Skip to main content
Log in

In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Endophytic and epiphytic fungal assemblages from stems of S. rotundifolia, a shrubby vine, were studied in order to (1) quantify differences and the degree of overlap between fungal communities of both micro-habitats, and (2) examine whether fungal assemblages are spatially correlated at the local scale (tens to hundreds of meters), in order to understand if dispersal limitation may play a role in structuring these communities. Sampling was conducted over 160 m of growth along a forest edge. The communities showed low overlap (Bray-Curtis Similarity = 0.22), with most species that were common in one habitat appearing rarely if at all in the other, and only Aureobasidium pullulans showing high frequency in both. Epiphytic assemblages proved to be spatially correlated along the 160 m length of the transect, and even more so when adjacent pairs of stems were considered as the unit of comparison rather than individual stems. Endophytic assemblages showed no significant spatial correlation along the transect. Unexpectedly, three species of endophytes showed a pattern in which abundance of colonies peaked at different heights on the stems. Colletotrichum boninense showed peak abundance at 3 cm from the stem base. Phomopsis sp. 1 peaked at 33 cm from the stem base. Endophytic isolates of A. pullulans peaked at 63 cm from the stem tip. It was also found that positive correlative relationships were detected between endophyte-endophyte, and epiphyte-epiphyte pairs. Cross-group interactions seemed to center around crossover species that were not entirely constrained within the surface or interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Ando K (1992) A study of terrestrial aquatic hypohomycetes. Trans Mycol Soc Jpn 33:415–425

    Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Frankhauser JD, Piepenbring M, Schmitt I (2013) Host genetype shapes the foliar fungal microbime of balsam poplar (Populus balsamifera). PLoS One 8:e53987

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernstein ME, Carroll GC (1977) Internal fungi in old-growth Douglas fir foliage. Can J Bot 55:644–653

    Article  Google Scholar 

  • Bilgrami KS (1963) Studies on conidial dispersal of some pathogenic species of Phyllosticta. Naturwissenschaften 50:360

  • Boyle C, Götz M, Dammann-Tugend U, Schulz B (2001) Endophyte-host interactions III. Local vs. systemic colonization. Symbiosis 31:259–281

    Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Cabral D (1985) Phyllosphere of Eucalyptus viminalis: dynamics of fungal populations. Trans Br Mycol Soc 85:501–511

    Article  Google Scholar 

  • Carnegie SF (1980) Aerial dispersal of the potato gangrene pathogen, Phoma exigua var. foveata. Ann Appl Biol 94:165–173

    Article  Google Scholar 

  • Carroll FE, Muller E, Sutton BC (1977) Preliminary studies on the incidence of needle endophytes in some European conifers. Sydowia 29:87–103

    Google Scholar 

  • Challinor VL, Parsons PG, Chap S, White EF, Blanchfield JT, Lehmann RP, De Voss JJ (2012) Steroidal saponins from the roots of Smilax sp.: structure and bioactivity. Steroids 77:504–511

    Article  CAS  PubMed  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Muller-Landau HC, Levin SA (2002) Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 159:1–23

    Article  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Persistent URL <http://purl.oclc.org/estimates>

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species richness. Ecology 85:2717–2727

    Article  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci U S A 106:19651–19658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over gographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520

    Article  Google Scholar 

  • Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L (2008) Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 20:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012) Seasonal trends in biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–856

    Article  CAS  PubMed  Google Scholar 

  • Devarajan PT, Suryanarayanan TS (2006) Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 23:111–119

    Google Scholar 

  • Dickinson CH (1965) The mycoflora associated with Halimione portulacoides: III. Fungi on green and moribund leaves. Trans Br Mycol Soc 48:603–610

    Article  Google Scholar 

  • Elamo P, Helander ML, Saloniemi I, Neuvonen S (1999) Birch family and environmental conditions affect endophytic fungi in leaves. Oecologia 118:151–156

    Article  Google Scholar 

  • Elton C (1927) Animal ecology. The Macmillan Company, New York

    Google Scholar 

  • Espinosa-Garcia FJ, Rollinger JL, Langenheim JH (1996) Coastal redwood endophytes: their occurrence, interactions and response to host volatile terpenoids. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul, pp 87–100

    Google Scholar 

  • Fisher R, Nadav N, Chaimovitsh D, Rubin B, Dudai N (2011) Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age. J Agric Food Chem 59:4913–4922

