Remembe;,.thoughr_thatwﬁwgur.n e

PAGE 11

print(2)

will print "2" 7o print line number 2, one must force a
label argument. The builtin "label does the trick:

print(label (2))
Bon can be terminated by typing
quit()

5.1 Entering Bon

. ‘ . " (]
.In Multics Bon is entered by typing bon at command level.
Bon acknowlaedgen bhefors actual typing of Bon statements may
begin, Bon way be put to work on a prepared program by

typing

bon pathname
The specified file hehaves as if it were the typewriter,
Once it reads beyond the end of the file, Bon reverts to the
typwriter for further input,

5.2 Typing conventions

Standard erase and kill conventions hold:

(eraée) - causes the immediately preceding character
- position, or blank string to be deleted

@ (kill) causes all preceding characters on the line to be
deleted, | ‘ ‘

On 1050 ﬁerminals, with the CTSS and Multics standard
typewriter ball (263), all syntactic characters except (]
are available, Escape conventions are

d< for [

é> for]
No escepes are required on model 37 teletypes. By
conventi

tion, the acute accent serves as a single quote,

" e " " ” (1] .
® and # and escapes (AN or ¢) in Bon text

> on system escape conventions, see Multics Console
Guidea,

Al) exrrors ecncountared during execution are reported to the
typewriter, After reporting, Bon gives control to the
typewriter by invoking statement O as a function

.
SRR e AR e,
N :

PAGE 12

Syntax errors are discovered while statements are being
input. All lines of input typed after a syntactically bad
line but before the error report are ignored. If append().

is in effect at the offending line, it remains in effect
after the report,.

Most diagnostics are reasonably self-explanatory. A few are
worth noting:

- "Major cycle loop” means 1000 statements have been
executed without returning to the typewriter, This guards
against interminable loops, To go on for another 1000

™w

statements, type “return()"

o . . » .
= Minor cycle loon rmeans 1000 Operations have been done
within one statement., The interrupted statement can‘t be
continued. ' '

- "Push” and "Pop” occur when Bon's bookkeeping goes awry.
These are temporary glitches, usually arising after other
errors. If Bon will continue at all, you can be confident
that no data has been messed up.

- "Label not current” means that control has gone to a line

that does not exist, A retyped line, even with the same
identifier, has a new label.

Dumping P
- The namelist, i.e. all the current identifiers, can be
printed by executing '

durap ()

If the "full” option (see next paragraph) is on at the time
of dumping, then the following information will be printed
for each variable in addition to its name,

type

value, if an

LSubscripted , if subscripted versions of this name exist
associated , if the current name is associated

To dump selected variables, say "a,b,c", in full option
execute dumnp with an argument:

dump(a,b,c)
Execution modes

There are several diagnostic mocdes, which can be switched on
and off in alternation by execut ing

ot ion(mode):

PAGE 13

where "mode” is a string that names one of these modes:

space cause print” to use space instead of comma
between elements of printed lists

full cause full informatign about each identifier to
be printed by dump()

The normal setting of all options is off.

6. Functions

Besides builtin functions, Bon allows functions defined by
prograrm, Labels mark the starting point of function
executions, and return(,..) marks the end. The extent of

a function is thus deternined by £low of control rather than
reran or Algol.

syntactically a3 in &
Function invocation is indicated in the form

label (...)

"

where "..." is an expression or null. A previous example
could have been written functionally this way

append() ‘

start: print(‘no’ || A || A), return()

(A := "nse’), start()

ce oo

1
(A := " no”), start()

As before the interleaved output would be

nonsense
nod no no

A function‘mgy return a value, which is specified as the
argqument of return(...) . Functions may have parameters,
Parameters (but not only parameters) are said to be
associated with each level of function invocation. New

associated names can be created by wuse of the builtin
function :

assoc(...)

where "..." is a name or a 1list of names. "Assoc(...)"
pushes previous syntactically identical names down cut of
the way and creates new names, The function value of

assoc(...) 1is the new name, or list of new names.

Upon return from a function level, its associated names
disappear and the previous ones are restored.

The entire list of parameters cin be accessed by means of " "
P Y L

P

¥

PAGE 14

param(0)

("Param(i)” for i>0 Fetches the parameter, often a list, for
the ith preceding function level,)

"Assoc(...)" is a convenient way to get working storage
within a function. For example, a function which expects a
parareter with three elements, could split L,the items out

into three temporary variables named "a , b, c by the
simple line of code

assocl(a,b,c) := param(0)

. " ’” . :

This works because the value of assoc(a,b,c) is a list of
- \ . - [1} 11} . .

names, and tha value of param(0)” is a list. The trick is

so useful that iv hasg besn defined as a builtin function

entry(...)

