
Early Token Ring Work at MIT

J. Noel Chiappa Editor: David Walden

Token ring local area networks (LANs) are now obsolete
technologies, but early work on them at the Massachu-
setts Institute of Technology produced networks that
have left their mark on today’s LANs. I start by telling
the story of early work at the Laboratory for Computer
Science (LCS) at MITon token ring LANs (which we usu-
ally simply called “rings,” not “token rings,” as was later
usual industry practice). Some of the more technical
content below may bring back memories for people
who lived through the era of this technology.

Background and Beginnings
LCS got involved in rings almost by accident, and I too
wound up involved in the ring work (and much else
besides!) similarly almost by accident.

In the mid-1970s, high-speed LANs were an obvious
area of work, connecting up the various mainframes
and mid-size machines found in a typical computing
site of the day. Such LANs were designed to provide rela-
tively high throughputs—those days 1 Mbit per second
was very fast—to modest numbers of computers over a
geographically fairly restricted scope, such as one build-
ing or a small group of them.

A particular LAN concept can be characterized along
two main axes: (1) the method used to pass data to the
interface stations connecting user computers to the
LAN and (2) the access control method used to mediate
access to the LAN’s resources. The former was often
indicated by what people called the “topology” of the
network, such as a “bus” or “ring,” which usually
implied a particular data-distribution technique.

In the case of token ring LANs, they had point-point
links between pairs of stations that joined them all in a
ring, with each station repeating the data to its
“downstream” neighbor. They also had a “token” (a spe-
cial bit pattern) that circulated around the ring, and a
station that wanted to send a packet waited to see the
token, removed it from the ring, and then sent its
packet, finally emitting a replacement token to indicate
that the ring was free.1

Ethernet was a rival LAN technology being developed
at the same time. Both the 3-Mbit/second Ethernet pro-
totype done by PARC and the follow-on Dec-Intel-Xerox
(DIX) 10-Mbit/second commercial version used a single
wire bus to which all the stations were attached and
used Carrier Sense Multiple Access with Collision Detec-
tion (CSMA-CD) as the control method. Very briefly,
this meant that a station listened for quiet before send-
ing (carrier sense) and stopped if its transmission col-
lided with another (collision detection), retrying after a
short (random) back off—similar to having a conversa-
tion at a crowded dinner table.

However, in the late 1970s, LANs weren’t available
off the shelf. Anyone who wanted one had to build their
own. So the Computer Systems Research (CSR) group in
LCS applied to DARPA (then LCS’s main funding source)
for money to build and deploy a LAN. DARPA was
already funding a group at the University of California,
Irvine (UCI) under Dave Farber to build a 1 Mbit/second
ring, a development of a previous generation ring called
the Distributed Computing System. Naturally enough,
DARPA said, “Why don’t you go in with their project?”
So MIT, unwisely perhaps, agreed.

I came on board the project around then, in the fall
of 1977, via a fortuitous (for me!) set of circumstances.
As a computer science student at MIT, I had some ideas
for an operating system I wanted to work on, and I
thought Jerry Saltzer (who I had gotten to know fairly
well via taking a course where he was a recitation
instructor) might be able to help me find a way to try
out my (crazy!) ideas.

Jerry, it turned out, was off on sabbatical at IBM, so I
was shown in to the acting group leader, a person I’d
never heard of before, David Clark. Dave listened with
some interest as I sketched out my operating system
ideas, and as it turned out, they were very similar to
some work he’d done.

After hearing me out, he had a proposal: they were
about to take delivery of the prototype ring interface
called the Local Network Interface (LNI), and DARPA
had provided them with a PDP-11/40 with which to
test the LNI. The LNI was designed to plug into a
Unibus, initially the standard I/O bus for the PDP-11
family of computers. The PDP-11/40 was a medium-
powered minicomputer. At that time, it was the small-
est PDP-11 available that had the capability of running
timesharing.

CSR had a lead role in developing Multics,2 and they
had a whole flock of people who knew how to program
Multics, but none of them knew anything about PDP-
11s. As luck had it (for me), at that point in time, the
MIT Computer Science Department’s introductory
course, 6.031, taught people to code in PDP-11 assem-
bler in the first part of the course. So although I didn’t
know much about PDP-11s, I knew more than anyone
else in CSR.

