Skip to main content

Host Antimicrobial Defence Peptides in Human Disease

  • Chapter
Antimicrobial Peptides and Human Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 306))

Abstract

Antimicrobial peptides or host defence peptides are endogenous peptide antibiotics, which have been confirmed as an essential part of the immune system. Apart from direct killing of bacteria, a role for the peptides in antiviral and immunomodulatory functions has recently been claimed. In this chapter we have focused on the host contact with microbes, where these host defence peptides are key players. The interplay with commensals and pathogens in relation to antimicrobial peptide expression is discussed, with specific emphasis on the respiratory and the alimentary systems. A possible novel difference in epithelial interactions between commensals and pathogens is considered in relation to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    PubMed  CAS  Google Scholar 

  • Agerberth B, Grunewald J, Castanos-Velez E, Olsson B, Jornvall H, Wigzell H, Eklund A, Gudmundsson GH (1999) Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 160:283–290

    PubMed  CAS  Google Scholar 

  • Ashitani J, Mukae H, Nakazato M, Ihi T, Mashimoto H, Kadota J, Kohno S, Matsukura S (1998) Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir J 11:104–111

    PubMed  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    PubMed  Google Scholar 

  • Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333

    PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Meegalla RL, Accurso F, Wilson JM (2001) Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am J Respir Cell Mol Biol 25:21–25

    PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Meegalla RL, Wilson JM (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograftmodel. J Clin Invest 103:1113–1117

    PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335

    PubMed  CAS  Google Scholar 

  • Bergman P, Johansson L, Asp V, Plant L, Gudmundsson GH, Jonsson A-B, Agerberth B (2005) Neisseria gonorrhoeae down-regulates expression of the human antimicrobial peptide LL-37. Cellular Microbiology 7:1009–1017

    PubMed  CAS  Google Scholar 

  • Bevins CL (2004) The Paneth cell and the innate immune response. Curr Opin Gastroenterol 20:572–580

    PubMed  Google Scholar 

  • Blanchard TG, Drakes ML, Czinn SJ (2004) Helicobacter infection: pathogenesis. Curr Opin Gastroenterol 20:10–15

    PubMed  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  • Bowdish DM, Davidson DJ, Speert DP, Hancock RE (2004) The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol 172:3758–3765

    PubMed  CAS  Google Scholar 

  • Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49:1727–1732

    PubMed  CAS  Google Scholar 

  • Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174:4271–4278

    PubMed  CAS  Google Scholar 

  • Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S (2004) A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. Aids 18:1598–1600

    PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    PubMed  CAS  Google Scholar 

  • Chang TL, Vargas J Jr, DelPortillo A, Klotman ME (2005) Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 115:765–773

    PubMed  CAS  Google Scholar 

  • Chen CI, Schaller-Bals S, Paul KP, Wahn U, Bals R (2004) Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 3:45–50

    PubMed  CAS  Google Scholar 

  • Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271:2935–2940

    PubMed  CAS  Google Scholar 

  • Chung WO, Dale BA (2004) Innateimmune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72:352–358

    PubMed  CAS  Google Scholar 

  • Cole AM, Wang W, Waring AJ, Lehrer RI (2004) Retrocyclins: using past as prologue. Curr Protein Pept Sci 5:373–381

    PubMed  CAS  Google Scholar 

  • Crovella S, Antcheva N, Zelezetsky I, Boniotto M, Pacor S, Verga Falzacappa MV, Tossi A (2005) Primate beta-defensins—structure, function and evolution. Curr Protein Pept Sci 6:7–21

    PubMed  CAS  Google Scholar 

  • Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    PubMed  CAS  Google Scholar 

  • Donaldson SH, Boucher RC (2003) Update on pathogenesis of cystic fibrosis lung disease. Curr Opin Pulm Med 9:486–491

    PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed  Google Scholar 

  • Elsbach P (2003) What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J Clin Invest 111:1643–1645

