
Summer 1989

Software Tools

Hamilton C Shell
Announcement

by Douglas A. Hamilton

Hamilton C shell is a brand new application for
OS/2: not one line of code was ported from or
developed on anything but OS/2. In response to
the question often asked, UWhat can you do oil
OS/2 that you cannot do on DOS? ,u the Hamil
ton C shell is one answer. This is an application
that simply could not be built on DOS.

H amilton C shell is an interactive pro
gramming language for OS / 2. It is a

language for talking about files and processes
or threads and the connections between
them. The entire Berkeley C shell language
popular on engineering workstations has
been faithfully recreated and carefully
updated with modern compiler technology to
produce a very fast, powerful tool.

Running in a Presentation Manager window
or full-screen, Hamilton C shell is a quantum
leap from the standard OS/2 command pro
cessor in performance, functionality, and ease
of use. People who spend most of their day
in front of OS/2 may well save an hour by
using Hamilton C shell; the payback for pur
chasing this product can be measured in
days.

FEATURES

Shown in Figure 1, Hamilton C shell features
a full range of programming constructs for
iteration, condition testing, and expression
evaluation. Statements can be nested-ufor"
loops inside "switch" statements inside "if"
statements, etc.-to any desired depth. An
individual statement can have up to 64 KB of
command line arguments. Expressions can
involve integers, strings, or floating point

values and always result in sensible types,
considering both the types and the values of
the operands.

In addition to piping and 1/ 0 redirection,
command substitution is provided, which
allows the output of one command to be used
as command-line arguments to another.
Shell scripts, aliases, and procedures allow
user-defined language extensions. Filename
wildcarding is provided by a powerful recur
sive pattern-match algorithm; a wildcard can
specify matches against several directory lev
els in a path and a sensible match is guaran
teed no matter how complex the pattern. The
history mechanism allows for recalling and
editing past commands.

Figure 1. Hamilton C Shell

Douglas A. Hamilton

Copyright © 1989 by International Business Machines Corporation.
Reprinted with permission from IBM Personal Systems Developer, Summer, 1989.

119

Hamilton C
shell is a
completely new
implementation
of the C shell
language for
OS/2 comprised
of over 40,000
lines of C.

120

IBM Personal Systems Developer

Finally, a large set of utilities is provided to
round out the vocabulary of the language.
There are tools for manipulating files or direc
tories as objects, displaying disk usage,
browsing forward and backward through a
file or through the data coming through a
pipe, etc.

Is it a better batch language? Yes, but it is
much more than that. Hamilton C shell can
be used to build script files to do many
things. Scripts are also easier to get working
and their performance is dramatically better.
More importantly, the regularity of the lan
guage, the lifting of restrictions on command
line length, the ability to edit and rerun a
command, the powerful built-in constructs,
etc., make it possible to do many more things
interactively. It is much easier to get things
right the first time. A problem has to be far
more complex before the edit-debug-edit
cycle we associate with getting a batch file to
work is needed.

A good shell provides interaction but tackles
a different problem than icons and windows.
Instead of the point-and-shoot immediacy of
"do this single thing now," a shell offers lan
guage and the ability to describe more cus
tomized or repetitive actions (for example,
identify a set of files, perform some action
against them, and filter the results in some
interesting way).

BACKGROUND

The earliest command processors did little
more than let the user type the name of the
program to be run. In the late 1960s, things
began to change, reflecting new develop
ments in operating system and language
design. The introduction of UNIX brought
with it notions of filename wild carding, II 0
redirection, piping, and background execu
tion. The notation we use today for these con
structs comes from the earliest UNIX shell.
The author of the first shell, Steven Bourne,
claims to have borrowed the term "shell"
from the earlier MULTICS system; certainly,
it captured the idea of a user interface layer
wrapped around the kernel of the operating
system.

Overall, the Bourne shell reflected the times:
structured programming was a new concept
and in scholarly journals of the time it was
fashionable to reverse the letters of a key
word opening a control structure to indicate

the end of it. In the Bourne shell, an "if" state
ment ended with "fi," "case" with "esac," etc.
Also, there were relatively few "creature com
forts." For example, if you mistyped a com
mand, you typed it over-there was nothing
else you could do.

