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Abstract

We show that if a1, a2, a3, . . . is a sequence of positive integers and k is given, then the

sequence a1, aa2
1 , a

a
a3
2

1 , . . . becomes constant when reduced (mod k). We also consider the
sequence 11, 22, 33, . . . (mod k), showing that this sequence, and related ones like nnn

(mod
k), are eventually periodic.

–Dedicated to the memory of Prof. Arnold Ross

1. Introduction

What is the units digit of a number like 78910

? Problems of this nature often appear on
contests, and we consider various generalizations in this article. For instance we show
that if a1, a2, a3, . . . is a sequence of positive integers and k is given, then the sequence

a1, aa2
1 , a

a
a3
2

1 , . . . becomes constant when reduced (mod k). We also consider the sequence
11, 22, 33, . . . (mod k), showing that this sequence, and related ones like nnn

(mod k), are
eventually periodic. With further work we are able determine their minimal periods. Using
those ideas we prove that if u is relatively prime to k then the congruences xx ≡ u (mod k)
and yyy ≡ u (mod k) have solutions. Finally, we lift these ideas to the ring of p-adic integers
and pose some open questions.

The methods used here are part of elementary number theory and we have attempted to
present the ideas in as elementary a way as possible. The results proved here were originally
obtained in 1985, but not published previously.
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Many papers have been written about limits of the form xxx·
··

, where x is a real or complex
number. In fact, such convergence questions go back to Bernoulli, Goldbach and Euler. Re-
sults and references to the literature appear in Anderson (2004), Knoebel (1981), and Baker
and Rippon (1985). However, relatively little work has been done on the arithmetic aspects
of such numbers when x is an integer. Early work in this direction was done by Maurer
(1901) and Cunningham (1907). Fifty years later some related papers appeared in Polish
journals by Sierpiński (1950), Hampel (1955) and Schinzel-Sierpiński (1959). More recently
Blakley-Borosh (1983) and Dawson (1994) published further results about the periodic be-
havior of these sequences modulo k. In this article we unify and extend these arithmetic
results. In the first sections below we have repeated some of the results of Blakley-Borosh
and Dawson in order to have a self-contained presentation and to clarify the notations.

2. Reducing Iterated Exponents Modulo k

The symbol Z stands for the set of integers and Z+ is the subset of positive integers. We
assume the reader is familiar with some elementary number theory.

Definition 2.1. If a, b are positive integers, define a ↑ b = ab. These arrows are always
associated to the right if no parentheses are present: a ↑ b ↑ c = a ↑ (b↑c). The related “E”
notation is defined in analogy with “Σ” for sums:

s

E
j=1

aj = a1 ↑a2 ↑ . . .↑as = a
a..

.as

2
1 .

Recursively we can define:
s

E
j=1

aj = a1 ↑
( s

E
j=2

aj

)
, if s > 1.

The goal of this section is to investigate conditions on integer sequences {aj} and {bj}
which imply that a1 ↑ a2 ↑ . . . ↑ as ≡ b1 ↑ b2 ↑ . . . ↑ bs (mod k). To begin let’s refine the usual
definition of the order of an element (mod k) by allowing non-units.

Definition 2.2. Given n and k, the sequence 1, n, n2, n3, . . . (mod k) is eventually periodic.
The order, ok(n) = o(n mod k), is the length of that periodic cycle. The tail length ρk(n)
is the number of terms in the sequence before the repeating cycle begins. (The notations ρ
and o are suggested by the shapes of those letters.)

For example the powers of 2 (mod 40) are 1, 2, 4, 8, 16, 32, 24, 8, 16, 32, . . . . The
terms (1, 2, 4) form an initial “tail” so that ρ40(2) = 3. The repeating portion or “cycle” is
(8, 16, 32, 24), so that o40(2) = 4.

Lemma 2.3. Given positive integers n and k:
(a) ρk(n) and ok(n) depend only on n modulo k.
(b) If r #= s, then nr ≡ ns (mod k) ⇐⇒ r ≡ s (mod ok(n)) and r, s ≥ ρk(n).
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Proof. These statements follow from the definition. For instance, for (b), any repetition in
the sequence {nr (mod k)} must occur within the repeating cycle.

When n is invertible (mod k), the sequence 1, n, n2, n3, . . . (mod k) is purely periodic.
Then the cycle length is the first exponent which yields 1. That is, ρk(n) = 0 and ok(n) =
min{d : d > 0 and nd ≡ 1 (mod k)}.

Lemma 2.4. Given k, n ∈ Z+, factor k = k′(n)k′′(n), where k′(n) and n are coprime, and
every prime factor of k′′(n) also divides n.

(1) ok(n) = ok′(n)(n).
(2) ρk(n) = min{r ∈ Z : r ≥ 0 and k′′(n) |nr}.

Proof. The values nr (mod k′) are purely periodic while nr ≡ 0 (mod k′′) for all large r. This
yields the expression for ρk(n). To check the length of the eventual cycle, note: nt ≡ nt+w

for both moduli k′ and k′′ if and only if nt ≡ nt+w mod k.

Suppose n = pr1
1 pr2

2 · · · prt
t , where the pi are distinct primes and every ri > 0. Arrange

the prime factors of k so that k = pm1
1 pm2

2 · · · pmt
t · · · pmu

u , where mi ≥ 0. Then k′′(n) =
pm1

1 pm2
2 · · · pmt

t and ρk(n) = max
1≤i≤t

{(mi
ri
)}.

(Here, (x) is the smallest integer ≥ x.)

Euler proved that cϕ(k) ≡ 1 (mod k) for every c coprime to k. Here the Euler function
ϕ(k) is the number of elements in the group of units Uk = (Z/kZ)∗. Equivalently, ϕ(k) is the
number of integers c coprime to k with 0 ≤ c < k. For our purposes, the smallest exponent
for Uk is a more important value.

Definition 2.5. For k ∈ Z+ define λ(k) to be the smallest positive integer e such that
ne ≡ 1 (mod k) for every n coprime to k. Define R(k) = max{ρk(n) : 0 ≤ n < k}.

This λ(k) is the “exponent” of the abelian group Uk. Carmichael (1910) showed how to
compute λ(k) from the prime factorization of k.

Proposition 2.6. Suppose k = pm1
1 pm2

2 . . . pmt
t in prime factorization.

