HTML5/WebGL vs Flash in 3D Visualisation

Senad Bahor*
Supervised by: Belma Ramic-Brkic'

Sarajevo School of Science and Technology
Sarajevo, BiH

Abstract

Due to the recent technological developments and ad-
vancements in the field of computer graphics, and by fol-
lowing the great leap of the web-based technologies such
as the greatest iteration and upgrade yet of the HTML to
its new variant HTMLS, we are experiencing a burst on
the scene of the new architectural representation methods
that aid in the visualization process. New technologies,
both web-based and methodological-based, have not been
fully understood and implemented so far, leaving a great
unexplored space for the developers and the people in-
volved with the process of the digitalization and 3D vi-
sualization to grasp in order to use the full potential of
the today’s technological advances. This paper is dedi-
cated towards introducing the new technologies available
for the 3D visualization and investigates their implemen-
tation on the web, with a focus on the comparative analy-
sis of the emerging web technologies for the 3D rendering
and visualization, as oppose to the current methods of 3D
graphics implementation (Flash).Additionaly, the purpose
of this paper is to empower the usage of the new HTMLS
supported tool called WebGL and to use its full potential
while delivering the 3D visualization to the web. The user
study was carried out and the results revealed that HTMLS5
had a significantly higher impact as opposed to Flash. This
indicates that Flash is no longer meeting the purpose of
rendering demanding 3D graphics content and providing
quality user interactivity, whilst HTML5/WebGL should
be highly utilized in the future as the primary technologies
for delivering 3D graphics to the web.

Keywords: HTMLS, WebGL, 3D Visualization, Flash-
HTMLS5, WebGL, 3D Visualization, Flash

1 Introduction

Up until recently, it has been noted that the interac-
tive 3D graphics had a poor availability on the World
Wide Web. Even though nowadays almost all PC’s,
mobile and embedded devices have high processor based
computational power and high-performance 3D graphic
hardware, which is necessary for processing 3D content,

*senad.bahor@ssst.edu.ba
"belma.ramic @ssst.edu.ba

they have not been utilized for an effective web-based 3D
interaction. The part of the problem also lies in the fact
that most of the popular web browsers, such as Mozilla
Firefox, Microsoft Internet Explorer or Google Chrome,
were not utilized for a full 3D graphics presentation
and interaction. There were and still are some partial
approaches towards presenting the 3D content on the
web and the identified major flaw was that none of the
web browsers had built-in 3D graphics logic for presenta-
tion that will not require a plug-in or add-in to the browser.

While currently experiencing a higher demand for ap-
plications that can be used and accessed with a broad
specter of smartphones and tablets types and models, the
developers are starting to narrow the gap between the
PC/Desktop/Notebook 3D graphics quality (which nowa-
days mostly use separate graphic card for demanding 3D
graphic representation and with exceptional processing
capabilities) and the mobile version of it. Consequently,
the Internet medium has to be affected with this change, in
order to develop and present high-detailed 3D graphics by
using the web browser on both desktop-based and mobile-
based devices. Besides just developing and rendering
3D content, developers are starting to address a great
user demand for the easiest but also visually appealing
3D design and navigation application, 3D visualization
animations and 3D games that can be accessed from any
mobile device.

The development of improved 3D graphics in Web-based
applications took a step forward recently, when program-
mers began building WebGL into the Mozilla Firefox
nightly builds, and into WebKit, which is used in Google
Chrome and Apple’s Safari browser [3]. WebGL is one of
the most developed libraries which are supported by the
HTMLS.

HTML introduces new features such as animation, offline
capabilities, audio, advanced graphics, typography,
transitions, and more, which yields a new class of web
standards and replaces the need for proprietary technolo-
gies, like Flash and native mobiles platforms [2]. As the
new HTMLS mark-up language emerged, the need to
re-evaluate the best approach for delivering 3D content
to the web had to be conducted and be compared to the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

current trends and best practices utilized up until now in
order to present the 3D content on the web. The most
used tool nowadays, amongst others, for delivering the
3D and multimedia content to the web, is the Adobe Flash.

In this paper, we investigate which of the two currently
best available tools for presenting 3D content on the web
is also considered as such by the viewers. A user study
was carried out in which participants were shown a com-
puter generated environment of the cultural heritage site,
presented in HTMLS and in Flash. Accurate and real-
time 3D presentation of complex digital content has many
application possibilities, especially in archeology, online
games and education. So far, the content of such type was
scarce on the web, due to the several constraints. Now, as
the technology evolved and HTML iterated to a brand new
version that empowers the usage of 3D content directly on
the web, it is important to compare the best-practice stan-
dards against this new and emerging web technology.