Here is an entire program to transform polar to rectangular
coordinates: '

rect: entry(r, @) v
return(r*cos(8), r*sin(9))

If a function needs temporafy storage for guantities other

than parameters, assoc(...) comes in handy. Here 1is a

complete program to compute sin(x) by the Taylor’s series

sin(x) = x*(1 - (x*k/Z*B)*(l - (x*x/4%5)% (1 -

LA N 2

At first blush forbidding, such things turn out to be easy
to write:

sin: entry(x)
assoc(s,t,n) := x,1
S:=s+(t:=-t*x12/(n+l) (n:=n+2)); until s+t=s
return([s])
Several points are worth noting: "
- The expression assoc(s,t,n):=x,1 , Which obtains ang

initializes workin storagea means just the same
on 14 J

as
assoc(s,t,n)r=x,x,1 .

"

- Partial sums are computed in "s » individual terms in "t".
The repetition condition "until s+t=s stops things when t
gets so small that it no longer makes any difference, This
formul at ion depends on floating point ar ithmet ic, and is not
equivalent to the nonsensical condition until t=0 ,

- The unusual argument in "return([s])” is intended to force

a value, This is necessary, because. re;g;n(.,,)h'gs,ﬁqu;;eHHﬁ,,h--

happy to pass a name through unchanged., Since "s' @ ig

. S an
associlated variable, it is discarded upon return; to return

PAGE 15

its name would be to return a nonentity,

Most builtin functions Wof one argument, of which

assoc(...) and entry(...)" are examples, distribute over
lists like unary operators, The following complex
multiplication function makes significant use of this
convention,

cmult: entry((x,y), (u,v)), return(x*u-y*v, y*u+x*v)

Interesting things happen when functions return names, This

example returns the name of the larger of a list of two
elements:

max: assoc(x,y) := ¶m(O0)
return(¥*x); if #*x >= ¥y
return(*y)
(1} (1] .
The ,Jext statement us max(...) to increment the larger

of "a" ang "p"

.

\

max{a,b) :

1}

max({a,b) + 1

Recursion is legitimate. The following function finds the
maximur value in a tree structure. It depends on the
builtin function dlmen\...) , Which returns the number of
elements in its parameter,

max: entry(x,y)
x 1= max(x); if dimen([x])>1
y := max(y); if dimen([y])>1
return{[x]); if x>=y
return([y])

The curious arguments of return are once again caused by the
necessity of forcing a value, A clever way to do both
returns in one line, if the arguments are arithmetic, is

return((x>y)#*x + (x<=y)*y)

The former formulation is slightly more general, however,
because it works equally well on strings,

6.1 Useful prograns

The function change(a,b) causes the stored lines labeled a
through b to be deleted and accepts succeeding lines of
input to be stored in their place. As usual, input is

terminated by a line consisting of "L, change(a)" causes
a single line to be replaced,

cHange* assocc(x,a,b
(a), (s

“ix ed(param O))
Qn'l et e \]

whlle K<<= b

PAGE 16
append(a-1)
return()

The following line creates abbreviations *p(...)", "a(...)";
Q(eove) for three very common builtins

P,a,d := print,append,delete

PAGE 17

7. 0fficial syntax

The following BNF syntax has been written as briefly as

possible, Other syntactic matters are covered in the
succeeding informal description. '

statement ::= expression ! identifier : statement |
statement ; suffix
suffix ::= while svalue | until svalue | if svalue |
unless svalue | init expression

expression ::= name | value

name ::= , | idezntifier | name[value]! function '

name , name | § value | * value | (name)
value ::= constant | name ! function i value binop value !

unop value | & name | (value) !

name := value | [expression]

function ::= svalue (expression) ! svalue ()

constant ::= fixcon | floatcon ! stringcon | ()

fixcon ::= integer | integer e intecer

floatcon ::= real ! real e integer | real e - integer !
integer e - integer

real ::= integer . | integer . integer | . integer

unop = + | - |

binop::=A'&:or{={=}=={>}>=;>{<}<=}
<l cat | Lo+ b= /ey

identifier is a nonempty string of possibly overstruck upper

and lower case letters, digit and wunderline not-
beginninngith a digit,

svalue is a value that is not of type list
while, until, if | unlegs,"ln&t, or,.,cat, e are tb?" syw??%s

