Skip to main content
Log in

Do birds sleep in flight?

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift (Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams NJ, Pinshow B, Gannes LZ, Biebach H (1999) Body temperature in free-flying pigeons. J Comp Physiol B 169:195–199

    Google Scholar 

  • Amlaner CJ, Ball NJ (1994) Avian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 2nd ed. W.B. Saunders, Philadelphia, pp 81–94

    Google Scholar 

  • Ashmole NP (1963) The biology of the wideawake or sooty tern Sterna fuscata on Ascension Island. Ibis 103b:297–364

    Google Scholar 

  • Bäckman J, Alerstam T (2002) Confronting the winds: orientation and flight behavior of roosting swifts, Apus apus. Proc R Soc Lond B 268:1081–1087

    Article  Google Scholar 

  • Bairlein F (1985) Body weights and fat deposition of palaearctic passerine migrants in the Central Sahara. Oecologia 66:141–146

    Google Scholar 

  • Ball NJ (1992) The phasing of sleep in animals. In: Stampi C (ed) Why we nap. Birkhäuser, Boston, pp 31–49

    Google Scholar 

  • Bergman G (1941) Der Frühlingszug von Clangula hyemalis (L.) und Oidemia nigra (L.) bei Helsingfors. Ornis Fenn 18:1–26

    Google Scholar 

  • Bernstein MH, Curtis MB, Hudson DM (1979) Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am J Physiol 237:R58–R62

    PubMed  CAS  Google Scholar 

  • Berthold P (2001) Bird migration: a general survey, 2nd ed. Oxford University Press, Oxford

    Google Scholar 

  • Berthold P, Querner U (1988) Was Zugunruhe wirklich ist: eine quantitative Bestimmung mit Hilfe von Video-Aufnahmen bei Infrarotbeleuchtung. J Ornithol 129:372–375

    Google Scholar 

  • Berthold P, Fiedler W, Querner U (2000) Migratory restlessness or zugunruhe in birds: a description based on video recordings under infrared illumination. J Ornithol 141:285–299

    Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of bodymass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 69:370–379

    Google Scholar 

  • Biebach H, Friedrich W, Heine G, Jenni L, Jenni-Eiermann S, Schmidl D (1991) The daily pattern of autumn bird migration in the northern Sahara. Ibis 133:414–422

    Google Scholar 

  • Biebach H, Biebach I, Friedrich W, Heine G, Partecke J, Schmidl D (2000) Strategics of passerine migration across the Mediterranean Sea and the Sahara Desert: a radar study. Ibis 142:623–634

    Google Scholar 

  • Bowlin MS, Cochran WW, Wikelski MC (2005) Biotelemetry of new world thrushes during migration: physiology, energetics and orientation in the wild. Integr Comparat Biol 45:295–304

    Google Scholar 

  • Bruderer B, Weitnauer E (1972) Radarbeobachtungen über Zug und Nachtflüge des Mauerseglers (Apus apus). Rev Suisse Zool 79:1190–1200

    PubMed  CAS  Google Scholar 

  • Bunnell DE, Agnew JA, Horvath SM, Jopson L, Wills M (1988) Passive body heating and sleep: influence of proximity to sleep. Sleep 11:210–219

    PubMed  CAS  Google Scholar 

  • Cherry JD, Doherty DH, Powers KD (1985) An offshore nocturnal observation of migrating blackpoll warblers. Condor 87:548–549

    Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43

    PubMed  CAS  Google Scholar 

  • Cirelli C, LaVaute TM, Tononi G (2005) Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem 94:1411–1419

    PubMed  CAS  Google Scholar 

  • Cochran WW (1987) Orientation and other migratory behaviors of a Swainson’s thrush followed for 1500 km. Anim Behav 35:927–928

    Google Scholar 

  • Cochran WW, Graber RR (1958) Attraction of nocturnal migrants by lights on a television tower. Wilson Bull 70:378–380

    Google Scholar 

  • Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses. Science 307:249–250

    PubMed  CAS  Google Scholar 

  • Dewasmes G, Cohen-Adad F, Koubi H, Le Maho Y (1985) Polygraphic and behavioral study of sleep in geese: existence of nuchal atonia during paradoxical sleep. Physiol Behav 35:67–73