2 Background

Flash was always focused on delivering interactive 2d
graphics on the web. Objects within the Flash IDE had
two properties, x and y axis for animating and positioning
object on a 2d development plane. With the release of
Flash Player 10, the developers introduced the third, z
axis, for every Flash object, thus enabling the object to be
moved or transformed in some way in the third dimen-
sion. However, this support for third dimension object
interaction was delivered in a limited fashion. Although
the objects could be transformed, moved and altered in
some way by using third dimension, they still appeared
somewhat flat. Some of the features for third dimension
altering included rotation, movement, placement and
other similar 3D model based adjustments. The need to
extend the 3D object rendering and interactivity was then
widened with the introduction of the third party engines
that could be combined with Flash in order to deliver full
3D control of the object, such as Papervision 3D. Paper-
vision3D was made into a public beta version, thus being
available for the user to use freely all of the features that
this open source 3D engine could deliver to Flash-based
animations. Currently, there coexist two versions of the
engine, with the first version building up on the Adobe
ActionScript 2 and, therefore, requiring the Flash Player
8 or higher for efficient web browser presentation, while
the second version brings some advances while building
on the newer version of ActionScript (ActionScript 3) and
requires the client machine to use the Flash Player 9 as
the minimal requirement [9].

As opposed to the Flash, in terms of who controls the
technology and how it is distributed to the end users, the

HTMLS is guided by the members of the W3C, whose
members are web developers, browser developers, various
academic level parties and anyone who want to participate
in developing and thus evolving the HTMLS5 [2, 8]. Mean-
ing, anyone can participate and use the markup language
to develop and deploy various web-based content and thus
enable the web content evolution, from the static-based
textual content to the full 3D dynamic web presentation.
HTMLS represents a collection of great number of new
APIs and semantics for the web developers that enhance
the web content presentation, flexibility, correctness and
portability. One of the greatest features presented in the
HTMLS is the canvas tag element, which enables the easy
integration of multimedia content without using any of the
third party software, plugins of widgets. Through the can-
vas tag, a vast number of 2d and 3D graphics content can
be embedded within the web page, thus making it not the
part of the web page, but the actual web page. Some of the
other new features and APIs presented within the HTML5
semantics include:

e Web Workers a collection of methods used to run
a web-based scripts in the background as the back-
ground tasks, thus enabling the multi-threading of the
post and response functions;

e Web Sockets which provide the bi-directional com-
munication from the client-server machines;

e CSS3 an evolved version of CSS2 with a number of
new layout approaches, gradients and content anima-
tion possibilities;

e Faster JavaScript engine with the extension to handle
the OpenGL engine.

WebGL is one of the most developed libraries which
is supported by the HTMLS5 specification and is imple-
mented through the canvas element [2, 3]. The library
contains a set of classes and methods which are extend-
ing the known JavaScript programming language in order
to support the 3D content creation and rendering on the
web. The specifications for the WebGL were created and
published by the Khronos Group in March 2011, since the
Khronos Group is in charge for the OpenGL and OpenCL
standards. WebGL library is used as an interface, and thus
extends the web based language, between the JavaScript
language and OpenGL architecture (or even with OpenGL
ES for embedded systems). The JavaScript code in this
way allows the OpenGL code to be executed by access-
ing the graphics card architecture. The direct access to the
hardware, that is, to the computer graphics card leads to
a greater performance in rendering the 3D content, as op-
posite to leaving the software to render the graphics by us-
ing the computer CPU (where software-based applications
are doing the graphics calculations). Since every modern
PC comes with a powerful graphics card (even the inte-
grated graphics card are now capable of doing great num-
ber of calculations on their own GPUs), the operating sys-

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

tem handles the WebGL requests through a set of OpenGL
libraries which are installed on the system.