(0) R(k) = max{mi}.
(1) λ(k) is the maximal order of an element in Uk. If d |k then λ(d) |λ(k).
(2) If a, b are coprime, then λ(ab) = lcm{λ(a), λ(b)}; In general, λ

(
lcm{a, b}

)
divides

lcm{λ(a), λ(b)}.
(3) If p is an odd prime, λ(pm) = pm−1(p − 1).
(4) λ(2) = 1, λ(4) = 2, and λ(2m) = 2m−2 whenever m ≥ 3.

Proof. These results follow from the ideas used to determine which of the groups Un are
cyclic. Key steps in an elementary proof are:

(i) If x, y ∈ Um, there exists z ∈ Um with ok(z) = lcm{ok(x), ok(y)}.
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(ii) If p is an odd prime, there is an element of order pm−1 in Upm .
(iii) There is an element of order 2m−2 in U2m whenever m ≥ 3.

Further information appears in many references, like [Carmichael: 1910], [Vinogradov: 1954]
pp. 106-107, or [H. Shapiro: 1983] Theorems 6.2.2 and 6.3.1.

For part (2), when a, b are coprime apply the Chinese Remainder Theorem. For the
general case, factor lcm{a, b} = a′b′ where a′ | a, b′ | b and a′, b′ are coprime. Then
λ(lcm{a, b}) = λ(a′b′) = lcm{λ(a′), λ(b′)} divides lcm{λ(a), λ(b)}.

As a corollary we see that λ(k) and R(k) are the o and ρ for everything in Z/kZ, taken
simultaneously.

Corollary 2.7. Let k be a positive integer.
(1) For every n ∈ Z, ok(n) |λ(k) and ρk(n) ≤ R(k).
(2) Let a, b be nonnegative integers. Then

na ≡ nb (mod k) for every n ⇐⇒
{

either a = b,

or a ≡ b (mod λ(k)) and a, b ≥ R(k).

Proof. (1) ok(n) = ok′(n) which divides λ(k′). Since k′ |k we apply (2.6)(2) above. (2) Apply
Lemma 2.3.

Consequently, the mod k reduction of, say, a
a

a3
2

1 = a1 ↑ a2 ↑ a3 should depend only on
the residues of a1 (mod k), of a2 (mod λ(k)) and of a3 (mod λ(λ(k))). For example, since
λ(λ(8)) = 1, this ought to imply that the value of a1 ↑ a2 ↑ x (mod 8) is independent of
the choice of x. However 221 #≡ 222

(mod 8). This happens because the value 221
= 4 lies

in the “tail” rather than the “cycle”. The next few results detail the inequalities needed to
avoid this problem. To simplify notations, define λr recursively by setting λ0(k) = k and
λr = λ ◦ λr−1 for r > 0.

Lemma 2.8. Suppose ar ≡ br (mod λr−1(k)) for r = 1, . . . , s. Then
s

E
i=1

ai ≡
s

E
i=1

bi (mod k),

provided
s

E
i=r+1

ai and
s

E
i=r+1

bi are ≥ R(λr−1(k)) whenever 1 ≤ r < s.

Proof. Induction on s using Corollary 2.7.

Proposition 2.9. Suppose ar ≡ br (mod λr−1(k)) for r = 1, . . . , s. Suppose further that

ar, br ≥ 2 for 1 < r ≤ s; and as, bs ≥ R(λs−2(k)). Then

s

E
i=1

ai ≡
s

E
i=1

bi (mod k).

Proof. It suffices to verify the inequalities in (2.8). The case r = s−1 is assumed. The other
inequalities follow by repetition of the following claim.
Claim: If a ≥ 2 and a ≥ R(λ(k)) then 2a ≥ R(k). This is clear when R(k) ≤ 4 since
2a ≥ 22 = 4. If R(k) > 4 the definitions imply that R(λ(k)) ≥ R(k) − 2. Since 2x−2 ≥ x
whenever x ≥ 4 we find that 2a ≥ 2R(k)−2 ≥ R(k).
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Definition 2.10. For k ∈ Z+ the height of k is h(k) = min{s : λs(k) = 1}.

Checking small cases we find: h(k) = 0 ⇐⇒ k = 1; h(k) = 1 ⇐⇒ k = 2; and
h(k) = 2 ⇐⇒ k = 3, 4, 6, 8, 12 or 24.

Corollary 2.11. If aj ∈ Z+, then the towers a1 ↑a2 ↑ · · ·↑ah(k) ↑ c reduce to the same value
in Z/kZ, for every c > 1. Consequently, a1 ↑ a2 ↑ · · · ↑ as ↑ x (mod k) is independent of the
value of x ∈ Z+, provided s > h(k).

Proof. If aj = 1 for some j ≤ h(k), the result is trivial, so assume all aj ≥ 2. Compare
two such towers differing only in the top entries ah(k)+1 = c by checking the conditions in
(2.9) when s = h(k) + 1. They all hold provided c ≥ 2. The second statement follows using
c = ah(k)+1 ↑ · · ·↑as ↑x.

Thus, for any sequence {aj} ⊆ Z+ and k ∈ Z+, the sequence of “partial powers” Es

i=1 ai

becomes stable (mod k) as s increases; all terms with s > h(k) are congruent (mod k).

3. The Sequences n↑↑ t (mod k)

Define the double-arrow n↑↑ t to be Et

i=1(n), an exponential ladder of t n’s. Then n↑↑0 =
1, n ↑↑ 1 = n, n ↑↑ 2 = nn, etc. This is part of the arrow notation as defined in Knuth
(1976).

For a fixed modulus k, Hampel (1955) showed that the sequence 11, 22, 33, . . . (mod k)
is eventually periodic and determined its minimal period. In this section we generalize that
result, showing for any t ≥ 0, the sequence 1 ↑↑ t, 2 ↑↑ t, 3 ↑↑ t, . . . is eventually periodic
(mod k), and computing its minimal period, Lt(k).

For fixed k and n, the sequence n, nn, nnn
, n↑↑4, . . . eventually becomes constant (mod

k). In fact, Corollary 2.11 implies that n ↑↑ t ≡ n ↑↑ (t + 1) (mod k) whenever t > h(k).
The “stable value” αk(n) of this sequence n↑↑ t (mod k) is a well defined element of Z/kZ.
However, it is best to define a positive integer representing this value, since we will also use
it as an exponent.

Definition 3.1. For k, n ∈ Z+ let αk(n) = n ↑↑ (1 + h(k)). This is defined recursively by:
α1(n) = n and αk(n) = n↑αλ(k)(n) for every k ≥ 2.