    PubMed  CAS  Google Scholar 

  • Diamond AW, Schreiber EA (2002) Magnificent frigatebird (Fregata magnificens). In: Poole A, Gill F (eds) The birds of North America, No. 601. The Birds of North America, Philadelphia DOI:10.2173/bna.601

  • Dominguez J (2003) Sleeping and vigilance in black-tailed godwit. J Ethol 21:57–60

    Google Scholar 

  • Edwards A (1887) Swifts. Nature 27:605, Oct

    Google Scholar 

  • Farnsworth A, Gauthreaux SA, Van Blaricom D (2004) A comparison of nocturnal call counts of migrating birds and reflectivity measurements on Doppler radar. J Avian Biol 35:365–369

    Google Scholar 

  • Flanigan WF (1972) Behavioral states and electroencephalograms of reptiles. In: Chase MH (ed) The sleeping brain: perspectives in the brain sciences. Brain Information Service/Brain Research Institute, University of California Los Angeles, pp 14–18

    Google Scholar 

  • Gao BO, Franken P, Tobler I, Borbely AA (1995) Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat. Am J Physiol 268:R1365–R1373

    PubMed  CAS  Google Scholar 

  • Gauthier-Clerc M, Tamisier A, Cézilly F (1998) Sleep-vigilance trade-off in green-winged teals (Anas crecca crecca). Can J Zool 76:2214–2218

    Google Scholar 

  • Gauthier-Clerc M, Tamisier A, Cézilly F (2000) Sleep-vigilance trade-off in gadwall during the winter period. Condor 102:307–313

    Google Scholar 

  • Gauthier-Clerc M, Tamisier A, Cézilly F (2002) Vigilance while sleeping in the breeding pochard Aythya ferina according to sex and age. Bird Study 49:300–303

    Article  Google Scholar 

  • Gill RE, Piersma T, Hufford G, Servranckx R, Riegen A (2005) Crossing the ultimate ecological barrier: evidence for an 11000-km-long nonstop flight from Alaska to New Zealand and eastern Australia by bar-tailed godwits. Condor 107:1–20

    Google Scholar 

  • Goley PD (1999) Behavioral aspects of sleep in Pacific white-sided dolphins (Lagenorhynchus obliquidens, Gill 1865). Mar Mamm Sci 15:1054–1064

    Google Scholar 

  • Gwinner E (1986) Circannual rhythms in the control of avian migrations. In: Rosenblatt JS (ed) Advances in the study of behavior, 1st edn. Academic, New York, pp 191–228

    Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    PubMed  Google Scholar 

  • Gwinner E, Helm B (2003) Circannual and circadian contributions to the timing of avian migration. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin Heidelberg New York, pp 81–95

    Google Scholar 

  • Heller HC, Graf R, Rautenberg W (1983) Circadian and arousal state influences on thermoregulation in the pigeon. Am J Physiol 245:R3210–R3218

    Google Scholar 

  • Holmgren J (2004) Roosting in tree foliage by common swifts Apus apus. Ibis 146:404–416

    Google Scholar 

  • Horne JA (2000) REM sleep—by default? Neurosci Biobehav Rev 24:777–797

    PubMed  CAS  Google Scholar 

  • Horne JA, Moore VJ (1985) Sleep EEG effects of exercise with and without additional body cooling. Electroenceph Clin Neurophysiol 60:33–38

    CAS  PubMed  Google Scholar 

  • Horne JA, Reid AJ (1985) Night-time sleep EEG changes following body heating in a warm bath. Electroenceph Clin Neurophysiol 60:154–157

    CAS  PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    PubMed  CAS  Google Scholar 

  • Johnston DW (1979) The uropygial gland of the sooty tern. Condor 81:430–432

    Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343:746–748

    Google Scholar 

  • Klaassen M, Biebach H (2000) Flight altitude of trans-Sahara migrants in autumn: a comparison of radar observations with predictions from meteorological conditions and water and energy balance models. J Avian Biol 31:47–55