    PubMed  CAS  Google Scholar 

  • Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172:4987–4994

    PubMed  CAS  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    PubMed  CAS  Google Scholar 

  • Ganz T, Lehrer RI (1997) Antimicrobial peptides of leukocytes. Curr Opin Hematol 4:53–58

    PubMed  CAS  Google Scholar 

  • Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 82:552–556

    PubMed  CAS  Google Scholar 

  • Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K, Forssmann U, Frimpong-Boateng A, Bals R, Forssmann WG (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821

    PubMed  CAS  Google Scholar 

  • Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778

    PubMed  CAS  Google Scholar 

  • Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is theprocessing enzymeforhumandefensin-5. Nat Immunol 3:583–590

    PubMed  CAS  Google Scholar 

  • Girardin SE, Hugot JP, Sansonetti PJ (2003) Lessons from Nod2 studies: towards a link between Crohn’s disease and bacterial sensing. Trends Immunol 24:652–658

    PubMed  CAS  Google Scholar 

  • Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    PubMed  Google Scholar 

  • Gudmundsson GH, Agerberth B (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods 232:45–54

    PubMed  CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B (2004) Biology and expression of the human cathelicidin LL-37. In: Devine DA, Hancock REW (eds.) Mammalian host defence peptides. Cambridge University Press, Cambridge, pp 139–160

    Google Scholar 

  • Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97:8856–8861

    PubMed  CAS  Google Scholar 

  • Harder J, Schroder JM (2005) Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 77:476–486

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    PubMed  CAS  Google Scholar 

  • Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70:953–963

    PubMed  CAS  Google Scholar 

  • Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L, Kagnoff MF (2003) Expression of LL-37 by human gastric epithelial cells as a potential host defensemechanism against Helicobacter pylori. Gastroenterology 125:1613–1625

    PubMed  CAS  Google Scholar 

  • Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826

    PubMed  CAS  Google Scholar 

  • Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524

    PubMed  CAS  Google Scholar 

  • Hiratsuka T, Mukae H, Iiboshi H, Ashitani J, Nabeshima K, Minematsu T, Chino N, Ihi T, Kohno S, Nakazato M (2003) Increased concentrations of human beta-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 58:425–430

    PubMed  CAS  Google Scholar 

  • Hornef MW, Normark BH, Vandewalle A, Normark S (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198:1225–1235

    PubMed  CAS  Google Scholar 

  • Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767

    PubMed  CAS  Google Scholar 

  • Hu RC, Xu YJ, Zhang ZX, Ni W, Chen SX (2004) Correlation of HDEFB1 polymorphism and susceptibility to chronic obstructive pulmonary disease in Chinese Han population. Chin Med J (Engl) 117:1637–1641

    PubMed  CAS  Google Scholar 

  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    PubMed  CAS  Google Scholar 

  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185

    PubMed  CAS  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–192

    PubMed  CAS  Google Scholar 

  • Kavanagh K, Dowd S (2004) Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285–289

    PubMed  CAS  Google Scholar 

  • Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734

    PubMed  CAS  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    PubMed  CAS  Google Scholar 

  • Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA (2000) Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innateimmunity and the epithelial barrier. Infect Immun 68:2907–2915

    PubMed  CAS  Google Scholar 

  • Larrick JW, Morgan JG, Palings I, Hirata M, Yen MH (1991) Complementary DNA sequence of rabbit CAP18—a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 179:170–175

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    PubMed  CAS  Google Scholar 

  • Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738

    PubMed  CAS  Google Scholar 

  • Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N (2002) Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 291:17–22

    PubMed  CAS  Google Scholar 

  • Morrison G, Kilanowski F, Davidson D, Dorin J (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70:3053–3060

    PubMed  CAS  Google Scholar 

  • Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM (2002) Beta-defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70:3068–3072