    Article  CAS  Google Scholar 

  • Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. Trans Br Mycol Soc 86:153–193

    Article  Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Flessa F, Peršoh D, Rambold G (2012) Annuality of central European deciduous tree leaves delimits community development of epifoliar pigmented fungi. Fungal Ecol 5:554–561

    Article  Google Scholar 

  • Gao XX, Zhou H, Xu DY, Yu CH, Chen YQ, Qu LH (2005) High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach. FEMS Microbiol Lett 249:255–266

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Geange S, Pledger S, Burns KC, Shima JS (2011) A unified analysis of niche overlap incorporating data of different types. Methods Ecol Evol 2:175–184

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Gönczöl J, Révay Á (2004) Fungal spores in rainwater: stemflow, throughfall and gutter conidial assemblages. Fungal Divers 16:67–86

    Google Scholar 

  • Gönczöl J, Révay Á (2006) Species diversity of rainborne hyphomycete conidia from living trees. Fungal Divers 22:37–54

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9pp

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Article  Google Scholar 

  • Hudson HJ, Webster J (1958) Succession of fungi on decaying stems of Agropyron repens. Trans Br Mycol Soc 41:165–177

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  CAS  PubMed  Google Scholar 

  • Kendrick B, Burges A (1962) Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwig 4:313–342

    Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Gond SK, Anuj K, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Article  Google Scholar 

  • Koljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  CAS  PubMed  Google Scholar 

  • Legault D, Dessureault M, Laflamme G (1989a) Mycoflore des aiguilles de Pinus banksiana et Pinus resinosa I. champignons endophytes. Can J Bot 67:2052–2060

    Article  Google Scholar 

  • Legault D, Dessureault M, Laflamme G (1989b) Mycoflora of Pinus banksiana and Pinus resinosa needles. II. Epiphytic fungi. Can J Bot 67:2061–2065

    Article  Google Scholar 

  • Luttrell ES (1944) The morphology of Myiocopron smilacis (De Not.) Sacc. Am J Bot 31:640–649

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd, Malden

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Macauley BJ, Thrower LB (1966) Succession of fungi in leaf litter of Eucalyptus regnans. Trans Br Mycol Soc 49:509–520

    Article  Google Scholar 

  • Mariano RLR, Lira RVF, Silveira EB, Menezes M (1997) Levantamento de fungos endofíticos e epifíticos em folhas de coqueiro no Nordeste do Brasil. I. Frequüência da população fúngica e efeito da hospedeira. Agrotrópica 9:127–134

    Google Scholar 

  • Marquez SS, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 64:388–398

    Article  PubMed  Google Scholar 

  • Moncalvo JM, Wang HH, Hseu RS (1995) Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacer and 25S ribosomal DNA sequences. Mycologia 87:223–238

    Article  CAS  Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehoff A, Leary C, Meyer W, Sullivan R, White JF (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by Clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54:685–696

    Article  CAS  PubMed  Google Scholar 

  • Munafo JP, Gianfagna TJ (2011) Quantitative analysis of steroidal glycosides in different organs of Easter lily (Lilium longiflorum Thunb.) by LC-MS/MS. J Agric Food Chem 59:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Nix-Stohr S, Moshe R, Dighton J (2008) Effects of propagule density and survival strategies on establishment and growth: further investigations in the phylloplane fungal model system. Microb Ecol 55:38–44

    Article  PubMed  Google Scholar 

  • Osono T (2002) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Can J Bot 80:460–469

    Article  Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391

    Article  PubMed  Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Article  Google Scholar 

  • Osono T, Mori A (2004) Distribution of fungi within the canopy of giant dogwood. Mycoscience 45:161–168

    Article  Google Scholar 

  • Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56

    Article  Google Scholar 

  • Parker PE, Ramsdell DC (1977) Epidemiology and chemical control of Phomopsis canker of highbush blueberry. Phytopathology 67:1481–1484

    Article  CAS  Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Petrini O (1996) Ecological and physiological aspects of host-specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul, pp 87–100

    Google Scholar 

  • Prior R, Gorges K, Yurkov A, Begerow D (2014) New isolation method for endophytes based on enzyme digestion. Mycol Prog 1–8, doi:10.1007/s11557-014-0968-0

  • Pugh GJF, Buckley NG (1971) The leaf surface as a substrate for colonization by fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 431–445