3 Implementation

For the purpose of the comparative analysis between the
HTMLS5 and WebGL, a 3D visualization model of the al-
leged Bosnian Valley of the Pyramids historical site was
created using the Maya 2010 software. The model consists
of the digitalized real-world 3D terrain, captured through
the process of satellite image tessellation and conceptual
3D objects that mimic the presence of the pyramids on the
site. The process of recreating the 3D scenes (one scene
that shows the past and one scene that shows the current
state of the real-world terrain) was then created in a series
of steps based on [6, 7, 10, 11]:

e The z-map image (see Figure 1), with the resolution
of 5340x8442px was imported into the project and
attached to displacement map on the lambert shader.
However, due to the fact that the image was too big
in order for the displacement to take place (since
the number of polygonal triangles would be too high
for Maya to process and due to the 32 bit nature
of the image), the z-map image was scaled down to
768x1214px, as shown in Figure 1.

o The polygonal plane (with U and V vertices count
values set to 11) was placed into the viewport and at-
tached to the lambert material with the displacement
map and alpha gain property set to a value of 2.5,
with subdivision width and height set to 25, as shown
in Figure 2.

e The model was then rendered by using the Mental
Ray rendered in order to evaluate the initial terrain
quality, with the two directional lights illuminating
the 3D scene (see Figure 3).

e Since the polygonal plane is not yet transformed to
the tessellated polygonal object (and since the We-
bGL would not render the tessellation based on only
the displacement property of the plane), the displace-
ment had to be converted to the polygonal object in
order to get the full 3D object for further manipula-
tion. Maya contains certain tessellation properties,
such as setting the maximum triangle count on the
newly created tessellated object, which can enhance
the tessellation displacement process in order to get
the final polygonal object as close to the rendered ob-
ject quality.

e 3D objects were imported on the 3D terrain in order

to enhance the visualization of the scene in focus.

Both models were then prepared for the final export to
the web in order to enable the interactivity with the 3D
scenes and to enable the full 3D visualization of the site as

Figure 1: Z-map image

it evolved over the time. The visualization part (the time
slider that switches the scene from the current state to
the past state of the rendered 3D scene) can be added via
the HTML controls (such as animated button than can be
moved from left to right in order for user to slide between
the scenes). For the purpose of creating the animation for
the user study, the camera movement around the scene
was created in Maya as well and exported via the Maya
HTMLS5 plugin for the WebGL interpretation. Due to
the complexity of the scene (taking into account a great
number of poly surfaces out of which the accurate 3D
model of the terrain is made of), the 3D scene had to
be optimized in order to ensure that the final WebGL
application can meet most of the hardware specification
on the client machines, with a focus on mobile devices
and portable PCs.

As previously described, the Flash based 3D content can
be implemented within the web page through the Flash
Player plugin, which allows the .swf object to be rendered
on the web page through the manipulation of the player
parameters. Usually, the developers create the .swf object

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Result of the tessellation procedure - Accurate
3D model of the archeological site

Figure 3: Exported HTMLS5 model on web browser

with a set of predefined parameters in order to enable the
Flash object to be correctly rendered on the client machine.

With WebGL, there is no need to prompt the users to install
any of the plugins in order to view and experience the 3D
content on the site. The only prerequisite is that the web
browser supports the HTMLS5 canvas element, through
which the WebGL renders the content to the user. Fur-
thermore, all Android OS based devices have a number of
available web browsers (such as Mozilla Firefox, Google
Chrome, Dolphin HD) that are able to read and render the
WebGL, thus making it accessible to the wider audience
as compared to the Flash Player problems with the smart-
phone and tablet devices(adding the fact that Adobe ter-
minated the development and future enhancements for the
mobile version of Flash plugin). In essence, WebGL can
run on any platform and on any major systems that have
the OpenGL capable graphic card and a browser that sup-
ports WebGL.

4 User study

The main purpose of the user study is to evaluate the two
essential elements of experiencing 3D graphics, with a fo-
cus on web implementation: the technical element and the

perception element. The technical element is comprised
out of two evaluation parts: the performance and the us-
ability part. The technical element is theoretically dis-
cussed, by highlighting key differences between two tech-
nologies, with survey results supporting certain benefits
and drawbacks of both implementation approaches. On
the other hand, the perception element and the evaluation
of a user experience focusses on users themselves.

4.1 Technical elements
4.1.1 Performance

The performance aspect of both animations is evaluated
through the process of how each technology is utilizing
the processing power of the device on which the animation
is running. Prior to the user study, the performance of
both technologies was evaluated by going through the
process of rendering the content for each technology in
focus.

When it comes to Flash, the ability to reproduce the
highly detailed 3D model and have it implemented on
the web while maintaining smooth animation and higher
FPS (everything above 20 FPS is considered fluent to the
human eye), requires a deeper understanding of how Flash
handles the 3D graphic content on deliverance.