Dave offered to let me use the PDP-11/40 to work on
my operating system ideas if I helped with the LNI by
writing diagnostics for it. We were both pretty enthusi-
astic about the former, but it turned out that those ideas
never went anywhere. Instead, I got completely
involved with all the networking stuff, including
shortly thereafter, working on the Internet; even then,
networking was obviously going to be a really big deal.

80 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/14/$31.00 �c 2014 IEEE

Anecdotes

Anyway, I signed on for this deal and
started to learn more about our PDP-11,
which was running Unix. I’d never worked
with Unix, although a friend of mine in a
group that was running one had briefly
showed me a bit about it, and it had favorably
impressed me (as it did so many others).
Thus, my first step was to read all the available
Unix documentation from cover to cover.
That, plus a bit of experimental detective
work, left me in good enough shape to work
out how to write simple stand-alone diagnos-
tic programs and load them from disk.

Making the LNI Work
About that time, the first prototype ring
interface arrived. It had never even been
plugged in; the group at UCI had designed it,
and some combination of MIT and UCI had
had the prototype produced by a commercial
shop (I don’t know the details), and it was
then shipped to us.

The LNI Version 1 (V1) was a 5-1/4-inch
high unit for the standard 19-inch wide rack
used to hold larger PDP-11 systems. (There
was a V2 design later on—more on that
shortly.) The V1 consisted of what was effec-
tively a single large circuit board, using wire-
wrap, a now obsolete technology in which
each chip socket had tall pins for each con-
tact, and clever devices took a wire, stripped
an inch or so of the insulation, and wrapped
the resulting bare end around the pin. Unibus
cables connected it to the rest of the com-
puter (originally PDP-11s and later on a VAX-
11/780 as well).

The LNI had been designed at UCI by
Mike Lyle and Paul Mockapetris (of later DNS
fame), who were graduate students at the
time. Paul did the portion of the hardware
that stored a table of eight dynamically lo-
aded names, and Mike did the rest of the
hardware (the ring and bus interfaces).

The digital hardware design that UCI pro-
duced was not what it could have been—to
our cost. For example, the V1 LNI used binary
counters for state machines. It took the
encoded output from the counter chip and
ran it into an n-bit binary decoder chip so that,
as the state counted up, one output after
another became live in a sequence that was, in
theory, always ordered. However, the changes
in the outputs of the counter sometimes had
some timing variation between them as it
counted up, and as a result, as it counted from
N to N þ 1, the outputs could briefly show
some value other than N or Nþ 1. The decoder

dutifully processed the (brief) alternative
value, and so every so often one got glitches
on the output lines, glitches that drove us half
crazy trying to find and fix.

Also, the LNI was a pretty complicated
beast. The people at UCI had decided that for
their application (a distributed computing
system that supported mobile processes and
so forth) they needed complex naming capa-
bilities. For this, the LNI had the ability to
have “mask” bits in both the names (a.k.a.
addresses) stored in the LNI and in the mes-
sage header. Think of them as multicast on
steroids.3 A LNI subsystem called the name
table held eight dynamically loaded 32-bit
names (including masks) that applied to that
interface.

The LNI had three major subsystems: the
Unibus interface, the name table, and the
ring interface. Although each of them had
only a limited connection to the other two,
unfortunately there was no way to fully
debug one independently of the others. Thus,
it was always an “exciting” challenge to figure
out where exactly the latest bug was. A lot of
the LNI’s hardware footprint was devoted to
the name table, although it turned out that
that part of the LNI actually worked fairly
well. The problems we had to find and fix
turned out to be mostly in the interface to the
Unibus and in the hardware to drive the ring.

Ken Pogran, a staff member in CSR, was
tasked with debugging the LNI. An MIT grad-
uate, while at school he could not decide
between hardware and software, so although
he was doing programming just before the
LNI work, he was ideal for the LNI and enthu-
siastic about the chance to do some hardware
work. Soon after the start, we hired a techni-
cian to help him, Joe Ricchio. Ken set to
debugging the LNI, and it quickly became
clear that we were in for a long slog.

