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In 1952, Kurt Heegner gave a proof of the fact that there are exactly 
nine complex quadratic fields of class-number one. His proof rests on the 
fact that a certain 24th degree polynomial with rational coefficients has 
a 6th degree factor which also has rational coefficients. Unfortunately, 
this reducibility has never been justified. In this paper, we fill this gap in 
Heegner’s proof. 

1. INTRODUCTION 

Recently, Baker [1] and Stark [.5] have independently shown that there 
are only 9 complex quadratic fields of class-number one. However, in 
1952 Heegner [4] had already proved the same thing. Unfortunately his 
proof has been regarded as incorrect or at best, incomplete. We will show 
here that there is in fact only a very minor gap in Heegner’s proof and 
we will fill this gap. 

It will be helpful to have a brief outline of Heegner’s proof in our minds 
before proceeding. Let 

i(w) = 
(1 +240mt1 (r3(n) eznin0j3 

e2nio noI (I_ e2n in a)24 

(Im w  > 0) (1) 

where 

As is well known ([6], Section 53), the function j is invariant under the 
full modular group. Let 

72(w) = Ob)l+, (2) 

* The author holds an O.N.R. postdoctoral research associateship. 
16 



ON THE “GAP” IN A THEOREM OF HEEGNER 17 

the cube root being chosen which is real on the imaginary axis. These 
functions are intimately connected with the theory of binary quadratic 
forms. Let 

Q(x, y) = ax2+bxy+cy2, a > 0, (a, b, c) = 1, d = b2-4ac < 0, (3) 

and let h(d) be the number of such forms which are inequivalent under 
unimodular substitutions of determinant 1. Then ([6], Section 122) 

is an algebraic integer of degree (exactly) h(d). In fact if 316, 3,j’d then 

is also an algebraic integer of degree h(d) (instead of the expected 3h(d)). 
This is the first of a series of remarkable occurrences whereby the degrees 
of certain algebraic integers turn out to be less than what one might 
reasonably expect them to be. 

For the rest of Sections l’and 2, let d be a negative field discriminant, 
Id 1 z 3(mod 8), 3,j’d. In this case h(d) is also the class number of the 
field, Q(@). Let 

f(o) = e-W~o)/24 m .rlI, (1 +eC2”-‘)“‘~). (4) 

Then ([6J, Section 54),f(o) satisfies the equation 

When 
x~~-~~(w)x~--~~ = 0. 

-3+(d)+ 
CO= 

2 ’ 

(5) 

Heegner states, without proof, that there is a sixth degree factor of (5) 
whose coefficients are algebraic integers of degree h(d). Heegner finds a 
relation between these coefficients; in the case of h(d) = 1, he gets .a 
Diophantine equation involving rational integers which he can solve. 
The solutions all correspond to known fields. 

In Section 2 we will give a complete account of Heegner’s proof in- 
cluding the crucial result that his algebraic integers are of the correct 
degree. This is all based on the material of Weber [6]. In Section 3 we 
discuss the validity of Weber’s proofs (this is important because there is 
a widely held view that the trouble in Heegner may be ultimately traced 
to Weber). Finally in the last section, we go contrary to the modern trend 
and eliminate all but the most elementary algebraic number theory from 
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18 STARK 

this method. Lastly, many people have been studying Heegner’s work. 
Birch has independently come to the conclusion that Heegner’s proof can 
be made correct. His work will appear soon [2]. 

2. HEEGNER’S PROOF 

The key to the reducibility of (5) lies with another root of (5). Let 

f2(o) = JZ eniwil’ no1 (1 + elnaio). (6) 

Then e”“‘fi(o) is also a root of (5) and this is the important root of (5). 
To simplify our notation, let 

J = j&/d), F = f($), h = h(d), 

j =j(-3~(d)+),f=enip3f2(-9:(d)‘), y = y2(-3+j(d)*)a (‘I 

The relationship between f and F is given by Weber ([6], Section 128): 

f2=$. (8) 

Weber proves ([6], Section 127) that F2 is in the field Q(J). He conjectures 
that F is also, but is unable to prove this fact. Heegner uses this result 
elsewhere in his paper but it is not necessary to the class-number one 
problem; however, it may be the source for blaming the trouble on 
Weber. Thus 

Qtf'> = QtF2> = Q(J); (9) 
the last part is because J may be expressed in terms of F2 from (2) and (5). 