    Google Scholar 

  • Krueger JM, Obál F Jr (2002) Function of sleep. In: Lee-Chiong TL, Sateia MJ, Carskadon MA (eds) Sleep medicine. Hanley & Belfus, Philadelphia, pp 23–30

    Google Scholar 

  • Lack D (1956) Swifts in a tower. Methuen, London

    Google Scholar 

  • Larkin RP, Frase BA (1988) Circular paths of birds flying near a broadcasting tower in cloud. J Comp Psychol 102:90–93

    Google Scholar 

  • Le Corre M, Jouventin P (1997) Kleptoparasitism in tropical seabirds: vulnerability and avoidance responses of a host species, the red-footed booby. Condor 99:162–168

    Google Scholar 

  • Lendrem DW (1983) Sleeping and vigilance in birds. I. Field observations of the mallard (Anas platyrhynchos). Anim Behav 31:532–538

    Google Scholar 

  • Lendrem DW (1984) Sleeping and vigilance in birds. II. An experimental study of the barbary dove (Streptopelia risoria). Anim Behav 32:243–248

    Google Scholar 

  • Lima SL, Rattenborg NC, Lesku JA, Amlaner CJ (2005) Sleeping under the risk of predation. Anim Behav 70:723–736

    Google Scholar 

  • Lyamin OI, Oleksenko AI, Polyakova IG, Mukhametov LM (1996) Paradoxical sleep in northern fur seals in water and on land. J Sleep Res 5(suppl. 1):259

    Google Scholar 

  • Lyamin OI, Oleksenko AI, Sevostiyanov VF, Nazarenko EA, Mukhametov LM (2000) Behavioral sleep in captive sea otters. Aquatic Mamm 26:132–136

    Google Scholar 

  • Lyamin OI, Shpak OV, Nazarenko EA, Mukhametov LM (2002) Muscle jerks during behavioral sleep in a beluga whale (Delphinapterus leucas L.). Physiol Behav 76:265–270

    PubMed  CAS  Google Scholar 

  • Lyamin OI, Mukhametov LM, Siegel JM (2004) Relationship between sleep and eye state in cetaceans and pinnipeds. Arch Ital Biol 142:557–568

    PubMed  CAS  Google Scholar 

  • Lyamin O, Pryaslova J, Lance V, Siegel J (2005) Continuous activity in cetaceans after birth. Nature 435:1177

    PubMed  CAS  Google Scholar 

  • Mahoney SA (1984) Plumage wettability of aquatic birds. Auk 101:181–185

    Google Scholar 

  • Majde JA, Krueger JM (2005) Links between the innate immune system and sleep. J Allergy Clin Immunol 116:1188–1198

    PubMed  CAS  Google Scholar 

  • Masson PW (1930) Night soaring of swifts. Br Birds 24:48–50

    Google Scholar 

  • McGinty D, Symusiak R (1990) Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci 13:480–487

    PubMed  CAS  Google Scholar 

  • Mettke-Hofmann C, Gwinner E (2003) Long-term memory for a life on the move. Proc Natl Acad Sci U S A 100:5863–5866

    PubMed  CAS  Google Scholar 

  • Metz VG, Schreiber EA (2002) Great frigatebird (Fregata minor). In: Poole A, Gill F (eds) The birds of North America, No. 681. The Birds of North America, Philadelphia

  • Meyers RA, Stakebake EF (2005) Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the “shoulder lock” in albatrosses. J Morph 263:12–29

    PubMed  Google Scholar 

  • Moore FR, Smith RJ, Sandberg R (2005) Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The Johns Hopkins University Press, London, pp 251–261

    Google Scholar 

  • Morairty SR, Szymusiak R, Thomson D, McGinty DJ (1993) Selective increases in non-rapid eye-movement sleep following whole-body heating in rats. Brain Res 617:10–16

    PubMed  CAS  Google Scholar 

  • Mukhametov LM (1985) Unihemispheric slow wave sleep in the brain of dolphins and seals. In: Inoué S, Borbély AA (eds) Endogenous sleep substances and sleep regulation. Japan Scientific Societies, Tokyo, pp 67–75