I don’t recall exactly the first problem we
found; my vague memory is that the first
diagnostic I wrote simply tried to read a regis-
ter in the LNI and retry it if the attempt to
read it failed. That kind of short, closed loop
you could watch on an oscilloscope, but
within a few days, it became clear to Ken that
an oscilloscope was not going to cut it as we

The LNI was a pretty

complicated beast.

81April–June 2014

got further into debugging more complex
functions. At that point, they hired one of
the first logic analyzers to help, which was a
wise move—I don’t think we’d have ever got-
ten the LNI fully working without it. We first
rented it, but we eventually wound up buy-
ing it—we used it for so long it was cheaper
that way!

The Unibus had several operating modes.
In the simplest, the CPU could read or write
from something attached to the bus (which
could be either memory, or a device). A more
complex operation was direct memory access
(DMA), in which a device asked the CPU to
let the device use the bus, and the device
then did a read or write cycle to computer
memory itself. Finally, devices could use the
bus to request an interrupt on the CPU.

The LNI had to do all three of these, and
we spent some time getting that all to work.
The DMA had to work well because the LNI
didn’t have packet buffers; the packet had to
be stored in computer memory as it arrived.

We then moved on to trying to get the ring
interface part to work, and that turned out to
be fairly complicated and bug-ridden too.

In addition to the normal processing of
tokens, an LNI had to be capable of initializ-
ing the ring—that is, introducing a token
into a quiescent ring. When sending a packet,
the sending station drained the packet off the
ring; all the other stations (including any des-
tinations) merely watched the packet as it
went by. To prevent spurious tokens seeming
to appear in data inside packets, the LNI had
to look at the data in the packet it was send-
ing and “bit-stuff”4 to convert any output
data bit patterns that looked like a token into
an alternative form. This was a process that
the receiving station would of course have to
undo.

The V1 LNI made heavy use of then-new
programmable logic arrays (PLAs), which we
wound up reprogramming a lot as we got the
LNI working. The logistics of that were chal-
lenging because we didn’t have a PLA pro-
grammer for a while, and we had to depend
on the kindness of the salesmen to use theirs!

Still, getting all that to work turned out
not to be the only problems. Others issues
involved more purely electrical problems.
The link from one LNI to the next was a sin-
gle twisted pair, with the data and clock com-
bined into a single self-timing signal. A big
problem (one we didn’t really understand at
the time) turned out to be that the coding
scheme used to combine the data and clock
wasn’t guaranteed to have a “0” average

voltage, which produced a varying DC offset
(via the capacitance of the cable) and made
the signal harder to discern.

However, the biggest problem I remember
had to do with clocking. There was no master
clock for the whole ring; each LNI had its
own. In fact, there was no master station,
which would have been a single point of fail-
ure—all the LNIs were identical. To deal with
the slight variation between the clocks on dif-
ferent interfaces, the LNI used a system where
each bit time was divided up into six slices
(the LNI had a 6-MHz master clock that was
divided down to 1 MHz to provide a clock for
the ring), and an LNI that discovered that it
was skewing from its neighbor could add or
subtract a slice to a particular bit on the input
side. The output side was always sent at that
particular LNI’s native clock speed. I seem to
recall that we had some grief getting that all
working properly because the rest of the cir-
cuitry had to stall or skip one high-speed
clock cycle while the ring interface portion
kept running.

Eventually we did get the V1 LNI operat-
ing properly, although it took a lot of work.
The prototype unit had been wired with blue
insulated wire. When Ken made fixes, he
used red wire. By the time he was done, the
first prototype had an incredible amount of
red wire in the parts of the board that inter-
faced with the bus and the network. Only the
part where the name table was stored was
mostly still blue.

About the time we were finally getting it
running, we had a visit from a VIP (someone
from DARPA, I assume), and I was tasked with
writing a demo. All we had at that point in
the way of software was small diagnostic pro-
grams to do things like send a packet and so
forth. I quickly whipped up a simple demo
that involved the user typing on the keyboard
of a terminal, sending the character around
the ring in a packet, and then displaying it.
(I don’t remember now whether this demo
used two computers or one. It may have been
two terminals attached to a single computer.)
Obviously, this would have been easy to fake,
but as I recall, it seemed to suffice.