Now, there is a cubic transformation equation relating J and j ([6], 
Section 69) (which we give explicitly in Section 4) of the form 

J3+rJ2+sJ+t = 0, 

where I, s, t are in Q(j). Thus 

CQCi, J> : Ql = CQ<L J) : Q(j>l. [Q(j) : Ql 5 3h. (10) 
But on the other hand, 

CQ<i, 4: Ql2 [Q(J) : Ql = 3h (11) 
since when Id] E 3(mod 8) and d # - 3, we have h(4d) = 3h(d) = 3h 
([3], p. 138). It follows from (10) and (11) that Q(J) = Q(J,j) is a cubic 
extension of Q(j) and thus Q(f 2, is a cubic extension of Q(j). Therefore 
f2 satisfies a unique equation of the form 

x3+Ax2+px+v = 0, (12) 

where A, /A, v are in Q(j) and in fact are integers in Q(j) sincef’ is an integer 
(this follows from (5) since y is an integer). By transposing even degree 
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terms of (12) and squaring, we get an equation forf4: 

x3+sx2+&X+cj = 0, 
where 

6 = 2/l-12, E = ,A-2Av, 4 = -v2. (13) 
Repeating this process we get an equation for f* : 

X3+(2&-s2)X2+(&*-2&#J)X-f$2 = 0. (14) 
But since here Qcf8) = Qcf2), we see that equation (14) is unique 

and we already know it to be 

x3--x-16 = 0. 

Hence c2 - 264 = - y and more importantly, 

S2 = 28, $2 = 16. (15) 
Since (d)* is purely imaginary, J is real and hence v is real. Therefore 
4 = - v2 5 0 and hence 4 = - 4, v = + 2. It then follows from (15) and 
(13) that 

(2/J - AZ)2 = 2($ + 41)), (16) 
and this gives us a Diophantine equation with entries in Q(j) as desired. 

To see how this leads to a solution to the class-number one problem, 
we note that when h(d) = 1, d < - 8, we have 3,+‘d and Id 1 E 3(mod 8) 
([3], p. 184). Thus (16) holds with p and v being rational integers. Hence 
1 is even and as a consequence, so is CL. Let 

+;i=2a,p=2/l. (17) 
Putting this in (16) finally yields 

2a(a3 + 1) = (/?-2a’)‘. (18) 
This is Heegner’s Diophantine equation. Equation (18) is easily solved, 
the solutions are 

(a, PI = (0, O>, (1, Oh (-- 1,2), (2,2), U,4), (2, 14). 
We may calculate y from these values of a and /I getting respectively 

y = 0, -32, -96, -960, -5280, -640320, 

which correspond uniquely to 

d = - 3, - 11, - 19, -43, - 67, - 163, respectively. 

3. THE CRITICAL RESULT OF WEBER 

Most of the material in Weber is not pertinent to the problem at hand 
and the pertinent material is scattered throughout the book. To make 
matters worse, Weber has many little errors and omissions such as failing 
to prove that the coefficients of a modular function are rational but these 
may all be filled by the patient reader. But there is one point in the critical 
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result that F2 is in Q(J) where Weber may be said to have an incomplete 
proof that is not easily filled. However, at this point, an alternate proof 
may be given which is more in line with Weber’s own proofs of simiiar 
results. As this is the only real difficulty in the pertinent material of Weber, 
we will restrict our attention to this one point in this section. 

The roots of the equation 
(x- 16)3 = xj(w) (19) 

aref(mY4, -flb)24, -f2(o>‘” wheref’and f2 are given in (4) and (6) and 

fl(o) = e-Wm)/24 m J (1 - eC2”- ljnio). 

Alternatively, the roots of (19) may be given as ([6], Section 126) f(w)24, 
f(o+1)24,f(l-(1/o))24 and this is the more useful formulation here. Let 

x =f(co)24, u =f 
ro+s 24 

( > 
___ 

t ’ 
where 

Then there is a transformation equation 

@“(X, u) = 0 

relating x and v. Here @,,(x, V) is a polynomial in x and u with rational 
coefficients and all the solutions to the equation in v, 

are given by 
~,ub)24, 0) = 0, 

for some choice of r, s, t satisfying (20). We will return to this point 
shortly; let us see in the meantime how Weber uses this result. 

