
Piers Daniell, Driver Software Engineer, OpenGL and Vulkan

Vulkan on NVIDIA GPUs

2

Who am I?

Driver Software Engineer - OpenGL, OpenGL ES, Vulkan

NVIDIA Khronos representative since 2010

OpenGL, OpenGL ES and Vulkan

Author of several extensions and core features

Technical lead for OpenGL driver updates 4.1 through 4.5

Technical lead for OpenGL ES 1.1 through ES 3.1+AEP on desktop

Technical lead for Vulkan driver

11+ years with NVIDIA

Piers Daniell @piers_daniell

3

Agenda
Vulkan Primer

Vulkan on NVIDIA GPUs

4

Vulkan Primer

5

What is Vulkan?

Reduce CPU overhead

Scale well with multiple threads

Precompiled shaders

Predictable – no hitching

Clean, modern and consistent API – no cruft

Native tiling and mobile GPU support

What developers have been asking for

6

Why is Vulkan important?

Vulkan is the only cross-platform next generation API

DX12 – Windows 10 only

Metal – Apple only

Vulkan can run (almost) anywhere

Windows - XP, Vista, 7, 8, 8.1 and 10

Linux

SteamOS

Android (as determined by supplier)

The only cross-platform next-generation 3D API

?

7

Who’s behind Vulkan?
Hardware vendors

* not a complete list!

http://www.amd.com/
http://www.amd.com/

8

Who’s behind Vulkan?
Software vendors

* not a complete list!

9

Vulkan for all GPUs

Vulkan is one API for all GPUs

Vulkan supports optional fine-grained features and extensions

Platforms may define feature sets of their choosing

Supports multiple vendors and hardware

From ES 3.1 level hardware to GL 4.5 and beyond

Tile-based [deferred] hardware - Mobile

Feed-forward rasterizing hadware - Desktop

Low-power mobile through high-performance desktop

10

Vulkan release

Khronos’ goal by the end of 2015

This discussion on the API is high-level

Details may change before release!

When can we get it?

11

Vulkan conformance

Conformance tests under development by Khronos

Includes large contributions from several member companies

Goal to release full conformance suite with Vulkan 1.0 release

Implementation must pass conformance to claim Vulkan support

Ensuring consistent behavior across all implementations

12

Hello Triangle

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API

13

Vulkan Loader

Khronos provided open-source loader

Finds driver and dispatches API calls

Supports injectable layers

Validation, debug, tracing, capture, etc.

Part of the Vulkan ecosystem

Goals: cross-platform, extensible

Vulkan application

Vulkan loader

Vulkan driver

Validation layer

Debug layer Debugger

Trace/Capture

14

LunarG GLAVE debugger

LunarG and Valve working to create open-source Vulkan tools

Vulkan will ship with an SDK

More info and a video of GLAVE in action:

http://lunarg.com/Vulkan/

And other tools

http://lunarg.com/Vulkan/

15

Vulkan Window System Integration

Khronos defined Vulkan extensions

Creates presentation surfaces for window or display

Acquires presentable images

Application renders to presentable image and enqueues the presentation

Supported across wide variety of windowing systems

Wayland, X, Windows, etc.

WSI for short

Goals: cross-platform

16

Hello Triangle

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API

17

Vulkan exposes several physical memory pools – device memory, host visible, etc.

Application binds buffer and image virtual memory to physical memory

Application is responsible for sub-allocation

Low-level memory control
Console-like access to memory

Goals: explicit API, predictable performance

Physical pages

Bound objects
2 objects of compatible types aliasing

memory

Meets implementation alignment
requirements

Has GPU virtual address

18

Sparse memory

Not all virtual memory has to be backed

Several feature levels of sparse memory supported

ARB_sparse_texture, EXT_sparse_texture2, etc.