    Google Scholar 

  • Mukhametov LM (1987) Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neurosci Lett 79:128–132

    PubMed  CAS  Google Scholar 

  • Mukhametov LM (1995) Paradoxical sleep peculiarities in aquatic mammals. Sleep Res 24A:202

    Google Scholar 

  • Nelson JB (1975) The breeding biology of frigatebirds: a comparative review. Living Bird 14:113–155

    Google Scholar 

  • Nisbet ICT, Drury WH, Baird J (1963) Weight-loss during migration. Part I: Deposition and composition of fat by the blackpoll warbler Dendroica striata; Part II: Review of other estimates by I.C.T. Nisbet. Bird Banding 34:107–138

    Google Scholar 

  • Parmeggiani PL (2003) Thermoregulation and sleep. Front BioSci 8:S557–S567

    PubMed  Google Scholar 

  • Pennycuick CJ (1982) The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans R Soc London B 300:75–106

    Google Scholar 

  • Pennycuick CJ, Alerstam T, Hedenström AA (1997) New low-turbulence wind tunnel for bird flight experiments at Lund University, Sweden. J Exp Biol 200:1441–1449

    PubMed  Google Scholar 

  • Piéron H (1913) Le Problème Physiologique du Sommeil. Masson, Paris

    Google Scholar 

  • Piersma T, Zwarts L, Bruggemann JH (1990) Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78:157–184

    Google Scholar 

  • Piersma T, Rogers DI, González PA, Zwarts LJ, de Lima Serrano do Nascimento I, Minton CDT, Baker AJ (2005) Fuel storage rates before northward flights in red knots worldwide: facing the severest ecological constraints in tropical intertidal environments? In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The Johns Hopkins University Press, London, pp 262–273

    Google Scholar 

  • Prior H, Wiltschko R, Stapput K, Gunturkun O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310

    PubMed  Google Scholar 

  • Prince PA, Morgan RA (1987) Diet and feeding ecology of Procellariiformes. In: Croxall JP (ed) Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, pp 135–171

    Google Scholar 

  • Ramenofsky M, Agatsuma R, Barga M, Cameron R, Harm J, Landys M, Ramfar T (2003) Migratory behavior: new insights from captive studies. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin Heidelberg New York, pp 97–111

    Google Scholar 

  • Rattenborg NC (2006) Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 69:20–29

    PubMed  Google Scholar 

  • Rattenborg NC, Amlaner CJ (2002) Phylogeny of sleep. In: Lee-Chiong T, Sateia M, Carskadon M (eds) Sleep medicine. Hanley and Belfus, Philadelphia, pp 7–22

    Google Scholar 

  • Rattenborg NC, Lima SL, Amlaner CJ (1999a) Half-awake to the risk of predation. Nature 397:397–398

    CAS  Google Scholar 

  • Rattenborg NC, Lima SL, Amlaner CJ (1999b) Facultative control of avian unihemispheric sleep under the risk of predation. Behav Brain Res 105:163–172

    PubMed  CAS  Google Scholar 

  • Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817–842

    PubMed  CAS  Google Scholar 

  • Rattenborg NC, Amlaner CJ, Lima SL (2001) Unilateral eye closure and interhemispheric EEG asymmetry during sleep in the pigeon (Columba livia). Brain Behav Evol 58:323–332

    PubMed  CAS  Google Scholar 

  • Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol 2:0924–0936

    CAS  Google Scholar 

  • Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41:359–390

    PubMed  CAS  Google Scholar 

  • Robertson WB (1969) Transatlantic migration of juvenile sooty terns. Nature 222:632–634

    Google Scholar 

  • Ruckebusch Y (1972) The relevance of drowsiness in the circadian cycle of farm animals. Anim Behav 20:637–643

    PubMed  CAS  Google Scholar 

  • Salzen EA, Parker DM (1975) Arousal and orientation functions of the avian telencephalon. In: Wright P, Caryl PG, Vowles DM (eds) Neural and endocrine aspects of behaviour in birds. Elsevier Scientific Publishing, New York, pp 205–242