Flash-based rendering relies heavy on software mode
rendering (even with included third-party 3D engines,
there is some overload on the software part of the system).
Software rendering process depends heavily on the CPU
capabilities to handle a great amount of 3D object render-
ing requests, process them and output them to the further
ActionScript altering. Now, a 3D scene is defined as a
group of 3D geometries called meshes, with each mesh
being specified as a group of triangles. Each triangle is
then made out of a group of vertices which really make up
the 3D scene and add some additional information such as
the color of the vertex points or texture information. Now,
once the Flash viewport receives a stream of vertices that
make the 3D scene, the internal engine would calculate
the positions on the screen (render area) for the triangles
and request the Flash Player to internally render triangles
by processing them one by one. These renderings are
conducted through a series of, so called, “fill” draw
operations. No matter how the process of fill draw was
optimized in the engine with a series of algorithms,
the process is very slow and results in not particularly
accurate rendering of initial 3D scene that was sent to
the filling operations. The process is slow because the
3D scene is calculated, filled and rendered per triangle,
instead of calculating it on the pixel basis. Rendering
the content on the triangle basis often results in errors
with the depth sorting, which would generate misplaced

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

triangles due to their wrong depth calculation.

In Flash, a suitable polygon count to aim when designing
a scene can be set at around 4.000 triangles [9]. This
number represents the upper limit in order to get smooth
frame rate in rendering content; as a result, the Flash
Player (v.10) would be capable of rendering 3D scene
with approximately 4000 triangles in order to enable the
fluid and acceptable performance and visual correctness
from the viewers perspective. Considering that there are
number of third-party plugins and engines that enhance
the Flash web-based 3D rendering in order to overcome
these polygon count restrictions, I will focus on one in
particular Stage3D.

Although Stage3D engine enables the Flash 3D content to
be represented on the web site by using similar rendering
logic as WebGL (processing the 3D scene on a GPU and
correlated graphic driver basis), its major drawback is
that it is not a standard API. Meaning, it is hard for the
developers starting from scratch to go along the learning
curve in order to comprehend the programming part
(which is also the case with Direct3D and OpenGL) in
order to get good results with 3D web-based rendering.
It takes a lot of time and since Stage3D seems to be
fairly poorly documented (the documentation is very
sparse), it takes even more time to get the 3D graphics
finally rendered within the web browser. One of the
most problematic processes in Stage3D is the shader
format, which is actually a programming assembler that
uses a limited number of shader registers available when
using a shading language such as AGAL. You can use a
maximum of 8 temporary registers, instead of the 4096
available when coding registers in GLSL, with Shader
Model 4.0, which WebGL can target. WebGL allows you
to program in a convenient high level C like language. In
other words, Shaders in Stage3D are designed to be very
simple programs, as opposed to coding for more advanced
hardware and Shader Models.

One of the most up-to-date performance tests between
the Flash and WebGL canvas-based 3D content clearly
shows that HTMLS canvas is starting to perform and
generate higher frame rates while rendering 3D content
on the web [5]. The results of the test show that WebGL
is performing much faster in rendering 3D content and
delivers higher frame rates for the 3D animations on
the web, while comparing it with Flash. With WebGL,
the process of rendering the 3D scene is switched from
relying on the software and large CPU overloads to more
OpenGL and GPU powered processing. This usually
includes multiple subsequent draw jobs or “calls”, each
of which is carried out in the GPU through a process
called the rendering pipeline [2]. In WebGL, as it is a
case with most of the 3D graphics that are being rendered

in real/time, the lowest rendering unit is the triangle that
makes up the 3D models. Further on, the drawing process
is using the JavaScript in order to collect the information
about where the specific triangle will be created and
how it will be created. Additionally, every information
set carries additional information, such as the types of
shades that are out to be created on a specific triangle, the
texturing model, color values associated to the triangle
mesh etc. After the information is being collected by
the JavaScript, the dataset is then being forwarded to the
Graphics Processing Unit which will process the dataset
and, by using the OpenGL algorithms and methods,
render the 3D scene. As opposite to the Flash rendering
procedure (or in case that Flash third-party engines fail to
target the specific graphics driver), the rendering process
is conducted mostly on the GPU, thus releasing the
overload on the CPU.