. . " . " N . "
L¥hile | “until , "if , Unless , init , i, T
e

integer is a nonempty string of digits

stringcon is an arbitrary string of characters exclud ing
newline bounded left and right by single or douwle

quotes, . Both quotesvmust,Abe ~the 3sameJgandjwmayg,notggg;gxﬁﬁb

appear within the string,

PAGE 18

Use of blanks An arbitrary number of blanks may appear
ad jacent to any syntactic category in the BNF, except that

- blanks may not appear within a fixcon or a floatcon,

- blanks must intervene between a suffix keyword (while,
until, if, unless, init) and a following identifier or
digit,

- blanks .M2y intervene between "(and an immediately
following),

8. Builtin functions

Each builtin demands an argument of the kind specified in
the description.“ Arcguments of othgr Xinds are converted

appropriately, Result is argument refers to converted
value of argument,

8.1 Unary functions

All of these functions generalize to list érguments in
the same way that unary operators do.

append(label) Store following packet of 1lines uw to ",

L]

after designated‘Store at beginning of program if
~argument is 0., = Store at end of program if
‘ -argument is null,
| i ‘
assoc(name) Create an associated variable for the name,
Result is new name.
booclean(boolean) Result is argument.,

builtin(string) Result is builtin function of specifed name,

cos(float) Result is cosine of argument.

delete(labﬁl) Causes designated statement *o be deleted from

stored program. Null argument causes last line to
be deleted. Result is null.

dump(name) Causes "full” dump of argument. I argument is
not a name, causes dump of entire namelist,
Result is argument.

entry(name) Same as expression "assoc(name) := param(0)".

exp(float) Result is exponential function of argument,

fixed(fixed) Result is argument,

float(float) Result is argument.,

index(string,string) searches for the second - string within -

the first string, Result is the character number

PAGE 19

of the beginning of the second string or 0 if the
search fails.

label(label) Result is argument,

length(string) Result is fixed, number of characters in
arqument,

log(float) Result is natural log of argument,
pointer(pointer) Result is argument,

size(string) Result is width of printed representation of
string.

option(string) Causes “he sense of the named option (see 5.)
to be reversad, Result is boolean denoting new
setting, true for on, false for off,

sin(float) Result is sine of argument,

string{string) Result is arqgument,

type(expression) Result is string denoting type of argument.

‘Values are boolean”, builtin®, "fixed", "float',
Llabel | , null list | pointer | string ,
undefined , '

8.2 Binary builtins

- atan(float,float) Result is arctan of two arguments, In
first and fourth quadrants, atan(x,y) is the same
as the customary arctan(y/x)

char(string, fixed) Result is a& one-character string,

consisting of the designated character, counting
from 1 at the left, in the given string.

repeat (strinag,fixed) Result is string, n-fold concatenation
of first argument.

8.3 Condensation builtins

These builtins create simple values as functions of
structures of values,

all(boolean) Result is boolean and of all wvalues in the
structure,

any(boolean) Result is boolean or of all wvalues in the
‘ structure, ‘ T

PAGE 20

cat (string) Result is concatenation of all values in the
structure,

max(value) Result is maximum of all values in the structure.
min(value) Result is minimum of all values in the structure.

product (arithmetic) Result is product of all values in
structure,

sum(arithmetic) Result is sum of all values in the structure

8.4 Special builtins
These builtins treat their single arguments as an entity for

special actions. 1In general a null argument may appear .
wherever an expression is required,

dimen(expression) Null argument yields 0. Otherwise result
is one plus the number of commas at the outer
level of a minimally parenthesized representation
of the argument, Does not take value of an
argument that is a name or list of names.

i

print(exprgssion) Result }s same as that of
string(expression) . Prints the result on one

line with commas and parentheses to denote its
list structure.

quit (expression) Causes Bon to terminate execution.

random(expressioh) Result is float pseudorandom number
uniformly distributed on the range zero-one,

return(ekpression) Causes current function level to be
terminated together with its associated variables.

Expression appears as function value in invoking
level.

read (expression) Expression is ignored and result is a
string which is the next line from the typewriter.

unique(expression) Result is a fixed integer, greater than
all preceding results of unique(,..) . This

integer is roughly proportional to running time up
to now,