More control over memory usage

Goals: explicit API

Physical pages

Bound object

Defined behavior if GPU accesses here

19

Resource management

Vulkan allows some resources to live in CPU-visible memory

Some resources can only live in high-bandwidth device-only memory

Like specially formatted images for optimal access

Data must be copied between buffers

Copy can take place in 3D queue or DMA/copy queue

Copies can be done asynchronously with other operations

Streaming resources without hitching

Populating buffers and images

Goals: explicit API, predictable performance

20

Populating vidmem

Allocate CPU-visible staging buffers

These can be reused

Get a pointer with vkMapMemory

Memory can remain mapped while in use

Copy from staging buffer to device memory

Copy command is queued and runs async

Use vkFence for application to know when xfer is done

Use vkSemaphore for dependencies between command buffers

Using staging buffers

CPU-visible buffer

App image data

memcpy to pointer returned by vkMapMemory

Device only memory

vkCmdCopyBufferToImage

Goals: explicit API

21

Descriptor sets

Shader resources declared with binding slot number

layout(set = 1, binding = 3) uniform image2D myImage;

layout(set = 1, binding = 4) uniform sampler mySampler;

Descriptor sets allocated from a descriptor pool

Descriptor sets updated at any time when not in use

Binds buffer, image and sampler resources to slots

Descriptor set bound to command buffer for use

Activates the descriptor set for use by the next draw

Binding resources to shaders

Goals: explicit API

22

Multiple descriptor sets

Shader code

layout(set=0,binding=0) uniform { ... } sceneData;

layout(set=1,binding=0) uniform { ... } modelData;

layout(set=2,binding=0) uniform { ... } drawData;

void main() { }

Partitioning resources by frequency of update

Application code

foreach (scene) {

vkCmdBindDescriptorSet(0, 3, {sceneResources,modelResources,drawResources});

foreach (model) {

vkCmdBindDescriptorSet(1, 2, {modelResources,drawResources});

foreach (draw) {

vkCmdBindDescriptorSet(2, 1, {drawResources});

vkDraw();

}

}

}

Application can modify just the set of
resources that are changing

Keep amount of resource binding
changes as small as possible

23

Hello Triangle

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API

24

SPIR-V

Portable binary representation of shaders and compute kernels

Can support a wide variety of high-level languages including GLSL

Provides consistent front-end and semantics

Offline compile can save some runtime compile steps

The only shader representation accepted by Vulkan

High-level shaders must be compiled to SPIR-V

Intermediate shader representation

Goals: cross-platform implementation consistency

25

SPIR-V

Khronos supported open-source GLSL->SPIR-V compiler - glslang

ISVs can easily incorporate into their content pipeline

And use their own high-level language

SPIR-V provisional specs already published

Start preparing your content pipeline today!

For your content pipeline

26

Vulkan shader object

SPIR-V passed into the driver

Driver can compile everything except things that depend on pipeline state

Shader object can contain an uber-shader with multiple entry points

Specific entry point used for pipeline instance

Reuse shader object with multiple pipeline state objects

Compiling the SPIR-V

27

Pipeline state object

Represents all static state for entire 3D pipeline

Shaders, vertex input, rasterization, color blend, depth stencil, etc.

Created outside of the performance critical paths

Complete set of state for validation and final GPU shader instructions

All state-based compilation done here – not at draw time

Can be cached for reuse

Even across application instantiations

Say goodbye to draw-time validation

Goals: explicit API, predictable performance

28

Pipeline cache

Application can allocate and manage pipeline cache objects

Pipeline cache objects used with pipeline creation

If the pipeline state already exists in the cache it is reused

Application can save cache to disk for reuse on next run

Using the Vulkan device UUID – can even stash in the cloud

Reusing previous work

29

Pipeline layout

Pipeline layout defines what kind of resource is in each binding slot

Images, Samplers, Buffers (UBO, SSBO)

Different pipeline state objects can use the same layout

Which means shaders need to use the same layout

Changing between compatible pipelines avoids having to rebind all descriptions

Or use lots of different descriptor sets

Using compatible pipelines

30

Dynamic state

Dynamic state changes don’t affect the pipeline state

Does not cause shader recompilation

Viewport, scissor, color blend constants, polygon offset, stencil masks and refs

All other state has the potential to cause a shader recompile on some hardware

So it belongs in the pipeline state object with the shaders

State that can change easily

31

Hello Triangle

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API

32

Renderpass

Application defines how framebuffer cache is populated at start

Loaded from real framebuffer, cleared or ignored

Application defines how framebuffer cache is flushed at the end

Stored back to real framebuffer, multi-sample resolved or discarded

Application can chain multiple render-passes together

Execute all passes and eliminate framebuffer bandwidth between each pass

Example: gbuffer creation, light accumulation, final shading and post-process all without
framebuffer traffic between steps