By the end of the 1970s, considerably more
experience had been collected with high level
languages in general and with the shell in par
ticular. Seeing the need for a shell with a reg
ular, modern style and grammar, and a
history mechanism for recalling and editing
past commands, Bill Joy (then at University
of California at Berkeley) undertook the
design of the Berkeley C shell. He called it
the C shell to point out its similarity in con
trol structures and arithmetic expression oper
ators to the popular C language; realistically,
though, its structure will be familiar to users
of any modern block-structured language
including Pascal or PL/I.

DESIGNING FOR OS/2

Hamilton C shell is a completely new imple
mentation of the C shell language for OS/2
comprised of over 40,000 lines of C. This is
significantly larger than the roughly 10,000
lines in the original Berkeley C shell. We esti
mate that about half of the growth was due
to our choice of more modern and more
powerful, albeit more complex, compiler
technology.

The rest of the growth was due to the special
engineering considerations of OS/2. There
were a few cases where functions that UNIX
programmers take for granted just did not
exist and had to be recreated at the applica
tion level. For example, UNIX systems are
commonly supplied with a process status
facility that reads tables inside the kernel to
produce a list of active processes. Lacking a
similar interface in OS/2, Hamilton C shell
maintains a list of child activities that it cre
ates; doing this requires the creation of dedi
cated "clean-up" threads whose sole purpose
is to sleep in the background waiting for
child activities to finish.

Generally speaking, we did not find OS/2 to
be a particularly difficult system to program.
What we did find is that OS/2 provides
unique facilities that are too good to pass up
even though putting them to best advantage
does take more code. Multi-threading, which
offers an extremely low-cost, high perfor-

mance mechanism for spawning concurrent
activities, was probably the most exciting. In
contrast to a process, which has its own
address space and resources (current directo
ries, file descriptors, etc.), a thread owns only
a stack and a register set; a large number of
threads, each separately scheduled, can share
the memory space and resources of a single
process. Because of their extremely low over
head, threads can be spawned very quickly.
Since they share the same memory space,
they also can share information with greater
facility.

In the Berkeley C shell, if the user requested
an activity be performed in the background
or concurrent with other activities, separate
processes were needed. If a background activ
ity performed a calculation, it was awkward
to retrieve the result in the foreground. In
Hamilton C shell, threads are generally used
instead, although obviously if an external
application is invoked, that must be done
with a separate process or screen group. The
result is far better performance. If a back
ground thread assigns a value to a variable or
creates a new procedure definition, the
results are available instantaneously to any
other thread.

Of course, threads are not free: anywhere a
thread needs to "own" a resource normally
shared with other threads, the designer is left
to his own devices to build an appropriate
mechanism. For example, critical sections
that examine or modify shared objects must
be protected with semaphores. In a shell, it
would hardly be acceptable if a script run
ning quietly in the background could sud
denly, without warning, change the
foreground current directory! Building a
high-performance mechanism to recreate a
current directory notion for each thread
turned out to be a fairly challenging project.

Summer 1989

On the whole, OS/2's superior kernel ser
vices were a big win; we expect that on sim
ilar hardware platforms, Hamilton C shell·
should easily outperform any UNIX shell.

SUMMARY

Hamilton C shell has been shipping since
December 12, 1988. It is available for imme
diate delivery for $350 and comes with an
unconditional satisfaction guarantee. Any
one with a need to quickly increase their pro
ductivity on OS/2 will likely find this to be a
very worthwhile acquisition.

Douglas A. Hamilton, Hamilton Laboratories,
13 Old Farm Road, Wayland, MA 01778-3117.
(508) 358-5715. Mr. Hamilton is the author of the
Hamilton C shell. Prior to founding Hamilton
Laboratories in September, 1987, he was the soft
ware development manager for Prime Computer's
RISC-based engineering workstations, jointly
developed with MIPS Computer Systems and Sili
con Graphics. He holds bachelor's and master's
degrees in Electrical Engineering from St~nfor~
University and an MBA from Boston UniverSIty.
His background includes eight years at IBM and
six years at Prime Computer in various engineer
ing design and management positions.

Hamilton
C shell has been
shipping since
December 12,
1988. It is
available for
immediate
delivery for
$350.

121