Suppose x # 0 is a root of the equation 

(D”(X, x) = 0. (21) 
Then there is an w  in the upper half plane such that x = f(w)24. Thus 
for some r, s, t satisfying (20), 

Weber shows in Section 126 that this requires w  to be the root of a 
quadratic equation with integral coefficients whose middle coefficient is 
even and whose outer coefficients are odd. Let 

o = -b+(d)+ 

2a ’ (22) 
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where a, b, d are given in (3) and d is no longer restricted to fundamental 
discriminants. Weber shows that if 21b and 

f(e)“4 +yz4, 
where 

rt = n is odd > 0, r > 0, s z 0 mod 
16if31n 
48 if 3,/‘n > 

then a and c are both odd. While Weber does not show it, it is easy to 
see that there exists n, r, S, t such that the converse holds. 

The quadratic equations satisfied by 8, 0+ 1, I- l/e are 

ax2+bx+c = 0, 

ax2+(b-2a)x+(a-b+c) = 0, 

cx2-(b+2c)x+(a+b+c) = 0, 

respectively. If a and c are both odd and b even then only.f(f)24 of the 
three numbersf(0)24,f(0+ 1)24, f(1 - 1/0)24 can be a root of (21) and for 
the proper choice of n,f(0)24 will be a root of (21). But then (19) and (21) 
have only the root f(O)24 in common and by the Euclidean algorithm, 
f(0)24 can be rationally expressed in terms of j(e), that is, f(0)24 is in 
Q(j(0)). It follows from (5) that if 31b, 3td also, thenf(@* is in Q(j(8)) 
since now y2(0) # 0 is in Q(j(0)). 

Let 

( ) 
3 

x=f(a)3,U=f y ) 
where r, s, t satisfy (20). Here again there is a transformation equation 

(P”(X, u) = 0 

relating x and v with rational coefficients such that the roots of the equation 
in 11, 

@“wd3, 9 = 0 
are all of the form 

where r, S, t satisfy (20). 
Let x # 0 be a solution of the equation 

(D”(X, x) = 0. 

Then there is an w  in the upper half plane such that 

x =fW3, 
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and for this o we have 

Suppose m = 3 (mod 4), m > 0, and 0 is given by (22) and (3) with 

d = -4m. 

If UC is odd and 161b then f(8)3 is a root of 

%b, xl = 0, (23) 

and conversely if a is odd, and f(0)” is a root of (23) then c is odd and 
161b. Suppose UC is odd and 16/b. The eight roots of 

x8 -f(e)‘” = 0 (24) 

aref(8+2k)3, 0 I k I 7. The corresponding reduced quadratic equation 
for t!+2k is 

ax2+(b-4ak)x+(c-2kb+4ak2) = 0, 

and the only equations with 161(b -4ak) are with k = 0, 4. Thus (23) 
has the two roots f(6)” and f(0+8)3 = -f(e)” in common with (24) and 
thus ~~--f(tJ)~ is the greatest common divisor of (23) and (24). Hence 
f(0)6 may be found in terms off’(0)24 and rational numbers by means of 
the Euclidean algorithm, that is, f(0)” is in Q(j(0)) also. Hence if 3J’d, 
UC is odd and 48lb then f(0)” = f(0)8/f(0)6 is also in Q(j(0)). This shows 
how Weber proves that F2 is in Q(J) and the role of the transformation 
equations in this proof. 

Now let us examine these transformation equations themselves. It is 
here that a difficulty arises, but it is one that may be eliminated by a choice 
of a different transformation equation. Weber uses Schlafli’s modular 
equation for his transformation equation. Let 

u =f(w), u =f 
( > 

rF , 

where rt = n is an odd positive integer, r > 0, 161s and if 3,j’n then 481s. 
Let 

where (2/n) is a Jacobi symbol and k and I are rational integers which 
satisfy the conditions 

n-l 
?k=- y (mod 2). 

Weber shows in Section 73 that there is a polynomial relation between 
A and B with rational coefficients (dependent on n but independent of 
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r, s, t) and this is known as Schlafli’s modular equation, 

$%@, 4 = 0. 

However, when we clear the denominator of U, we have no guarantee 
from Weber that the degree of &(u, v) in u is such that 

4.b, 4 = 0 
implies 

for some choice of r, s, t satisfying all the above conditions (here g = 24 
or 3 according to which application we have in mind). 