Units of work for tiler-friendly rendering

Goals: tiler-friendly API

33

Command buffers and pools

A command buffer is an opaque container of GPU commands

Command buffers are submitted to a queue for the GPU to schedule execution

Commands are adding when the command buffer is recorded

Memory for the command buffer is allocated from the command pool

Multiple command buffers can allocate from a command pool

A place for the GPU commands

34

Commands and command buffers

Start a render pass

Bind all the resources

Descriptor set(s)

Vertex and Index buffers

Pipeline state

Modify dynamic state

Draw

End render pass

Building a command buffer

Repeat: change any state and draw

Goals: multi-CPU scalable

35

Command buffer performance

Recording command buffers is the most performance critical part

But we have no idea how big command buffer will end up

Can record multiple command buffers simultaneously from multiple threads

Command pools ensure there is no lock contention

True parallelism provides multi-core scalability

Command buffer can be reused, re-recorded or recycled after use

Reuse previous allocations by the command pool

Command buffer recording needs to scale well

Goals: multi-CPU scalable

36

Multi-threading

Vulkan is designed so all performance critical functions don’t take locks

Application is responsible for avoiding hazards

Use different command buffer pools to allow multi-CPU command buffer recording

Use different descriptor pools to allow multi-CPU descriptor set allocations

Most resource creation functions take locks

But these are not on the performance path

Maximizing parallel multi-CPU execution

Goals: multi-CPU scalable

37

Compute

Uses a special compute pipeline

Uses the same descriptor set mechanism as 3D

And has access to all the same resources

Can be dispatched interleaved with render-passes

Or to own queue to execute in parallel

For all your general-purpose computational needs

38

Resource hazards

Resource use from different parts of the GPU may have read/write dependencies

For example, will writes to framebuffer be seen later by image sampling

Application uses explicit barriers to resolve dependencies

GPU may flush/invalidate caches so latest data is written/seen

Platform needs vary substantially

Application expresses all resource dependencies for full cross-platform support

Application also manages resource lifetime

Can’t destroy a resource until all uses of it have completed

Application managed

Goals: explicit API, predictable performance

39

Avoiding hazards

Update an image with shader imageStore() calls

vkBindPipeline(cmd, pipelineUsesImageStore);

vkDraw(cmd);

Flush imageStore() cache and invalidate image sampling cache

vkPipelineBarrier(cmd, image, SHADER_WRITE, SHADER_READ);

Can now sample from the updated image

vkBindPipeline(cmd, pipelineSamplesFromImage);

vkDraw(cmd);

An example – sampling from modified image

Goals: explicit API

40

Hello Triangle

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API

41

Queue submission

Implementation can expose multiple queues

3D, compute, DMA/copy or universal

Queue submission should be cheap

Queue execution is asynchronous

App uses vkFence to know when work is done

App can use vkSemaphore to synchronize dependencies between command buffers

Scheduling the commands in the GPU

Goals: explicit API

42

Presentation

The final presentable image is queued for presentation

Presentation happens asynchronously

After present is queued application picks up next available image to render to

Using the WSI extension

Goals: explicit API
Time

Time
Present

Display

Image0

Next

Image1

Render Present

Image1

Next

Image0

Image0 displayed, image1 ready for reuse

43

GFXBench 5.0

Developed by Kishonti – maker of GFXBench

Entirely new engine aimed at benchmarking low-level graphics APIs

Vulkan, DX12, Metal

Concept is a night outdoor scene with aliens

Still in alpha for Vulkan, but shows the most important concepts

Early alpha content for Vulkan

44

Demo: GFXbench 5 alpha
Running on Windows 10

45

Vulkan on NVIDIA GPUs

46

Why is it important to NVIDIA?

API is designed to be extensible

We can easily expose new GPU features

No single vendor or platform owner controls the API

Scales from low-power mobile to high-performance desktop

Can be used on any platform

It’s fast!

It’s open

47

What about OpenGL?

OpenGL and OpenGL ES will remain vital

Together have largest 3D API market share

Applications – games, design, medical, science, education, film-production, etc.

OpenGL improvements since last year

Maxwell extensions (15 of them!) – EXT_post_depth_coverage, EXT_raster_multisample,
EXT_sparse_texture2, EXT_texture_filter_minmax, NV_conservative_raster,
NV_fill_rectangle, NV_fragment_shader_interlock, etc.

NV_command_list, OpenGL ES Android Extension Pack, bindless UBO, etc.

Even more improvements? Come to the Khronos BOF to find out!