Now, although the process of buffering and rendering the
3D scene on the GPU load looks complicated and with a
heavy load, it actual performs much faster than the soft-
ware based calculations, such as those that are relying on
the CPU, which is the case for Flash Player 3D graphics
rendering without any third-party engines attached to the
process of rendering. Also, since the Flash Player poly tri-
angle rendering limitation is set to around 4.000, it would
be impossible to render anything that has higher triangle
count than that. For instance, if the 3D model has a U
and V vertices count set to 11 (the value which was used
for this model) the tessellation procedure of the polygon
model (based on the z-map texture) would render the poly-
gon surface with approximately 32.000 triangles, a num-
ber that would be impossible to render in Flash Player.

4.1.2 Usability

On the usability part, the main focus was on how well
each technology is rendering the content across multiple
platforms and devices. In addition to that, it has been
noted through the research which of the two can be
combined and affected by other HTML elements in order
to improve the user interactivity. This usability criteria is
one of the most important criteria’s for the study, since the
3D virtual content is nowadays spanned across multiple
devices, such as smartphones and tablets.

The Flash Player based content is wrapped inside the .swf
object and is predetermined while developing the model.
The 3D model inside the .swf model in encapsulated and
is under the ActionScript determined behavior, meaning
that no further alterations to the model can be done
afterwards. Once the .swf model is deployed to the
web site, it is wrapped with the Flash Player in order
to integrate the Flash based content within the HTML
markup language. However, neither on the web page can

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

the HTML content penetrate the .swf object in order to
do some alteration to the model or animation sequence.
Also, Flash Player is known to cause instability issues
when combined with JavaScript, due to the similarity of
two programming languages and is often causing a web
browser crash once the Flash Player content is present on
the site with loads of JavaScript based content. Also, the
Flash Player remains rather distant from the HTML ele-
ments and prohibits the interactivity between the HTML
elements and the inner Flash 3D objects. Once stepping
out of the box of the initial constraints that the native
Flash engine opposes and taking into account third-party
engines such as Stage3D, new problems arise. Stage3D
is developed and implemented in such a manner that it
targets specific hardware/ graphic driver specifications. In
the end, with Stage3D, you do not really target specific
hardware in order to take advantage of the specific power
available in each platform. You just code generically for
the virtual Stage3D platform; Stage3D acts as a layer
between your code and the actual hardware. Therefore,
the main drawbacks are based on the ability to develop
one application for multiple platforms. By targeting all
platforms at the same time with a single unified API,
Stage3D cannot take advantage of the advanced features
that are only present in the most powerful 3D graphics. To
ensure that one app fits all, Stage3D has to abstract a 3D
hardware device that is a common denominator, in terms
of graphics capabilities, among all the platforms that are
targeted.

With HTMLS5 WebGL, the canvas element that supports
the 3D graphics rendering and presentation is actually a
HTML element. This leads to a number of opportunities
in a sense of combining two or more HTML elements in
order to enhance the web interactivity. For instance, a user
can render a set of geometrical figures within the canvas el-
ements and create an ordinary HTML form with the labels
and textboxes, rulers and button and connect the canvas
elements functionality to the functionality of those form
elements. As a result, the user could input a certain value
in the form, press the button and experience the canvas
3D object being altered by that value entered. Then, the
value would have to be forwarded to the JavaScript in or-
der for the WebGL engine to do the calculations based on
the value entered and apply that information to the 3D ob-
ject that is sitting in the canvas element. In that way, a user
can alter the model and enhance the interactivity by ob-
serving the model behavior. And, actually, that is what the
3D graphics is all about, about altering the 3D model and
see it change on the time basis. This is something that can
currently be achieved only with the usage of the HTMLS
and WebGL engines on the web, since HTMLS provides
interoperability between various elements (both traditional
and HTMLS based) while inducing the JavaScript to han-
dle the rendering procedure through the WebGL process.

4.2 Participants

16 participants, ages ranging from 22 to 27, mixed sexes
(9 females and 7 male) from the postgraduate student pop-
ulation volunteered to participate in this study. All partici-
pants reported normal, or corrected to normal vision. The
majority of them had taken a course in computer graphics
and was familiar with concepts such as image quality and
aliasing.