    Google Scholar 

  • Schreiber EA, Feare CJ, Harrington BA, Murray BG Jr, Robertson WB Jr, Robertson MJ, Woolfenden GE (2002) Sooty tern (Sterna fuscata). In: Poole A, Gill F (eds) The birds of North America, No. 665. The Birds of North America, Philadelphia

  • Schwilch R, Piersma T, Holmgren NMA, Jenni L (2002) Do migratory birds need a nap after a long nonstop flight? Ardea 90:149–154

    Google Scholar 

  • Scott WED (1891) Observations on the birds of Jamaica, West Indies. Auk 8:353–365

    Google Scholar 

  • Shaffery JP, Ball NJ, Amlaner CJ (1985) Manipulating daytime sleep in herring-gulls (Larus-argentatus). Anim Behav 33:566–572

    Google Scholar 

  • Shimizu T, Bowers AN, Budzynski CA, Kahn MC, Bingman VP (2004) What does a pigeon (Columba livia) brain look like during homing? Selective examination of ZENK expression. Behav Neurosci 118:845–851

    PubMed  CAS  Google Scholar 

  • Siegel J (2004) Brain mechanisms that control sleep and waking. Naturwissenschaften 91:355–365

    PubMed  CAS  Google Scholar 

  • Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271

    PubMed  CAS  Google Scholar 

  • Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 16:3500–3506

    PubMed  CAS  Google Scholar 

  • Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Shalita T, Pettigrew JD (1999) Sleep in the platypus. Neurosci 91:391–400

    CAS  Google Scholar 

  • Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899

    PubMed  CAS  Google Scholar 

  • Stickgold R, Walker MP (2005) Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci 28:408–415

    PubMed  CAS  Google Scholar 

  • Szymczak JT, Kaiser W, Helb HW, Beszczynska B (1996) A study of sleep in the European blackbird. Physiol Behav 60:1115–1120

    PubMed  CAS  Google Scholar 

  • Takahashi A, Sato K, Naito Y, Dunn MJ, Trathan PN, Croxall JP (2004) Penguin-mounted cameras glimpse underwater group behaviour. Proc R Soc Lond B 271:S281–S282

    Google Scholar 

  • Tarburton MK, Kaiser E (2001) Do fledgling and pre-breeding common swifts Apus apus take part in aerial roosting? An answer from a radiotracking experiment. Ibis 143:255–263

    Google Scholar 

  • Tobler I (1985) Deprivation of sleep and rest in vertebrates and invertebrates. In: Inoué S, Borbély AA (eds) Endogenous sleep substances and sleep regulation. Japan Scientific Societies, Tokyo, pp 57–66

    Google Scholar 

  • Tobler I (1992) Behavioral sleep in the Asian elephant in captivity. Sleep 15:1–12

    PubMed  CAS  Google Scholar 

  • Tobler I, Borbély AA (1988) Sleep and EEG spectra in the pigeon (Columba livia) under baseline conditions and after sleep deprivation. J Comp Physiol A 163:729–738

    Google Scholar 

  • Tobler I, Schwierin B (1996) Behavioral sleep in the giraffe (Giraffa camelopardalis) in a zoological garden. J Sleep Res 5:21–32

    PubMed  CAS  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  • Van de Kam J, Ens BJ, Piersma T, Zwarts L (2004) Shorebirds, an illustrated behavioural ecology. KNNV, Utrecht

    Google Scholar 

  • Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126

    PubMed  Google Scholar 

  • Van Luijtelaar EL, Coenen AM (1986) Electrophysiological evaluation of three paradoxical sleep deprivation techniques in rats. Physiol Behav 36:603–609

    PubMed  Google Scholar 

  • Vertes RP, Siegel JM (2005) Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep 28:1228–1229

    PubMed  Google Scholar 

  • Vyazovskiy VV, Welker E, Fritschy JM, Tobler I (2004) Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur J Neurosci 20:1363–1370

    PubMed  Google Scholar 

  • Vyssotski AL, Serkov AN, Itskov PM, Dell’omo G, Latanov AV, Wolfer DP, Lipp HP (2006) Miniature neurologgers for flying pigeons: multichannel EEG, action and field potentials in combination with GPS recording. J Neurophysiol 95:1263–1273