Since extra roots would ruin everything, we form a different trans- 
formation equation which is more in line with the type Weber uses for 
j(o) and ~~(0). Consider the set of functions 

with n and k fixed positive integers, 3jk, n odd, and r, s, t are variable 
integers such that 

r > 0, 161s, 0 I s c 16t, rt = n, (r, s, t) = 1. 

The material of Section 73 of Weber shows us that these functions are 
permuted among themselves under the transformations 

w-+w+2 and 
-1 

co--. 
0 

Since these two transformations generate the subgroup, G, of the modular 
group fixingf(o)24, the coefficients of the powers of x in 

IIt [ x-f( ryy-(o,,,nk] = %(X, f(o)24), (25) 

(where the product is over r, s, t such that rt = n, r > 0, 0 I s c 16t, 
161s, and (r, s, t) = I), are invariant under G. 

A fundamental domain for G may be taken so that its only parabolic 
cusps are at 1 and im. As w  + 1, through such a fundamental domain, 
s(w) + 0. Further f((ro+s)/t) + 0 as w  -+ 1 (through a fundamental 
domain for G) for rt = n odd and s even. To demonstrate this, let 

(r+s, t) = e, 
and set 
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Then (y, 6) = 1 and thus there are integers c1 and /I such that 

cd-gy = 1. 

Since y and 6 are both odd, we see from Section 40 of Weber that 

rw+s 24 

f( > - =-f2(y((rw+s)/t)+ t 
d(ro+sW)+f?~‘= -f2(,er;r~~w~Pet~4, 

and since f2(w) + 0 as w  + ioo in any vertical strip, .f((rw+s)/t) + 0 
as w  + 1 through a fundamental domain for G. 

At ioo, the coefficients of the powers of x are series in fractional powers 
of q = enim. Thus as w  + ice the coefficients of the various powers of x 
each approach definite limits (possibly infinite). Hence the coefficients of 
the powers of x are automorphic functions, invariant under the group G 
fixing f(w)‘” and which are finite in the upper half plane and the parabolic 
cusp at w  = 1. Therefore, the coefficients of each power of x are poly- 
nomials in f(w)24. In other words 0,(x, v) as defined by (16) is a poly- 
nomial in two variables. The coefficients in cr,(x, y) will be rational 
numbers if the series expansion in q = eniw of the coefficients of x in (25) 
have rational coefficients. But this is true as we shall now show. 

Consider the product 

(26) 

0 s s < 16t 

161s 

(r, s, t) = 1 

where r and t are fixed, rt = n, r > 0. Now as we see from (4) f(w)” has 
a series expansion in integral powers of q = eni@‘* (recall that 31k) all of 
whose coefficients are rational numbers. Thus f[(rw +s)/t] has a series 
expansion in integral powers of p/16qrlt where 

is a primitive tth root of unity. Suppose we replace c in this expansion by 
[’ where (I, t) = 1. Define s‘ to be the unique integer in the range 
0 I s’ < 16t such that 161s’ and k/16 = s//16 (mod t). Since (1, t) = 1, 
different values of s give different values of s’. Also since t is odd and 
u, 0 = 1, 

(r, s’, 0 = (r, (s’, 0) = (r, (~‘116 0) = (r, (s/16 0) 
= (r, (s, t)) = (r, s, t) = 1. 

Lastly [W6 = 6~‘/16 and hence if we replace 5 by c’ in the q-expansion 
off [(rw +s)/t], we merely get f [(rw +s’)/t]. Thus the factors in the above 
product merely permute with one another when we replace 5 by any of 
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its conjugates and hence the series in fractional powers of q which results 
as the coefficient of a given power of x in the above product has rational 
coefficients. Thus when we multiply the various products of the type in 
(26) together to get (25), the coefficients of the powers of x will be series 
in (possib 

v 
fractional) powers of q = enio, with rational coefficients. Since 

these series are actually automorphic functions on the group preserving 
f(~)‘~, they are actually series in integral powers of q =. eniw with rational 
coefficients and thus they are expressible as polynomials in .f(~)~~ with 
rational coefficients. Hence 0,(x, y) is a polynomial in Z[x, JJ]. 