4.3 Design

HTMLS5 animation was prepared by exporting the Maya
animation using the third-party HTMLS exporter named
Inka3D. Inka3D is an Autodesk Maya to WebGL ex-
porter, developed by Jochen Wilhelmy [1], which inte-
grates within the Maya plugins and offers a set of ex-
port properties which can be controlled during the export-
ing procedure. Due to the complex and scarce documen-
tation on Stage3D, that would enable the full 3D Flash
integration, and due to the potential problems in target-
ing specific hardware and graphic specification with the
Stage3D approach (which would lead to animation being
rendered on CPU, shaders not rendering correctly or an-
imation not showing up at all) Flash animation was cre-
ated out of animation stills, with each animation frame ex-
ported from Maya in .tiff format and then reassembled into
a .swf animation by using the Adobe Premiere software.
The purpose of this approach, which was then evaluated
through the perceptive-based questions in survey, was to
see whether the precompiled .swf animation can match the
full WebGL 3D integration in a sense of quality of the an-
imation. In other words, the purpose is to test whether the
user can see the difference between the precompiled video
animation and fully integrated 3D animation.

4.4 Equipment and materials

The test environment comprised of an empty room, so that
the subjects would not be distracted by surrounding ob-
jects, with a focus only on the device used by the partic-
ipant for the testing purposes. The subjects that used PC
watched animations on a full screen on 17 monitor (reso-
lution: 1280*1024 pixels). They were seated at a normal
viewing distance from the monitor (60cm). The constant
Internet bandwidth was ensured throughout the whole test-
ing time-frame, peaking at 5,96 MBps download speed.

4.5 Procedure

Each participant individually was shown two animations,
with first animation being rendered by using Flash and an-
other animation that utilizes WebGL. Before seeing both
animations, viewers were asked to sign a consent form

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

and only later, to answer the questionnaire and therefore
anonymously supply some demographic information in-
cluding details about their age, gender, eyesight, and their
knowledge of computer graphics. Most importantly, they
were asked to answer questions regarding the quality and
smoothness of shown animations.

5 Results

The summary of the results is given in Figure 4. The re-
sults clearly show that Flash-based 3D graphics is close to
impossible to present on the i0S-based devices, since the
Adobe never supported iOS with its Flash plugin. There
are some i0S based web browsers that are able to ren-
der the Flash content, but for most of the users (31.25%
of participants) the native i0OS web browser proved to be
obsolete in rendering Flash-based content. Regarding the
Android-based devices, the participants could see the of-
ficial Adobe message across the Flash animation window
stating that they are obliged to download the Flash plu-
gin in order to see the content and that the Adobe will
no longer support the Flash for Android devices in future.
This was actually the greatest concern, because partici-
pants using Android devices did not actually know that
Flash development for Android devices is about to be ter-
minated, thus leading them to ask “What will replace the
Flash content?”. HTMLS was one of the answers, as
they experienced on the animation that followed the Flash-
based one.

On the user perception evaluation side, which is directly
addressed with the questions “In your opinion, which
animation is running smoother, where by this we mean
that the animation is running without any stuttering,
sudden stops or with a constant rate of 25 FPS?” and “In
your opinion, which animation is of better quality?”, most
of the user answers went in favor of HTMLS animation.
One of the reasons is that the rendered 3D scene was of
better quality with the WebGL engine, due to the way that
it handles shaders much faster and in greater quality and
is capable of rendering the exact number of polygons that
originated from the Maya based animation. Also, once the
HTMLS5/WebGL animation is cached in the web browser,
it starts up much quicker; almost instantly upon opening
the web page where the animation is located. On a side
note, users discussed how slow loading screens can affect
the user focus and can result in user opening another page
while waiting for the animation to show up on the first
page (which is usually the case with the pre-compiled
Flash content that cannot be cached in the web browser).

One of the key findings marked after the survey com-
pletion was that 85% users find that both animations are
really high in quality and perform fast. Taking into ac-
count that one animation is a precompiled Flash anima-

Questions i0s Android ‘Windows 7 Findings/Results
Are vou able to 63% of usersusing | All usersusing | All users were | {0S-based devices
see the Flash the i08-based Android - able to see the | couldn’t run the Flash
animation? device were able to | based device

animation animation by using the

see the Flash were able to (using Firefox | integrated web
animation. see the web browser browsers.
animation. v.11).
25% of users
had to install
the Flash

plugin.
All usersusing i0S | All usersusing | All users were | WebGL animation
—based device were | Android— able to see the | runs without a

able to see the based device animation problem on every
animation. were able to (using Firefox | tested device and PC.
see the web browser
animation. v.11)

In your opinion, | 55% of userswent | 85% of users 45% of users
which animation | in favor of Flash went in favor | gave more

is running | while 45% users of WebGL positive
smoother, where | answered that based feedback for
by this we mean | WebGL is animation. the Flash-based
that the animation | performing befter. animation.

is running without
any stuttering,

Are youable to
see the WebGL
animation?