Then αk(n) ≡ n↑↑ t (mod k) for every t > h(k), and we may consider this value in Z/kZ
as the “infinite tower” of exponents:

αk(n) ≡ nn
n··

·

(mod k).
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Corollary 3.2. If k, n ∈ Z+ then x = αk(n) satisfies x ≡ nx (mod k).

Proof. With t = 1 + h(k), Corollary 2.11 implies x = n↑↑ t ≡ n↑↑ (t + 1) ≡ n↑ (n↑↑ t) = nx

(mod k).

Let’s examine a few numerical cases. Table 1 lists the sequences αk(n) reduced to their
least nonnegative residues modulo k, for the first few values of k and n.

k \n 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

2 (1 0) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3 (1 1 0 1 2 0) 1 1 0 1 2 0 1 1 0 1 2 0 1 1 0 1 2

4 (1 0 3 0) 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3

5 (1 1 2 1 0 1 3 1 4 0 1 1 3 1 0 1 2 1 4 0) 1 1 2

6 (1 4 3 4 5 0) 1 4 3 4 5 0 1 4 3 4 5 0 1 4 3 4 5

7 (1 2 6 4 3 1 0 1 1 4 2 1 6 0 1 2 5 1 5 1 0 1 4

8 (1 0 3 0 5 0 7 0) 1 0 3 0 5 0 7 0 1 0 3 0 5 0 7

9 (1 7 0 4 2 0 7 1 0 1 5 0 4 4 0 7 8 0) 1 7 0 4 2

Table 1: The (k, n)-entry is αk(n) (mod k).

Here k indexes the rows and n indexes the columns. Parentheses indicate the first re-
peating block of each sequence.

As one example let’s calculate the residue of α7(5) (mod 7). First check that h(7) = 3
(since λ(7) = 6, λ2(7) = 2 and λ3(7) = 1). By definition, α7(5) =

5↑↑4 = 5555

, a number of more than 2 · 1017 digits. To reduce it modulo 7 we first compute
that 5 ↑↑ 3 ≡ 555 ≡ (−1)55 ≡ −1 ≡ 5 (mod 6). Conclude from (2.7) that α7(5) ≡ 55 ≡ 3
(mod 7). Further values for k = 7 appear in Table 2 below. These calculations suggest that
the sequence αk(n) (mod k) is always periodic (with no tail). The minimal periods L(k)
are: L(1) = 1, L(2) = 2, L(3) = 6, L(4) = 4, L(5) = 20, L(6) = 6, L(7) = 42, L(8) =
8, L(9) = 18. Our goal is to find a simple formula for these periods.

Proposition 2.9 shows that the sequences {n ↑↑ t (mod k)} are eventually periodic and
provides natural candidates for their periods.

Lemma 3.3. Suppose k, t > 0 are given and let L = lcm{k, λ(k), λ2(k), . . . , λt−1(k)}, the
least common multiple. If t ≥ 2 and integers a, b satisfy a, b ≥ R(λt−2(k)), then a ≡ b
(mod L) implies a↑↑ t ≡ b↑↑ t (mod k).

Proof. If a ≡ 1 or b ≡ 1 (mod k) the conclusion is trivial, so we may assume a, b ≥ 2.
By hypothesis, a ≡ b (mod λr−1(k)) for r = 1, 2, ..., t. The implication now follows from
Proposition 2.9.
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Definition 3.4. For k, t ∈ Z+, let Lt(k) be the minimal period of the eventually periodic
sequence {n↑↑ t (mod k)}. Let L(k) be the minimal period of the periodic sequence {αk(n)
(mod k)}.

Observe that (2.11) implies Lt(k) = L(k) whenever t ≥ h(k). Also L1(k) = k for all
k. Moreover, by (3.3), Lt(k) divides lcm{k, λ(k), λ2(k), . . . , λt−1(k)}, since any period is a
multiple of the minimal period.

Theorem 3.5. Lt(k) = lcm{k, λ(k), λ2(k), . . . , λt−1(k)}.

The proof of this theorem is preceded by several lemmas. Our strategy is to compute
Lt(k) when k is a prime power, then to glue these formulas together using the next lemma.

Lemma 3.6. (i) If d | k then Lt(d) | Lt(k); (ii) Lt

(
lcm{k1, k2}

)
= lcm{Lt(k1), Lt(k2)};

(iii) λs(lcm{a, b}) divides lcm{λs(a), λs(b)}.

Proof. (i) If a ≡ b (mod Lt(k)) and a, b are large then a↑↑ t ≡ b↑↑ t (mod k). Then if d |k,
the sequence {n↑↑ t (mod d)} has Lt(k) as a period. Hence the minimal period Lt(d) divides
Lt(k).

(ii) Let l = lcm{k1, k2} and m = lcm{Lt(k1), Lt(k2)}. Part (i) implies that m | Lt(l).
Conversely suppose a ≡ b (mod m) and a, b are large. Then a ≡ b (mod Lt(kj)), implying
a ↑↑ t ≡ b ↑↑ t (mod kj) for j = 1, 2. Then the congruence holds (mod l), and the minimal
period Lt(l) divides m.

(iii) This property of λ follows by repeated application of (2.6)(2).

Lemma 3.7. If p is prime then pm |Lt(pm).

Proof. We may assume t ≥ 2. It is easy to check that p | Lt(p), since n ↑↑ t ≡ 0 (mod p)
iff n ≡ 0 (mod p). Suppose m > 1. By induction pm−1 |Lt(pm−1) so it also divides Lt(pm).
Then Lt(pm) = pm−1y for some y, and we want to prove p | y. By definition of Lt we have
(n + pm−1y) ↑↑ t ≡ n ↑↑ t (mod pm) whenever n ≥ R(λt−2(pm)). We use n = 1 + pm, which
does satisfy that inequality. Setting r = (1+pm +pm−1y)↑↑(t−1), the congruence becomes:

(1 + pm−1y)r ≡ (1 + pm + pm−1y)↑↑ t ≡ (1 + pm)↑↑ t ≡ 1 (mod pm).
The binomial theorem then implies 1 + rpm−1y ≡ 1 (mod pm), so that ry ≡ 0 (mod p).
Since r ≡ 1 (mod p), we get p |y as claimed.

Lemma 3.8. If p is prime and t ≥ 2 then Lt−1(p − 1) |Lt(p).