Suppose now that in addition to having 3[k, we also have kl24. Let 

aqx, y) = tJ”(Xy23n, y24’5. (27) 

Then @,.(x, y) is a polynomial in Z[x, y]. Let us investigate the roots of 
the equation 

(P”(X, x) = 0. (28) 

Since,f(o) # 0 for w  in the upper half plane, the root x = 0, if it occurs 
of (28) is uninteresting and thus, let us suppose that x # 0 is a root of (28). 
Then there exists an w  in the upper half plane such that 

x = f(0)‘. cw 

Comparing (27) and (28); this means that (29) also provides a solution 
for x in 

b”(Xf(0)23”k, f(o)24) = 0. 

It follows from (25) that for some set of integers r, s, t satisfying the 
restrictions of (25), 

XfW 23nk = 

f( > 

‘7 ‘j+$23.k 

and since 
f(0)’ = x # 0, 

f(o)k = x =f(“;“)“. 

Thus we have produced a transformation equation which answers our 
objections to the one used by Weber. 

4. THE ELIMINATIONOFALGEBRAIC NUMBERTHEORY 

When we trace through everything in Weber that is necessary to justify 
the reduction of (5), we find that with one exception, the algebraic number 
theory required is minimal. Nothing more advanced is required than 
what was used to justify that cr,(x,f(~)~~) in (25) has rational coefficients. 
The exception is found in showing that j(0) has degree exactly h(d), 
it being easy to show that the degree ofj(0) is less than or equal to h(d). 
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Here a large amount of algebraic machinery, bordering on class field 
theory, is necessary to achieve the result. But if -d = 3 (mod 8), and 
h(d) = 1, it is then trivial that 

j =j( -3;(d)*) =j( -l;(d)+) 

is of degree h(d) and it may be shown (without the use of class field theory) 
that for sufficiently large ldl, J = j(@ is of degree 3 (= h(4d)). 
As long as we can find a definite bound on “sufficiently large,” this will 
clearly be sufficient for our purposes. 

Suppose -d z 3 (mod 8) and h(d) = 1. Then h(M) = 3 and thus J 
will be of degree 3 if we can show that J is neither rational nor in a quad- 
ratic field. There is a cubic equation with rational coefficients relating 
j and J; J is a root of the invariant equation 

F2(x, 8 = 0 (30) 
given by ([6], Section 69), 

F,(x, j) = (x-J)(x-j( -':'"'))(x-j(q)). 

If J is either rational or quadratic then (30) has a rational root. But for 
IdI > 16, j[(+ l+(d)+)/41 is in the interior of the usual fundamental 
domain for j(o) and hence j[(+ 1 -t-(d)*)/41 is not even real let alone 
rational. Thus the rational root of (30) must be J. If we set 

t = e2ni(-l+d/d)/2 
, 

then 
j = l/t+744+ 196884t+21493760t2 + 0(13), 

J = l/t’ + 744 + 196884t’ + O(t*), 

where 0 refers to t + 0, or alternately, d + - co. Hence 

j2- 1488j+l60512- J = 42987520t+O(t’). (31) 
But the left side of (31) is supposedly a rational integer while for a large 
value of Id(, the right side of (31) is strictly between 0 and 1. Here “large” 
is definitely determinable and a little calculation shows that IdI > 60 
is already too large. Thus all but the simplest algebraic number theory 
may be eliminated from the Heegner approach to the class-number one 
problem. 

5. CONCLUSION 

As may be seen in [6l, Section 128, Weber knew that equations such 
as (5) could be reduced under certain circumstances to equations of lower 
degree with rational coefficients. Since this immediately follows the 
section ([6], Section 127) where Weber proves that F2 is in Q(J), one can 
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have little doubt but that Weber could have justified the reduction had he 
seen any need to do so. Thus had he only made the observation that the 
reducibility of (5) would lead to a Diophantine equation, the class- 
number one problem would have been solved 60 years ago. 

Note added in proof. Max Deuring has also filled the gap in Heegner’s paper. See his 
article, Imaginare quadratische Zahlkorper mit der Hlassenzahl Eins, Znventiones Math. 
5 (1968), 180-191. Deuring uses Weber’s result that F2 is in Q(J) without comment; 
Birch reproves this result as well as Weber’s conjecture that F is in Q(J). Both Birch 
and Deuring use classified theory. 
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