    PubMed  Google Scholar 

  • Watson JB, Lashley KS (1915) Homing and related activities of birds. Carnegie Inst Washington, Publ 211, Papers from Dept Marine Biol 7:5–104

  • Weimerskirch H, Guionnet T (2002) Comparative activity pattern during foraging of four albatross species. Ibis 144:40–50

    Google Scholar 

  • Weimerskirch H, Wilson R (1992) When do wandering albatrosses Diomedea exulans forage? Mar Ecol Prog Series 86:297–300

    Google Scholar 

  • Weimerskirch H, Doncaster CP, Cuenot-Chaillet F (1994) Pelagic seabirds and the marine environment: foraging of wandering albatrosses in relation to the availability and distribution of their prey. Proc R Soc Lond B 255:91–97

    Google Scholar 

  • Weimerskirch H, Wilson R, Lys P (1997) Activity pattern of foraging in the wandering albatross: a marine predator with two modes of prey searching. Mar Ecol Progr Ser 151:245–254

    Google Scholar 

  • Weimerskirch H, Chastel O, Barbraud C, Tostain O (2003) Frigatebirds ride high on thermals. Nature 421:333–334

    PubMed  CAS  Google Scholar 

  • Weimerskirch H, Le Corre M, Jaquemet S, Potier M, Marsac F (2004) Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique Channel. Mar Ecol Progr Ser 275:297–308

    Google Scholar 

  • Weitnauer E (1952) Übernachtet der Mauersegler, Apus apus, in der Luft? Der Orn Beob 49:37–44

    Google Scholar 

  • Weitnauer E (1954) Weiterer Bitrag zur Frage des Nächtigens beim Mauersegler, Apus apus. Orn Beob 51:66–71

    Google Scholar 

  • Weitnauer E (1955) Zur Frage des Nächtigens beim Mauersegler, 4. Beitrag. Orn Beob 52:38–39

    Google Scholar 

  • Weitnauer E (1956) Zur Frage des Nächtigens beim Mauersegler, 5. Beitrag. Orn Beob 53:74–81

    Google Scholar 

  • Weitnauer E (1960) Über die Nachtflüge des Mauerseglers, Apus apus. Orn Beob 57:133–141

    Google Scholar 

  • Weitnauer E (1980) Mein Vogel. Aus dem Leben des Mauerseglers Apus apus. Liestal: Basellandschaftlichen Natur-und Vogelschutzverband

  • Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46

    PubMed  Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    PubMed  CAS  Google Scholar 

  • Williams TC, Williams JM (1978) Orientation of transatlantic migrants. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin Heidelberg New York, pp 239–251

    Google Scholar 

  • Williams TC, Williams JM (1999) The migration of land birds over the Pacific Ocean. Int Ornithol Congr 22:1948–1957

    Google Scholar 

  • Williams TC, Williams JM, Ireland LC, Teal JM (1978) Estimated flight time for transatlantic autumnal migrants. Am Birds 32:275–280

    Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    PubMed  CAS  Google Scholar 

  • Zadra A, Pilon M, Joncas S, Rompre S, Montplaisir J (2004) Analysis of postarousal EEG activity during somnambulistic episodes. J Sleep Res 13:279–284

    PubMed  Google Scholar 

  • Zepelin H, Siegel JM, Tobler I (2005) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 4th ed. Elsevier Saunders, Philadelphia, pp 91–100

    Google Scholar 

Download references

Acknowledgements

I am grateful to the late Ebo Gwinner who inspired the work on sleep and migration. I also thank Dolores Martinez-Gonzalez and Martin Wikelski for their thoughtful comments on the manuscript and Theo Weber for assistance with the figures. The Max Planck Institute for Ornithology—Seewiesen supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels C. Rattenborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattenborg, N.C. Do birds sleep in flight?. Naturwissenschaften 93, 413–425 (2006). https://doi.org/10.1007/s00114-006-0120-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0120-3

Keywords

Navigation