Next Gen Open Video (NGOV) Requirements

Rationale

e Enable innovation in video compression technology at the speed of the web
e The web is built on open, vibrant technologies

Key to

Priorities

0 = Critical. Can't launch without it.
1 = Important. If feature is a risk to the target launch date, requires an Eng+PM vote to defer.
2 = Optional. Nice to have but can be deferred to shorten or meet target launch date.

Core Bitstream Requirements

Priority | Area Description

0 Quality improvement Reduce video bitrate by 50% with image quality
comparable to VP8 (SSIM, PSNR).

0 Theoretical decoding No more than 40% higher than VP8.

complexity

0 Alt-ref frames In VP8 temporal layers use the Golden and Alt-Ref
frames so that they cannot be used for boosting
compression efficiency. An easy solution would be
to add more alt-refs.

0 Screensharing Reduce bitrate requirement by 80% for same
quality as VP8 in screensharing apps.

0 No profiles Maintain single bitstream profile for all use cases.

Any valid NGOV decoder must be able to decode
any NGOV bitstream.

No resolution limitations

Support infinite video resolutions.

Frame level parallelism

Ability to decode consecutive frames in parallel

Encoder latency

Support independently encodable slices (i.e.,
eliminate need for full-frame latency). This is even
more important in resolutions greater than 1080p.




Encoded domain stream
stitching

Support taking multiple encoded streams and re-
format them into one steam without transcoding,
think creating a Brady Bunch experience without
transcoding.

Resolution independence

A single encoded stream can be used to support
any resolution and bitrate. Also known as “golden
stream.”

Tools Requirements

A mature toolset is essential to building a content ecosystem (post-production, playback, etc.)
around the new codec.

for ARM

Priority | Area Description

0 Encoder feature parity w/ Keep all encoding features from libvpx.
libvpx

0 Deliver a separate decoder Standalone library, designed and optimized for
for ARM ARM v7 with Neon.

0 Deliver a separate encoder Standalone library, designed and optimized for

ARM.

Implementation decode
performance (desktop)

Software decoder must be able to decode
realtime 4K video on lowest-end Intel i5 lvybridge
processor on the market in Q2 2013.

Implementation encode
performance (desktop)

Software encoder must be able to simulcast (i.e.,
simultaneous encode and decode) 1080p video on
lowest-end Intel i5 Ivybridge processor on market
in Q2 2013.

Implementation decode
performance (mobile)

Software decoder must be able to decode 1080p
video top 30% of phones in the market in Q2
2013.

Implementation encode
performance (mobile)

Software encoder must be able to simulcast 720p
video on top 30% of smartphones in the market in
Q2 2013.

Precise rate control

We must provide encoding settings (quantizers,
dropped frames, etc.) so authors can get as close
as possible to the requested target bitrate.

Encoder autoconfigure

Determine the best encoding settings based on
the source material and output use case.




Separate decoder for Intel

Standalone library that only does decoding,
optimized for x86.

More rigorous testing

Encourage commercial testing companies to cover
corner use cases.

Fast transcoder

Enable "true" transcoding from VP8 and H.264 to
NGOV in 50% of time than decoding to raw and
recoding.

RTC Requirements

We have identified many techniques that we can implement in NGOV to create a better realtime

UX.
Priority | Area Description
0 Signal denoising Improve webcam video denoising in the encoder.
0 Change resolution without When the network parameters changes we
having to send a new key may need to change the resolution dynamically.
frame. Today we have to generate a key frame for
doing this, which shouldn't be necessary. Also
see "keyframes" in Bitstream section above.
0 Better control around the We should be able to get better and more even
quantizing in a frame rate control if we could get better QP adaptation
within a frame. This may be solved by additional
and more efficient segments.
0 Temporal prediction of motion | Extrapolate motion vectors from previous frame to

vectors

predict the vectors of the current frame to improve
coding efficiency.

Webcam sensor profiling

To help denoising effort, create a table of how the
ten most popular webcams bring noise the image.




Add lossless compression &
transmit states

This can be useful for exchanging reference
buffers with an encoder at the send-side and

a decoder at the receive-side, which may be
useful when new participants join a conference
or when switching layers to avoid affecting other
participants.

Motion tracking

Improve the codec’s ability to enable motion
tracking / face detection. If we could do this
using hooks in the encoder (an interface to query
the encoder for useful features such as motion
vectors, residuals etc,).

Denoising and deshaking
done in encoding path

Better stabilization of image could be done if done
in the encoding path (as opposed to pre- or post-

processing). This is very important for mobile use

cases.

Stream stitching

Can we enable better/faster stream stitching?

Split partitions into packet-
size pieces

If we would decide to allow decoding with errors
in the future, it would be useful to have a way
to adapt partition sizes to packet sizes (~1200
bytes).