Proof. For % = Lt(p), we have (n + %)↑↑ t ≡ n↑↑ t (mod p), for every large n. Since p |% we
find: n↑ ((n + %)↑↑ (t − 1)) ≡ (n + %)↑↑ t ≡ n↑↑ t ≡ n↑ (n↑↑ (t − 1)) (mod p), provided
n ≥ R(λt−2(p)). Suppose g is a generator of the group Up. Then for any large n with n ≡ g
(mod p), the previous congruence implies:
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(n + %)↑↑(t − 1) ≡ n↑↑(t − 1) (mod p − 1). (*)

Consequently, (*) holds for any large n of the form n = g+px+wy, where w = Lt−1(p−1).
Note that w and p are coprime, since w divides lcm{p−1, λ(p−1), . . . }. Therefore, congruence
(*) holds for all large integers n, so that the minimal period w must divide %.

Lemma 3.9. If p is prime, and t ≥ 2, then

lcm{pm, λ(pm), . . . , λt−1(pm)} = lcm{pm, p − 1, λ(p − 1), . . . , λt−2(p − 1)}.

Proof. If p = 2 both sides equal 2m. Suppose p is odd. Since (p− 1) |λ(pm), (2.6)(1) implies
λr−1(p − 1) |λr(pm), and the right side divides the left. To prove: λr(pm) divides the right
side, whenever 0 ≤ r < t. This is easy for r = 0, 1, so assume r > 1 and use induction.
Since λr(pm) = λr−1(pm−1(p−1)) divides lcm{λr−1(pm−1), λr−1(p−1)}, by (3.6)(iii), we may
apply the induction hypothesis to complete the proof.

Proof of Theorem 3.5. We prove this statement by induction on k. The formula for k = 1
is trivial, so we assume k > 1 and that the formula for Lt(a) holds true for every a < k.

First suppose k = pm is a prime power. We want to prove that Lt(pm) equals the quantity
in Lemma 3.9, which we call M here. As mentioned after (3.4), Lt(pm) divides M . By
induction, Lt−1(p−1) = lcm{p−1, λ(p−1), . . . , λt−2(p−1)}, so that M = lcm{pm, Lt−1(p−
1)}. The fact that M divides Lt(pm) now follows from (3.7), (3.8) and (3.6)(i). Hence
Lt(pm) = M .

Proceeding by induction for arbitrary k, we may assume that k > 1 is not a prime power.
Then there is a factorization k = ab where a, b are coprime and a, b < k. As noted before,
Lt(k) divides the quantity u = lcm{k, λ(k), . . . , λt−1(k)}. Since k = ab, (3.6)(iii) implies
that u divides lcm{a, b, λ(a), λ(b), . . . , λt−1(a), λt−1(b)}. The induction hypothesis implies
that this last quantity equals lcm{Lt(a), Lt(b)}, which equals Lt(ab) = Lt(k) by (3.6)(ii),
since a, b are coprime. Then all the terms in this divisor chain are equal and the Theorem
follows.

Corollary 3.10. (1) If p is prime then Lt(pm) = lcm{pm, Lt−1(p − 1)}; (2) Lt(k) =
lcm{k, Lt−1(λ(k))} = lcmp|k{k, Lt−1(p − 1)}.

Proof. By this notation we mean that if k = pm1
1 pm2

2 . . . pms
s is the prime factorization of k

then Lt(k) = lcm{k, Lt−1(p1 − 1), . . . , Lt−1(ps − 1)}. These formulas follow from (3.9) and
Theorem 3.5.

Corollary 3.11. The period L(k) of the sequence αk(0), αk(1), αk(2), , . . . in Z/kZ has the
following properties:
(1) L(k) = lcm{k, λ(k), λ2(k), . . . } = lcmp|k{k, L(p − 1)};
(2) If d | k then L(d) | L(k). Moreover, L

(
lcm{a, b}

)
= lcm{L(a), L(b)} and L(mn) =

lcm{mn, L(m), L(n)}.
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(3) The periods k = L1(k), L2(k), . . . , L(k) form a divisor chain (each term divides the next).
(4) L

(
λ(k)

)
divides L(k).

(5) L(L(k)) = L(k).
(6) L(k) = k ⇐⇒ λ(k) |k ⇐⇒ for prime p, p |k implies (p − 1) |k.

Proof. (1) Use Theorems 3.5 and 3.10, noting that L(k) = Lt(k) whenever t ≥ h(k). The
other parts follow from (1). For instance, for (6) note that (1) implies: L(k) = k if and only
if every λr(k) | k. By (2.6)(1), that is equivalent to: λ(k) | k. The formula for λ(k) in (2.6)
implies that this occurs exactly when (p − 1) |k for every prime factor p of k.

The sequence αk(n) (mod k) was viewed as a mapping αk : Z+ → Z/kZ. Knowing the
periodicity we re-interpret it (with some abuse of notation) as a map αk : Z/L(k)Z → Z/kZ.
This observation explains how to make sense of αk(n) for negative values of n.

Proposition 3.12. (i) αk(0) = 0 and αk(−1) = −1.
(ii) If n is even then αk(−n) = αk(n).
(iii) If n ∈ UL(k) is a unit, then αk(−n) = −αk(n−1).

Proof. Assume k > 1 so that L = L(k) is even. (i) Note that αk(−1) = αk(L − 1) = (−1)s

in Z/kZ, where s = aλ(k)(L − 1) is odd.

(ii) Induct on k. By the periodicity we may assume 0 ≤ n < L. Then αk(−n) ≡
αk(L − n) ≡ (L − n)s ≡ (−n)s (mod k), where s = αλ(k)(L − n). Since n and L are
even, s is even and αk(−n) ≡ ns (mod k). Since L is a multiple of L(λ(k)), we have s ≡
αλ(k)(−n) (mod λ(k)). Applying the induction hypothesis we find s ≡ αλ(k)(n) (mod λ(k))
and therefore αk(−n) ≡ αk(n) (mod k), as claimed.

(iii) Using a similar strategy (but with less detail), we have αk(n−1) ≡ n−1 ↑s ≡ n↑(−s)
(mod k), where s ≡ αλ(k)(n−1) (mod λ(k)). By induction s ≡ −αλ(k)(−n) (mod λ(k)).
Then since n is odd, αk(n−1) ≡ n↑αλ(k)(−n) ≡ −αk(−n) (mod k).