The V2 LNI
We produced eight V1 LNIs and put them
into service to provide data transmission to a
number of the time-sharing machines at LCS
that were not fortunate enough to be on the
Arpanet.5 However, it was clear that mass
production of network interfaces was not an
appropriate use of LCS’s resources. We then

Anecdotes

82 IEEE Annals of the History of Computing

teamed up with a company called Proteon to
design and produce the V2 LNI, a follow-on
10-MBit/second commercial product. (Pro-
teon’s boss, Howard Salwen, had shared an
office in graduate school with LCS Director
Michael Dertouzos.)

At that point, Proteon was mostly a spe-
cialty analog communication shop, building
things that could be described as “N GHz
uplinks for NASA” in small quantities. In-
volvement with the V2 LNI changed their
future completely.

The V2 LNI was not an evolution of the
V1, but a wholly new design. It came as a set
of two smaller boards. We split it into two
boards because it would be necessary it into
plug into machines other than just machines
with a Unibus, so there was a host specific
board (HSB) and the ring interface card
(CTL). The V2 LNI used a totally different
system for the clock, a sophisticated purely
analog system where the clocks in all the
machines in the rings independently ad-
justed their clock speeds until there were an
integral number of bit times around the ring.

This too took forever to make work prop-
erly. As we deployed a larger number of sta-
tions on a single ring, the whole system
became unstable and would not lock up, so it
had to be modified. In a later follow-on
100-Mbit/second product from Proteon that
became the basis for the open Fiber Distrib-
uted Data Interface (FDDI) ring standard,6

they went back to the original V1 LNI
approach of using digital means to adjust bit
times, with independent, free-running clocks
in each interface.

In addition to the different ring clocking
mechanism and a higher speed (10 Mbits/
second), we deleted the entire complex
name table system. We felt that that func-
tion, if needed, would be more economically
implemented in a software layer. The pro-
gramming spec for the interface was consid-
erably redone based on our experience with
the V1—an exercise that ended up in a mem-
orable blow-up between Jerry and I when I
refused to follow his instructions on one par-
ticular detail!

The detailed design of the interface to the
host computer was also entirely different; the
problems involved in interfacing between an
asynchronous bus (the Unibus) and a system
with a fixed clock (the ring) led me to indi-
cate to the engineer at Proteon who was
designing the host interface card, Henry
Arbour, that we should use a design tech-
nique that MIT was then pushing in its

introductory digital design course, 6.032,
which used entirely unclocked logic.

We did all that, and the V2 LNI Unibus
host interface card worked well from the start.
The prototype had only about two dozen fix
wires on it, unlike the V1 LNI. With small
changes, the V2 LNI Unibus host interface
card was modified to produce host interface
cards for the Q-Bus (a lower-cost bus from
DEC for the LSI-11 family) and the Multibus.

The V2 LNI, and its successor, the 100-Mbit
Proteon ring, went on to become successful
products for Proteon, although the full story
of Proteon is left for another day.

Legacy of the V1 LNI
The V1 LNI did contribute one thing that
remains with us today: its network wiring
pattern, originally called the star-shaped ring.
The main downside of the ring seemed to be
the repeater aspect (because a failing node
could take down the whole ring), but MIT did
a lot to address that aspect.

Obviously, with a hard-wired ring, where
each machine is an active repeater, if one
machine is powered off, the ring ceases to
work. Putting a relay at each machine to pass
the signals through if the machine is powered
down is one approach to deal with this, but it
has potential issues. First, if several machines
in a row are powered off, because of the
increased wire length, it’s unclear if the signal
will make it from the last machine prior to the
powered off group all the way through to the
next functioning machine. Second, if an inter-
face suffers a hardware failure in the repeating
circuitry, that can also take out the entire ring.

With input from Jerry Saltzer,7 MIT devel-
oped the star-shaped ring concept, which
includes a central wiring point and a wire
that runs out to each interface and then back
to the wiring point. For the V1 LNI, the
device at the center was a passive box, and if

There weren’t really any

efforts in the standards

world to pick one

standard (be it bus or

ring), so everyone did

their own thing.