OpenGL is also very important to NVIDIA

48

OpenGL vs Vulkan

OpenGL higher-level API, easier to teach and prototype in

Many things handled automatically

OpenGL can be used efficiently and obtain great single-threaded performance

Use multi-draw, bindless, persistently mapped buffers, PBO, etc.

Vulkan’s ace is its ability to scale across multiple CPU threads

Can be used with almost no lock contention on the performance critical path

OpenGL does not have this (yet?)

Solving 3D in different ways

49

Vulkan on NVIDIA GPUs

Vulkan is one API for all GPUs

Vulkan API supports optional features and extensions

Supports multiple vendors and hardware

From ES 3.1 level hardware to GL 4.5 and beyond

NVIDIA implementation fully featured

From Tegra K1 through GeForce GTX TITAN X

Write once run everywhere

Fully featured

50

Vulkan GPU support

ARCHITECTURE GPUS

Fermi
GeForce 400 and 500 series

Quadro x00 and x000 series

Kepler
GeForce 600 and 700 series

Quadro Kxxx series

Tegra K1

Maxwell
GeForce 900 series and TITAN X

Quadro Mxxx series

Tegra X1

51

Vulkan feature support

FEATURE FERMI KEPLER MAXWELL

OpenGL ES 3.1 level features Yes Yes Yes

OpenGL 4.5 level features Yes Yes Yes

Sparse memory Partial Partial Yes

ETC2, ASTC texture compression No Tegra Tegra

52

Vulkan OS support

Windows XP, Vista, 7, 8, 8.1 and 10

Linux

SteamOS

Android – SHIELD Tablet and SHIELD Android TV

Everywhere we can

53

NVIDIA implementation walkthrough

GL version is open source

Vulkan version will be made available after
spec release

CPU bound under OpenGL with large models

GPU bound on Vulkan!

Using GameWorks cadscene sample

54

The NVIDIA Vulkan driver
Hosted by the OpenGL driver

OpenGL

Vulkan

Vulkan Application

GPU

OpenGL and Vulkan share driver

OpenGL portion dormant

Performance critical path direct to
GPU

Utility for resource and GPU
management

Utility

55

Vulkan and OpenGL
Living happily together

OpenGL

Vulkan

Mixed OpenGL Vulkan Application
cadscene

GPU

OpenGL and Vulkan paths to
hardware remain separate

Can share resources

Performance optimal

Utility

56

Benefits of mixed driver

Ease transition to Vulkan

Allows applications to incrementally add Vulkan where it matters most

If you can get OpenGL, you can get Vulkan

Leveraged driver development

Efficiency for all

57

From OpenGL to Vulkan

Take incremental steps – using AZDO (Aproaching zero-overhead driver)

http://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead

Persistent buffers, multi-draw indirect, bindless resources, etc.

Start using NV_command_list

See “Best of GTC” talk on NV_command_list Monday 2pm by Tristan Lorach

Port performance-critical parts to Vulkan

Can leave other stuff in OpenGL

Porting your existing code

http://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead

58

Vulkan goals

Reduce CPU overhead

Scale well with multiple threads

Predictable – no hitching

Mobile GPU support

How do we meet these goals?

59

Demo: Vulkan cadscene
CPU overhead, multi-CPU scaling, pipeline changes

60

cadscene on Shield

Same framework used for NVIDIA GameWorks samples

https://github.com/NVIDIAGameWorks

Supports cross-platform development

Code for Windows, Linux and Android

Using the GameWorks cross-platform SDK

61

GameWorks framework

Coming for Vulkan…

Build, deploy and debug Android code right from Visual Studio

62

Demo: Vulkan cadscene on Shield
Interactive high-polygon count CAD models

63

Vulkan driver

Before Vulkan spec release

Become a Khronos member

Sign an NDA

After Vulkan spec release (later this year!)

Download from nvidia.com

And how do I get one?

64

More Vulkan at SIGGRAPH

Course: Moving Mobile Graphics

Sunday 2pm – 5:15pm

Course: An Overview of Next-Generation Graphics APIs

Tuesday 9am – 12:15pm

Khronos Birds of a Feather

Wednesday 5:30pm – 7:30pm

Party! 7:30pm – 10pm

Don’t miss a thing

65

Thank you!

Get your free Khronos Vulkan t-shirts!

Questions?
Piers Daniell, Driver Software Engineer, OpenGL and Vulkan