It is interesting to look for patterns in tables of values of αk(n). For example, here are
the values of α7(n) arranged in rows of seven. The period is L(7) = 42.

0 1 2 6 4 3 1
0 1 1 4 2 1 6
0 1 2 5 1 5 1
0 1 4 1 4 2 6
0 1 1 3 4 6 1
0 1 2 4 1 2 6

Table 2: α7(n) for n = 0, 1, . . . , 41.
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A number of patterns of ±1’s can be observed from such charts. The simplest ones are
easily explained.

Proposition 3.13. Let p be an odd prime, and suppose n #≡ 0 (mod p).
(i) If n ≡ 1 (mod p) then αp(n) ≡ 1 (mod p); if n ≡ −1 (mod p) then αp(n) ≡ (−1)n

(mod p).
(ii) If p ! n and each prime factor of p − 1 divides n, then αp(n) ≡ 1 (mod p).

Proof. αp(n) = ns where s = αp−1(n) ≡ nt (mod p−1), for some large t. (i) Easy. (ii) Since
t is large, (p − 1) |nt = s and the claim follows.

This frequent occurrence of ±1’s doesn’t happen for every value of k. In the next section
we will prove that when L(k) = k, the value 1 occurs only once in each period of αk(n)
(mod k). For example, since L(7) = 42 we know from Corollary 3.11(5) that L(42) = 42.
Here is a table of the values of α42(n), arranged in rows of seven. Note that these values
induce those of α7(n) after reduction (mod 7).

0 1 16 27 4 17 36
7 22 15 4 23 36 13
28 15 16 5 36 19 22
21 22 11 36 25 16 27
28 29 36 31 4 27 22
35 36 37 4 15 16 41

Table 3: α42(n) for n = 0, 1, . . . , 41.

4. Values Occurring in the Sequences

Which values in Z/kZ are assumed by the sequence αk(n) ? That is, for which a ∈ Z+ does
there exist n with αk(n) ≡ a (mod k)? For example, Table 1 shows that the sequence αk(n)
assumes all the values in Z/kZ when k = 2, 3, 5, 7. However, when k = 4, 6, 8, 9 some values
are missed. An easy argument settles the question when k is a prime, or more generally
when k and λ(k) have no prime factors in common.

Lemma 4.1. Suppose k and λ(k) are coprime. For any t ≥ 1 and any a ∈ Z, there exists n
satisfying n↑↑ t ≡ a (mod k).

Proof. If t = 1 the claim is trivial, so assume t ≥ 2. Note that R(k) = 1. By the Chinese
Remainder Theorem there exists n ∈ Z+ such that n ≡ a (mod k) and n ≡ 1 (mod λ(k)).
Then n↑↑ t = n↑nm where m = n↑↑(t−2). Corollary 2.7 implies: n↑↑ t = n↑nm ≡ a↑1 ≡ a
(mod k).
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Define the map Et : Z+ → Z/kZ by Et(n) = n ↑↑ t. It is not always surjective, but we
will show that every Et is at least surjective on units.

Since Et is eventually periodic with period L = Lt(k), we can restrict to values n ≥ R(k)
to get an induced map Z/LZ → Z/kZ. Since L |L(k) we can use the possibly larger domain
Z/L(k)Z for all values of t. Then Et induces a map Et : Z/L(k)Z → Z/kZ, which restricts
to a map UL(k) → Uk. Here is a key observation: When c is an exponent coprime to λ(k)
then nc ≡ 1 (mod k) implies n ≡ 1 (mod k). Consequently, if x, y ∈ Uk then xc ≡ yc

(mod k) =⇒ x ≡ y (mod k).

Proposition 4.2. Suppose λ(k) |k so that k = L(k). Then for every t, the map Et : Uk →
Uk is bijective.

Proof. Since Uk is a finite set it suffices to prove Et is injective. The case t = 1 is trivial
so assume t ≥ 2. The initial cases k = 1, 2 are also easy, so we may assume k > 2 and
use induction on k. From λ(k) | k we know λ(λ(k)) | λ(k) and the induction hypothesis
implies Et : Uλ(k) → Uλ(k) is injective. Suppose x, y ∈ Uk and Et(x) ≡ Et(y) (mod k).
Then this congruence holds (mod λ(k)) so that x ≡ y (mod λ(k)), by induction. Since
Lt−1(λ(k)) = λ(k) by (3.11) we find that Et−1(x) ≡ Et−1(y) (mod λ(k)). Letting c = Et−1(x)
we have xc ≡ Et(x) ≡ Et(y) ≡ yc (mod k). From the key observation above we conclude
that x ≡ y (mod k).

Corollary 4.3. For any k, the restriction Et : UL(k) → Uk is surjective. In particular, the
map αk : Z+ → Z/kZ induces a surjective map αk : UL(k) → Uk.

Proof. Let a ∈ Uk. Since k | L(k) we can choose b ∈ UL(k) with b ≡ a (mod k). Since
L(L(k)) = L(k) by (3.11), Proposition 4.2 provides n ∈ UL(k) with Et(n) ≡ b (mod L(k)).
Reducing this congruence shows that Et(n) ≡ a (mod k). The final statement follows since
αk(n) ≡ Et(n) (mod k) whenever t ≥ h(k).

Here is an alternative approach to the map αk. If c = αk(n) then by (3.2), nc ≡ c
(mod k). We can solve for n to get n ≡ c1/c (mod k), provided that fractional exponent
makes sense. Recall that for cs (mod k), the exponent s behaves modulo λ(k). If s is a unit
(mod λ(k)), choose t ∈ Z+ with t ≡ s−1 (mod λ(k)). Then for c ∈ Uk:

x ≡ ct (mod k) is the unique solution to xs ≡ c (mod k).
Therefore c1/c (mod k) makes sense whenever c ∈ Z+ is coprime to both k and λ(k). Since
lcm{k, λ(k)} divides L(k), we obtain a well-defined map δ : UL(k) → Uk given by δ(x) = x1/x.
This proves the following result, related to (4.2).

Proposition 4.4. Suppose λ(k) | k so that L(k) = k. The map αk : Uk → Uk is bijective
with inverse map δ.

Proposition 4.2 can be improved by allowing certain non-units. We will state our best
result along these lines.
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Theorem 4.5. Define Wk = {n ∈ Z/kZ : gcd(n, k, λ(k)) = 1}. Then for every t, the
restriction Et : WL(k) → Wk is surjective.