    Google Scholar 

  • Qi Z, Cameron KM, Li P, Zhao Y, Chen S, Chen G, Fu C (2013) Phylogenetics, character evolution, and distribution patterns of the greenbriers, Smilacaceae (Liliales), a near-cosmopolitan family of monocots. Bot J Linn Soc 173:535–548

    Article  Google Scholar 

  • Révay Á, Gönczöl J (2011) Canopy fungi (“terrestrial aquatic hyphomycetes”) from twigs of living evergreen and deciduous trees in Hungary. Nova Hedwig 92:303–316

    Article  Google Scholar 

  • Reynolds DR (1999) Capnodium citri: the sooty mold comprising the taxon concept. Mycopathology 148:141–147

    Article  CAS  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian plam Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Ruscoe QW (1971) Mycoflora of living and dead leaves of Nothofagus truncata. Trans Br Mycol Soc 56:463–474

    Article  Google Scholar 

  • Santamaria J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50:1–8

    Article  PubMed  Google Scholar 

  • Saunders M, Kohn LM (2008) Host-synthesized compounds influence the in vitro interactions between fungal endophytes of maize. Appl Environ Microbiol 74:136–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serrato-Díaz LM, Rivera-Vargas LI, Goenaga R (2010) First report of sooty mold of longan (Dimocarpus longan L.) caused by Tripospermum porosporiferum Matsushima and T. variabile Matsushima in Puerto Rico. J Agric Univ P R 94:285–287

    Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K Dan Vidensk Selsk 5:1–34

    Google Scholar 

  • Stone JK (1987) Initiation and development of latent infetions by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Article  Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, Burlington, pp 241–270

    Chapter  Google Scholar 

  • Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and perference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5:624–632

    Article  Google Scholar 

  • Tadych M, Bergen MS, Johnson-Cicalese J, Polashock JJ, Vorsa N, White JF (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116

    Article  Google Scholar 

  • Taguchi YH, Oono Y (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21:730–740

    Article  CAS  PubMed  Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.) - Different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113:645–654

    Article  PubMed  Google Scholar 

  • Van Bael SA, Maynard Z, Rojas E, Mejia LC, Kyllo DA, Here EA (2005) Emerging perspectives on the ecological roles of endophytic fungi in tropical plants. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. Taylor and Francis group, Boca Raton, pp 181–192

    Chapter  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watson ES, McClurkin DC, Huneycutt MB (1974) Fungal succession on loblolly pine and upland hardwood foliage and litter in North Mississippi. Ecology 55:1128–1134

    Article  Google Scholar 

  • Wang Y, Guo LD (2007) A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can J Bot 85:911–917

    Article  Google Scholar 

  • Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092

    Article  Google Scholar 

  • Webster J (1956) Succession of fungi on decaying cocksfoot culms, Part I. J Ecol 44:517–535

    Article  Google Scholar 

  • Webster J (1957) Successoin of fungi on decaying cocksfoot culms, Part II. J Ecol 45:1–30

    Article  Google Scholar 

  • Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH (2007) Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae, and Taxaceae in southern China. Fungal Divers 24:55–74

    CAS  Google Scholar 

  • Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

  • Wildman HG, Parkinson D (1979) Microfungal succession on living leaves of Populus tremuloides. Can J Bot 57:2800–2811

    Article  Google Scholar 

  • Wrona B, Grabowski M (2004) Etiology of apple sooty blotch in Poland. J Plant Prot Res 44:293–297

    Google Scholar 

  • Yadav AS (1966) The ecology of microfungi on decaying stems of Heracleum sphondylium. Trans Br Mycol Soc 49:471–485

    Article  Google Scholar 

  • Yang X, Wilson LL, Madden LV, Ellis MA (1990) Rain splash dispersal of Colletotrichum acutatum from infected strawberry fruit. Phytopathology 80:590–595

    Article  Google Scholar 

  • Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci U S A 109:13022–13027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the H. Boyd and Jeanette Woodruff Graduate Fellowship in Soils and Environmental Microbiology, the Rutgers Turf Research Fund, The John and Christina Craighead Foundation, U.S.D.A. Multistate Project W3147, and the New Jersey Mycological Association for financial support. We thank Dr. Peter Morin for advice on aspects of study design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Zambell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambell, C.B., White, J.F. In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning. Fungal Diversity 75, 279–297 (2015). https://doi.org/10.1007/s13225-014-0316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-014-0316-3

Keywords

Navigation