Details in the
description below.

sudden stops or
with a constant
rate of 25 FPS?

Details in the
description below.

In vour opimion, | 60% of users went | 70% of users 40% of users
which animation | in favor of Flash went in favor | gave more

is of better | while 40% users of WebGL positive
quality? answered that based feedback for
WebGL i3 animation. the Flash-based
performing better. animation.
Which animation, | All users went in 12, 5% of 87, 5% ofusers | Detailsin the

in your opinion, | favor of Flash. users answered | answered description below.
could be “HTML5™. “Flash™.
combined with
other elements on
the page (buttons,
textboxes)?

Figure 4: The summary of the results

tion loaded as a movie object, and another animation is
the fully integrated 3D animation by using the HTMLS5
and web browser interpretation logic and JavaScript al-
gorithms, it is remarkable that the WebGL animation has
matched the movie-like Flash animation in every percep-
tive aspect. One of the most important results of the sur-
vey was the ones regarding the interoperability between
the animation and other web elements. Only 4 participants
(25%) knew that the HTMLS animation rendered through-
out the canvas web elements and can be altered by other
web elements, such as buttons of form elements. For fu-
ture web development and integrating 3D visualization or
any kind of 3D graphics, this needs to be addressed and
researched.

6 Conclusions and Future work

By using the new and emerging web standards and tech-
nology, combining the new HTMLS standard elements
alongside with the WegGL in order to render high complex
scenes, such as high polygon terrain scenes and objects
that contain detailed textures that are necessary to preserve
digitally correctly, the researchers and developers will find
a lot of potential for displaying the 3D models and pro-
vide greater interactivity than by using other standards and
tools. The interactivity of the exported WebGL model with
other web elements can be easily and effectively achieved
with the HTMLS and JavaScript that support the whole

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

WebGL logic, something that cannot be achieved with any
other tools, e.g. Adobe Flash. Furthermore, due to the
limitations of the currently available tools in a sense of the
maximum triangle count on the 3D scene and the fact that
they process the 3D scenes on the software side, thus con-
gesting the CPU (also problem with the Flash-based third
party engines not targeting correct graphic card drivers),
the WebGL proved to be the most efficient tool to render
the great number of polygon triangles by employing the
GPU to do the heavy job of processing the vertex render-
ing requests. Also, the web page, due to the HTMLS mo-
bility and accessibility, can be rendered on a great range
of devices, including the iOS and Android devices, with-
out users worrying about the presence of the plugins and
player versioning.

References

[1] Inka3d, 2011.
[2] Luz Caballero. An introduction to webgl. 2011.

[3] Lin Edwards. Superior 3d graphics for the web a step
closer. Online, June 2009.

[4] Craig Grannell, Victor Sumner, and Dionysios Syn-
odinos. The essential guide to css and html web de-
sign. friendsofed (an apress company). November
2007.

[5] Etienne Levesque Guitard. Flash vs html5 perfor-
mance (updated january 2012), 2011.

[6] R. Spallone M. Lo Turco, M. Sanna. Fourth di-
mension for representing and communicating archi-
tectural heritage. In 22nd CIPA Symposium, Kyoto,
Japan, October 2009.

[71 Domenica Constantino Maria Giuseppa Angelini and
Nicola Milan. 3d and 2d documentation and visual-
ization of architectural historic heritage. In IXXIII
CIPA Symposium, Prague, Czech Republic, Septem-
ber 2010.

[8] Mark Pilgrim. Html5: Up and running. o’reilly me-
dia. 2010.

[9] Rob Bateman Richard Olsson. The essential guide to
3d in flash. friendsofed. 2010.

[10] Jean-Francois Lapointe Lorenzo Gonzo Sabry F. El-
Hakim, George MacDonald and Michael Jemtrud.
On the digital reconstruction and interactive presen-
tation of heritage sites through time. In The 7th Inter-
national Symposium on Virtual Reality, Archeology
and Cultural Heritage, September 2006.

[11] N. Kawahara S. Koga T. Nakaya Y. Takase, K. Yano
and T. Kawasumi et.al. Reconstruction and visual-

ization of virtual time-space of kyoto, a 4d-gis of the
city. In ISPRS Proceeding, September 2010.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