When λ(k) |k the method used in Proposition 4.4 can extended to Wk. However the full
theorem does not seem to follow easily from that case. Our proof of the theorem starts with
the idea in Lemma 4.1 and uses induction, building up k one prime at a time. It is too long
to include here.

We have not found any other useful conditions to ensure that a occurs as a value of αk(n).
In the other direction there is one easy condition for the number a to be a missing value for
the sequences (mod k).

Proposition 4.6. Suppose a, k, and t are given and t ≥ 2, and suppose there exists large x
with Et(x) ≡ a (mod k). If pd |k where pd is a prime power, then either p ! a or pd |a.

Proof. Suppose p |a. Since Et(x) ≡ a (mod pd) we see that p |x. Since x is large it follows
that a ≡ x↑Et−1(x) ≡ 0 (mod pd).

5. p-adic Interpretations.

In this section we assume the reader has some knowledge of the ring Zp of p-adic integers.
However, to keep the presentation more elementary we include a review of some of the defi-
nitions and basic properties. More details appear in various texts like Borevich-Shafarevich
(1966) or Koblitz (1977).

Let p be a fixed prime number. If n ≥ m there is a natural reduction map
πn,m : Z/pnZ → Z/pmZ. The ring Zp of p-adic integers is the projective limit lim←−(Z/pnZ) rel-
ative to these maps πn,m. An element c ∈ Zp is defined to be a sequence (c1, c2, c3, . . . ) where
cn ∈ Z/pnZ satisfying the following “coherence” condition: if n ≥ m then πn,m(cn) = cm.
With component-wise addition and multiplication, Zp becomes an integral domain. The
ring of integers Z is embedded as a subring of Zp by viewing k ∈ Z as a constant sequence
(k, k, . . . ) in Zp. Then u ∈ Zp is a p-adic unit (i.e. u is invertible) iff u #≡ 0 (mod p), and
every nonzero c ∈ Zp factors uniquely as c = pmu for some m ≥ 0 in Z and some p-adic unit
u ∈ Z∗

p. Let ord(c) be that exponent m.

Define the p-adic absolute value on Zp by setting |0|p = 0 and if c #= 0: |c|p = p−ord(c).
This absolute value satisfies the following rules:

|a|p ≤ 1, with equality ⇐⇒ a is a unit in Zp,
|ab|p = |a|p · |b|p, and
|a + b|p ≤ max{|a|p, |b|p}.
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That last inequality is stronger than the triangle inequality |a + b|p ≤ |a|p + |b|p. This
absolute value makes Zp into a complete metric space (every Cauchy sequence converges),
with Z+ as a dense subset.

Elements of Zp are often viewed as series: every c ∈ Zp can be expressed as a “power
series” c = a0 + a1p + a2p2 + . . . , where an ∈ {0, 1, . . . , p − 1} for every n ≥ 0. Every such
power series

∑
anpn (with 0 ≤ an < p) converges relative to the metric above.

Lemma 5.1. For any positive integers b1, b2, b3 . . . , the iterated exponential
∞

E
j=1

bj = b1 ↑b2 ↑b3 ↑ . . . converges in Zp.

Proof. Let cn = b1 ↑ b2 ↑ . . . ↑ bn. By Corollary 2.11, if s, t > h(pm) then cs ≡ ct (mod pm),
that is, |cs − ct|p < p−m. Then {cn} is a Cauchy sequence so its limit exists in Zp.

Definition 5.2. If n ∈ Z+ define α(n) = a(p)(n) =
∞

E
j=1

n in Zp. We could also write this as

α(n) = n↑↑∞.

Since α(n) = n ↑ n ↑ n ↑ · · · , it is natural to expect that nα(n) = α(n) in Zp. This fails
when p |n, because in that case α(n) = 0 in Zp. Difficulties arise even when n #≡ 0 (mod p)
because it is not clear how to define nx for a p-adic integer x. The function f(x) = nx is
defined for x in Z, but it might have no continuous extension to the larger ring Zp. The next
lemma shows that when n ≡ 1 (mod p) there is no obstruction to extending the domain of
f(x) = nx from Z+ to Zp.

Lemma 5.3. Suppose a ∈ Zp and |a − 1|p < 1. Equivalently, a ≡ 1 (mod p). Suppose
x, y ∈ Zp.
(1) For m ≥ 1, x ≡ y (mod pm) implies xp ≡ yp (mod pm+1).
(2) If s, t ∈ Z+ and s ≡ t (mod pm) then as ≡ at (mod pm+1).
(3) If x ∈ Zp, express x = lim

n→∞
xn where xn ∈ Z+, and define ax = lim axn . Then ax is

well defined, independent of the choice of the sequence {xn}. Moreover, f(x) = ax defines a
continuous function Zp → Zp satisfying:
(4) ax+y = axay; ax ≡ 1 (mod p) and (ax)y = axy; |ax − ay|p ≤ 1

p |x − y|p.
(5) If a, b ∈ Zp and a ≡ b ≡ 1 (mod p) then (ab)x = axbx.

Sketch of proof. (1) Express y = x+ pmt and use the binomial theorem. (2) By (1) we know
apm ≡ 1 (mod pm+1), and the claim follows. Statement (2) is equivalent to: |as − at|p ≤
1
p |s − t|p. (3) If {xn} is convergent, then {axn} is a Cauchy sequence, so ax is defined.
Triangle inequalities yield the inequality in (4) and this helps show that ax is independent
of the choice of {xn}. The remaining statements follow similarly.

A more sophisticated approach to these ideas is to introduce p-adic exponential and log-
arithm functions and then define ax = exp(x log a). Details appear in Borevich-Shafarevich
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(1966) pp. 285-288 or Koblitz (1977) pp. 75-82. Since log(1+x) converges on the open unit
ball, log(a) is defined only if |a − 1|p < 1. These two definitions of ax coincide because they
both are continuous extensions of f(n) = an on Z+, which is dense in Zp.

The lemma implies that if n ≡ 1 (mod p) and f(x) = nx then f : Zp → Zp is a
contraction mapping: |f(x) − f(y)|p < 1

p |x − y|p. The Banach fixed point theorem states
that a contraction mapping f on a complete metric space has a unique fixed point, obtained
as limn→∞ fn(c) for any initial point c. Then in our case, this process reflects ideas developed
in earlier sections: the unique α ∈ Zp satisfying α = nα is obtained from the map f(x) = nx

by choosing any c ∈ Zp and taking the limit of the iterates f(c) = n ↑ c, ff(c) = n ↑ n ↑
c, fff(c) = n↑n↑n↑c, . . . . This α = α(n) is the unique solution x ∈ Zp to x = nx, in the
case n ≡ 1 (mod p).