    PubMed  CAS  Google Scholar 

  • Mukae H, Ashitani J, Nakazato M, Taniguchi H, Date Y, Ihi T, Shiomi K, Mashimoto H, Kadota J, Kohno S et al (1995) [A study of defensins in bronchoalveolar lavage fluid in patients with diffuse panbronchiolitis]. Kansenshogaku Zasshi 69:975–981

    PubMed  CAS  Google Scholar 

  • Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850

    PubMed  CAS  Google Scholar 

  • Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  • Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol 155:408–413

    PubMed  CAS  Google Scholar 

  • Ng AW, Bidani A, Heming TA (2004) Innate host defense of the lung: effects of lung-lining fluid pH. Lung 182:297–317

    PubMed  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    PubMed  CAS  Google Scholar 

  • O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163:6718–6724

    PubMed  CAS  Google Scholar 

  • O’Neil DA, Cole SP, Martin-Porter E, Housley MP, Liu L, Ganz T, Kagnoff MF (2000) Regulation of human beta-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect Immun 68:5412–5415

    PubMed  CAS  Google Scholar 

  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    PubMed  CAS  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    PubMed  CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    PubMed  CAS  Google Scholar 

  • Ouellette AJ (2004) Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Gastroenterol 18:405–419

    PubMed  CAS  Google Scholar 

  • Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360:1144–1149

    PubMed  CAS  Google Scholar 

  • Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. Aids 17:F39–F48

    PubMed  CAS  Google Scholar 

  • Salzman NH, Chou MM, de Jong H, Liu L, Porter EM and Paterson Y (2003b) Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect Immun 71:1109–1115

    PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003a) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    PubMed  CAS  Google Scholar 

  • Schauber J, Svanholm C, Termen S, Iffland K, Menzel T, Scheppach W, Melcher R, Agerberth B, Luhrs H, Gudmundsson GH (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signaling pathways. Gut 52:735–741

    PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    PubMed  CAS  Google Scholar 

  • Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, Mc-Cray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A 99:2129–2133

    PubMed  CAS  Google Scholar 

  • Scocchi M, Skerlavaj B, Romeo D, Gennaro R (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. Eur J Biochem 209:589–595

    PubMed  CAS  Google Scholar 

  • Selsted ME (2004) Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins. Curr Protein Pept Sci 5:365–371

    PubMed  CAS  Google Scholar 

  • Selsted ME, Brown DM, DeLange RJ, Lehrer RI (1983) Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 258:14485–14489

    PubMed  CAS  Google Scholar 

  • Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    PubMed  CAS  Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20:460–464

    PubMed  CAS  Google Scholar 

  • Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279:L799–L805

    PubMed  CAS  Google Scholar 

  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    PubMed  CAS  Google Scholar 

  • Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    PubMed  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502

    PubMed  CAS  Google Scholar 

  • Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696

    PubMed  CAS  Google Scholar 

  • Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric thetadefensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    PubMed  CAS  Google Scholar 

  • Travis SM, Singh PK, Welsh MJ (2001) Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 13:89–95

    PubMed  CAS  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS (1997) Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 272:L888–L896

    PubMed  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schroder JM, Bevins CL, Fellermann K, Stange EF (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53:1658–1664

    PubMed  CAS  Google Scholar 

  • Weinberg A, Krisanaprakornkit S, Dale BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9:399–414

    PubMed  CAS  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Chertov O, Oppenheim JJ (2000a) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68:9–14

    PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000b) LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58:978–989

    PubMed  CAS  Google Scholar 

  • Yoshio H, Tollin M, Gudmundsson GH, Lagercrantz H, Jornvall H, Marchini G, Agerberth B (2003) Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res 53:211–216

    PubMed  CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    PubMed  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agerberth, B., Guðmundsson, G.H. (2006). Host Antimicrobial Defence Peptides in Human Disease. In: Shafer, W.M. (eds) Antimicrobial Peptides and Human Disease. Current Topics in Microbiology and Immunology, vol 306. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29916-5_3

Download citation

Publish with us

Policies and ethics