83April–June 2014

you wanted to power down a machine, you
had to trundle over to the wiring point,
unplug the line to that machine, and plug in
a jumper instead. For the V2 LNI (and other
later rings), there was a relay on each port at
the central box that normally bypassed the
cable run out to each node, and the interface
included a line from that computer to ener-
gize the relay and cut that node into the ring.

IBM turned out a ring design (done by
IBM Zurich, completely independent of the
MIT work, which reached many of the same
design conclusions) that was eventually
standardized as IEEE standard 802.5. It origi-
nally operated at 4 Mbits/second and was
later upgraded to 16 Mbits/second. It too
used the star-shaped ring wiring scheme that
had proved to work quite well.

There weren’t really any efforts in the
standards world to pick one standard (be it
bus or ring), so everyone did their own thing,
letting the market decide which technology
would win out. The whole process extended
over a very long time.

The initial Xerox Experimental Ethernet
preceded the MIT work, and the MIT V1 LNI
preceded the DIX Ethernet, which was ro-
ughly contemporaneous with the V2 LNI.
(I remember Jerry getting information thro-
ugh the grapevine, before the DIX specifica-
tion became public, that the DIX Ethernet
was going to operate at 10 Mbits/second, so
he insisted we boost the speed of the V2 LNI
to match). The IBM ring LAN came along
some time later, shortly before Proteon devel-
oped the 100 Mbit/second ring.

Rings and Busses
Rings eventually faded away, which could
lead one to think that bus systems “won.”
In fact, the typical Ethernet of today is fun-
damentally different from the original

Ethernet. Ironically, the evolution of Ether-
net has led to networking systems that in
many ways closely resemble the star-shaped
ring networks of the past. The hub-and-
spoke wiring scheme for LANs that rings
pioneered has proven its utility and is now
ubiquitous.

Ethernet had originally used the Xerox
PARC technique of deploying a single wire
(the bus), running the length of the network
and having individual stations tap into that
wire (originally, via actually drilling a hole in
the coaxial cable used back then). That large
bus has been replaced by a system of point-
point links that run from host interfaces to
active repeaters/hubs/switches, which are
similarly interconnected among themselves
by point-point links. This produces a star-
shaped wiring scheme (without the relays),
which consists (at the electrical level) exclu-
sively of point-to-point links.

Why did this happen? A number of factors
led to the systems we see today.

The ring people had initially seen two
advantages to token rings over CSMA-CD bus-
ses.8 First, the analog electrical environment
of rings was much simpler—one transmitter, a
wire, one receiver. Second, theoretical studies
indicated the token access control would
behave better than CSMA-CD at very high
loadings. (This latter turned out to be a non-
issue because LANs were never loaded that
highly for long periods of time.)

Although the latter point was not signifi-
cant, the former was: point-point links are
both easier to work with from an analog
point of view and are more welcoming to
new transmission techniques, such as optical.
In fact, an early MIT ring deployment was an
optical link from the LCS building, the famed
545 Technology Square, to the main campus.
Getting there involved going under some
train tracks, which was difficult. Proteon pro-
duced an optical link using a laser, and we set
one up in a window on each side. For Ether-
net, doing point-point cable runs to a multi-
port hub, which placed all the transceivers on
a short bus inside the box, solved the analog
issues with connecting lots of stations to a
large bus (noise, reflections, and so on).

Also, even with only point-point cable
runs, the CSMA-CD access control method did
not scale well in either speed or distance. Ulti-
mately, the real, unavoidable problem with
CSMA-CD (one not clear in the early days) was
that, as the speed and/or physical size of the
network increased, it needed longer packets to
make sure it didn’t have an “unseen” collision.

The evolution of Ethernet

has led to networking

systems that in many

ways closely resemble the

star-shaped ring networks

of the past.

Anecdotes

84 IEEE Annals of the History of Computing

In other words, with CSMA-CD, there was a
fundamental relationship between speed, net-
work physical size, and minimum packet size:
increasing either of the first two required
increasing the last. The CSMA-CD access con-
trol method could not scale up.