Before considering cases when n #≡ 1, we note that another contraction map appears
in Lemma 5.3(1). The map g(x) = xp satisfies: |g(x) − g(y)|p ≤ 1

p |x − y|p. However,
on closer examination we find that this g isn’t a contraction on the whole space Zp, since
that inequality fails if x #≡ y (mod p). We can fix this by separating the metric space
Zp into p parts, Sb = {k ∈ Zp : k ≡ b (mod p)}. Each Sb is a closed subspace of Zp,
and g(x) = xp is a contraction sending Sb to itself. Consequently there is a unique value
ω(b) ∈ Sb satisfying ω(b)p = ω(b). The uniqueness implies that this value depends only on
the residue b ∈ Z/pZ. Since ω(0) = 0 we ignore that case and consider ω as a map on the
nonzero classes ω : (Z/pZ)∗ → Zp. It is not hard to check that the image of ω is the group
of (p − 1)st roots of unity in Zp. This p-adic integer ω(b) = lim

m→∞
bpm

is the “Teichmüller

representative” of the residue class b.

When n #≡ 1 (mod p) the function f(k) = nk on Z+ does not extend continuously to
Zp. Instead there are p − 1 continuous “branches”, or partial extensions. Since np−1 ≡ 1
(mod p), the powers (np−1)x are well defined for x ∈ Zp, by (5.3). We would like to take the
(p − 1)st root to define nx, but there are several choices involved.

Following Koblitz (1977) p. 27, if n #≡ 0 (mod p), define 〈n〉 = n/ω(n) ∈ Zp. Then 〈n〉 ≡
1 (mod p) (so that 〈n〉x is well defined) and 〈n〉p−1 = np−1. We can now find continuous
(p− 1)st roots of (np−1)x by setting f(x) = ζ · 〈n〉x, where ζ ∈ Zp and ζp−1 = 1. For k ∈ Z+,
this f(k) equals nk exactly when ζ = ω(n)k. For b ∈ Z, this leads to the definition

fn,b(x) = ω(n)b〈n〉x.

Then fn,b : Zp → Zp is continuous, fn,b(x)p−1 = (np−1)x for all x, and fn,b(k) = nk for every
k ∈ Sb. This is the unique function with those properties since Sb is dense in Zp. The number
of different functions here is op(n), since fn,b depends on nb (mod p).

Proposition 5.4. Suppose n ∈ Z+ and p ! n. Then α(n) is the unique fixed point of the
map fn,b when b = αp−1(n).

Proof. fn,b is a contraction since |fn,b(x) − fn,b(y)|p = |〈n〉x − 〈n〉y|p ≤ 1
p |x − y|p. Therefore

there is a unique fixed point in Zp. For any large t, n ↑↑ t ≡ αp−1(n) ≡ b (mod p − 1).
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Therefore n ↑↑ t ∈ Sb. Hence Et+1(n) = n ↑ (n ↑↑ t) = fn,b(n ↑↑ t). Now take the limit as
t → ∞.

For every b the function fn,b has a unique fixed point in Zp. Generally, for a, c ∈ Zp with
c ≡ 1 (mod p), the function f(x) = a·cx is a contraction with a fixed point β. Then β/a is
the fixed point of g(y) = cay, obtained as the limit ca ↑ca ↑ · · · .

As an application of (5.4) we consider the injectivity of α on Z+.

Proposition 5.5. The map α = α(p) : Z+ → Zp sends every multiple of p to 0. On the
other positive integers, α(p) is injective.

Proof. If p |n then n↑n↑ . . .↑n involves high powers of p so the limit is 0 in Zp. Note that
if c #= 1 and |c − 1|p < 1 then the map g(x) = cx is injective. (This follows from the p-adic
logarithm, but there is a more elementary proof in the style of (5.3).)

Now suppose n, m ∈ Z+, n, m #≡ 0 (mod p), and and x = α(n) = α(m) in Zp. By (5.4),
x = fn,b(x) = fm,c(x) for some b, c. Then xp−1 = (np−1)x = (mp−1)x in Zp and we find that
((nm−1)p−1)x = 1. With c = (nm−1)p−1 we have c ≡ 1 (mod p) and cx = 1. The injectivity
mentioned above implies c = 1. But then np−1 = mp−1 in Z, so that n = m.

We have been considering towers of powers in Zp. However it is perhaps more natural to
consider those limits without restricting to a single prime p. Whenever d |k there is a natural
reduction map πk,d : Z/kZ → Z/dZ, and the projective limit makes sense: Ẑ = lim←−(Z/kZ).

An element ĉ ∈ Ẑ is defined to be a sequence ĉ = (c1, c2, . . . ) with ck ∈ Z/kZ satisfying
the “coherence” condition: if d |k then πk,d(ck) = cd. Unique factorization and the Chinese
Remainder Theorem provide a ring isomorphism:

Ẑ
∼=−→

∏

p

Zp,

where the direct product is taken over all primes p. Elements of Ẑ can also be thought of as
“profinite integers” as described using factorial representations in Lenstra’s paper [18].

If {an} is a sequence in Z+, then by (2.11), the numbers cn = a1 ↑a2 ↑ . . .↑an define an

element ĉ =
∞

E
j=1

aj ∈ Ẑ. In particular, for n ∈ Z+ we have an element α̂(n) =
∞

E
j=1

n = n↑n↑

n↑ · · · in Ẑ, which induces the element α(p)(n) ∈ Zp for every prime p. The domain of α̂ can

be enlarged to include all n̂ ∈ Ẑ by just taking the limit of the maps αk : Z/L(k)Z → Z/kZ
defined in §2 to build α̂ : Ẑ → Ẑ. That is, if ĉ = (c1, c2, . . . ), we define α̂(ĉ) by setting

α̂(ĉ)k = αk(cL(k)).

By (5.5) it follows that the restriction α̂ : Z+ → Ẑ is injective. However α̂ is not injective on
Ẑ. To see this, note that any ĉ ∈ Ẑ is determined by its list of components c(p) ∈ Zp. Define
ĉ by requiring c(p) = p for every p. Check that ĉ #= 0 but α̂(ĉ) = 0.
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To extend our work with p-adic numbers, we would like to define exponential functions
and consider their fixed points. Starting at the finite level, define an exponential map

exponk : (Z/kZ) × (Z/λ(k)Z) → (Z/kZ) by: exponk(a, b) = ab.