Early Ethernets often used analog or digi-
tal repeaters (to reduce analog noise, reflec-
tion, and other issues), but the contention
zone over which the CSMA-CD mechanism
functioned extended out to all the interfa-
ces connected to such repeaters. Use of ana-
log or digital repeaters (any of which could
clean up the signal) could reduce the analog
issues, but they couldn’t get around the
CSMA-CD’s fundamental problem of its
speed/size limitations.

When 100-Mbit/second Ethernet appeared,
to accommodate stations operating at differ-
ent speeds, the connecting nodes became
bridges (packet switches) and not simply bit-
by-bit repeaters. In other words, the conten-
tion zones disappeared because the network
became a collection of packet switches.

With all the wires (both switch-switch and
switch-interface) being point-point links, and
with the links being connected via active cir-
cuitry, today’s Ethernet is, in electrical terms,
far more similar to the early rings than it is to
the early Ethernets. The major difference
with rings is that there is no circulation (no
repetition of data from station to station).

Thus, ironically, one of the major claimed
advantages of Ethernet over rings—that its
coaxial cable transmission medium was totally
passive, with no dependence on the correct
operation of active circuitry—disappeared.
Not that anyone really cares; in practice,
everything works fine.

With today’s Ethernet network not really
using contention any more as a channel
access method, but instead being an interface
specification used to connect stations to a
packet-switching node, neither the original
CSMA-CD busses nor token rings truly live
on. Like the screw base for light bulbs (and
many other examples), the equipment on
either side of the interface has changed
beyond recognition, and only the Cheshire
Cat’s smile of the interface remains.

Acknowledgments

A heartfelt thank you to Jerry Saltzer and Ken

Pogran for taking the time to review an early

draft of this article. Both caught a number of

factual errors and provided helpful editorial

comments.

References and Notes

1. A proposal by a particularly clever MIT under-

graduate for something called a “contention

ring,” which still circulated bits around a ring

but did not use a circulating token, instead con-

tending for access to the channel �a la Ethernet,

showed that the circulation is truly the most fun-

damental thing about ring networks, not the

token, which is purely a channel access control

mechanism.

2. F.J. Corbato and V.A. Vyssotsky, “Introduction

and Overview of the Multics System,” AFIPS

Fall Joint Computer Conf. (FJCC), part 1, 1965,

pp. 185–196.

3. D.W. Wall, “Mechanisms for Broadcast and

Selective Broadcast,” Tech. Report 190, Com-

puter Systems Laboratory, Stanford Univ., 1980.

4. Bit-stuffing refers to a process in which user data

that happens to have the same bit pattern as

those reserved for control functions on a com-

munication line (such as packet start and end

markers) is temporarily replaced, during trans-

mission, with alternative patterns. This process

often involves inserting an extra bit in the mid-

dle of reserved patterns—hence, the name.

5. F. Heart et al., “The Interface Message Processor

for the ARPA Computer Network,” AFIPS Spring

Joint Computer Conf. (SJCC), 1970, pp. 551–567.

6. F.E. Ross, “FDDI – A Tutorial,” Comm. IEEE, vol.

24, no. 5, 1986, pp. 10–17.

7. J.H. Saltzer and K.T. Pogran, “A Star-Shaped

Ring Network with High Maintainability,” Proc.

Local Area Communications Network Symp.,

1979, pp. 179–189.

8. J.H. Saltzer, K.T. Pogran, and D.D. Clark, “Why a

Ring?” Computer Networks, vol. 7, 1983, pp.

223–231.

J. Noel Chiappa is an independent researcher

working in information systems architecture and soft-

ware, principally computer networks. He has been a

member of groups developing technical standards for

the Internet, such as the TCP/IP Working Group and

its successors (up to the IETF), since 1977. He served

as the IETF Steering Group’s area director for Internet

services from 1987 to 1992. Previously, he was a

member of the research staff at MIT’s Laboratory for

Computer and worked with a number of companies,

including Proteon, to bring networking products based

on work done at MIT to the public. Contact him at

jnc@alum.mit.edu.

85April–June 2014