This can be a bit confusing since b is a residue class (not an integer) and the value ab

corresponds to a term in the “cycle” part of the sequence 1, a, a2, a3, . . . . For instance,
when k = 40 the powers of 2 (mod 40) are: 1, 2, 4, 8, 16, 32, 24, 8, 16, . . . . Since

λ(40) = 4, we find that expon40(2, 1) = 2
1

= 32 in Z/40Z, since that’s the term in the
cycle corresponding to 1 (mod 4).

Now take the limit of those maps exponk as k → ∞, to obtain expon : Ẑ × Ẑ → Ẑ.
We can write expon(â, b̂) as âb̂, but repeat the warning about interpretations. Although Z
embeds as a subring of Ẑ, this exponential map isn’t consistent with traditional exponents
of integers. For example, 1 and 2 embed as constant sequences 1̂, 2̂ in Ẑ, but 2̂1̂ does not
match 21 in Z.

One interesting point is that this exponential map generalizes all the p-adic exponential
maps, but without the concerns about convergence. The point is that defining ax for a ∈
Z/pmZ requires the exponent x to live in Z/pm−1(p−1)Z ∼= Z/pm−1Z×Z/(p−1)Z. Ignoring
the (Z/(p−1)Z)-component of x leads to p−1 different branches of the exponential function.
In Ẑ those components are not ignored and that difficulty vanishes.

Not surprisingly, the analysis of functions on Ẑ present various difficulties not arising in
Zp. It should be interesting to investigate whether the exponential maps on Ẑ are contrac-
tions relative to some nice metric, and whether α̂(n) is the unique fixed point of the function
f(x̂) = nx̂. We leave further development of this theory to the reader.

6. Some Problems

Here are a few open problems related to topics discussed above.

By (2.11) for given k every sequence n, nn, nnn
, n ↑↑ 4, . . . (mod k) becomes stable

after at most h(k) + 1 steps.

Problem 6.1. How fast does the height function h(k) grow?

The corresponding question for the ϕ-height has been studied. In analogy to Definition
2.10 let the ϕ-height be hϕ(k) = min{s : ϕs(k) = 1}. In 1943 H. N. Shapiro [24] proved
that hϕ(k) has multiplicative properties and grows logarithmically. Does h(k) have
the same order of magnitude as hϕ(k)? See H. N. Shapiro [25] , Parnami [21] and Erdős and
Graham [12] pp. 80-81 for related questions.
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Rather than considering all n simultaneously, define a height for each n:

%k(n) = min{t : Et(n) ≡ Et+1(n) (mod k)}

For given n, k, note that the sequence Et(n) (mod k) stabilizes after %k(n) steps:

Lemma 6.2. If Et−1(n) ≡ Et(n) (mod k) then Et(n) ≡ Et+1(n) (mod k).

Proof. To prove that Et(n) − Et−1(n) divides Et+1(n) − Et(n) for every n, check that
(na − a) |(nb − b) =⇒ (nna − na) |(nnb − nb).

Consequently, %k(n) ≤ h(k). Since %k(n) = 1 + %ok(n)(n) it follows that if s and L(k) are
coprime then %k(ns) = %k(n).

Problem 6.3. Investigate %k(n). As n varies, how do the values %k(n) compare with h(k)?

Let Nt(a mod k) be the number of solutions to Et(x) ≡ a (mod k), counted in one
period. In (4.3) we proved that Nt(a mod k) > 0 whenever a is a unit. In some cases when
(Z/kZ)∗ is cyclic, there is an explicit formula for N2. For instance, if p is an odd prime and
a is coprime to p then

N2(a mod pm) =
∑

d| p−1
r

d ϕ(
p − 1

d
),

where r = op(a). The proof involves choosing a generator g and counting x values by
tabulating s, t such that x ≡ gt (mod pm) and x ≡ s (mod pm−1(p − 1)) such that xx ≡
gst ≡ a (mod pm). Details are omitted.

Problem 6.4. Given k, for which a is there a solution to xx ≡ a (mod k)? How about
Et(x) ≡ a (mod k)? More generally, is there a simple formula for Nt(a mod k)? For these
questions, we consider only those x lying in the cyclic part, Z/Lt(k)Z.

Most of the information derived so far about the image of Et in Z/kZ is independent of
t. In addition to Lemma 6.2, we make another small observation relating these images for
different t values:

If Et(n) ≡ 1 (mod k) then Et+1(n) ≡ 1 (mod k).

To see this note that (Et(n) − 1) | (Et+1(n) − 1), since a |b =⇒ (na − 1) |(nb − 1).

Problem 6.5. As t varies, how are the sets image(Et) ⊂ Z/kZ related?

Approximations to α(n) = α(p)(n) ∈ Zp can be easily computed, but not much is known
about its algebraic properties. We note that α(n) /∈ Q:

If 1 < n ∈ Z+ and p ! n then α(n) is irrational.

For if α(n) = r/s in lowest terms, then by (5.4), (r/s)p−1 = (np−1)r/s in Zp. This implies
r(p−1)s = n(p−1)rs(p−1)s in Z. But that equation yields s = 1 and r = nr, a contradiction.
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Problem 6.6. For n as above, is α(p)(n) ∈ Zp transcendental over the field Q of rational
numbers?

For any sequence {a1, a2, a3, . . . } in Z+, the limit
∞

E
j=1

aj = a
a··

·
2

1 is a well-defined element

in Ẑ, the ring of profinite integers. If {bn} is a different sequence in Z+, it can happen that
∞

E
j=1

aj =
∞

E
j=1

bj in Ẑ. Examples are easy to produce when some ai, bj are allowed to equal 1.

For instance, 245
= 4232

and 923
= 3222

. Examples of such equalities seem to be harder
to find with infinite towers.

Problem 6.7. Suppose a1, a2, a3, . . . and b1, b2, b3, . . . are sequences in Z+ and every ai, bi ≥

2. If
∞

E
j=1

aj =
∞

E
j=1

bj in Ẑ, does it follow that every ai = bi?
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[27] W. Sierpiński, Sur les puissances du nombre 2, Ann. Soc. Polon. Math. 23 (1950) pp. 246-251.
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