
®

INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

MCST~4 Assemblv
Language Programming

Manual
PRELIMINARY EDITION

December 1973

"@ I ntel Corporation 1973

1.0

2.0

3.0

The INTELLEC 4 Microcomputer System
Programming Manual

INTRODUCTION . • . • • • . • • . • • • • • • • • • • • • •

COMPUTER ORGANIZATION

2.1
2.2
2.3

2.4
2.5
2.6
2.7

2.8

WORKI NG REGl STERS (INDEX REGISTERS)
THE ACCUMULATOR • • • . • • • . • •
MEMORIES • • • • . • ••••

2.3.1
2.3.2

·2.3.3

READ-ONLY MEMORY
PROGRAM RANDOM ACCESS MEMORY .•.
DATA RANDOM ACCESS MEMORY

THE STACK • • • • • • • • • • • • • '" • . • •
INPUT/OUTPUT .••.••. •• ••
COMPUTER PROGRAM REPRESENTATION IN MEMORY
MEMORY ADDRESSING • • • • • ••

2.7. 1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7

DIRECT ADDRESSING
SAME PAGE ADDRESSING
INDIRECT ADDRESSING .
IMMEDIATE ADDRESSING
PROGRAM RAM ADDRESSING
DATA RMv1 ADDRESSING .. .
SUBROUTINES AND USE OF THE STACK
FOR ADDRESSING

CARRY BIT

THE 4004 INSTR.UCTION SET •••

3.1 ASSEMBLY LANGUAGE

3.1 .1
3. 1 .2

HOW ASSEMBLY LANGUAGE IS USED
STATEMENT MNEMONICS

i

PAGE No.

1-1

2-1

2-2
2-3
2-3

2-3
2-4
2-5

2-7
2-9
2-10
2-13

2-13
2-14
2-15
2-16
2-16
2-16

2-17

2-20

3-1

3-1

3-1
3-4

3.2

3.3

3.4

3.5

rn'.bl\ffiILJE (Q)}f' (G;(Q)mJrn'I:Emf1rfB> -- (Continued)

The INTELLEC 4 Microcomputer System
Programming Manual

3.1.3
3.1.4
3.1.5
3.1 • 6

LAB EL FIELD • • •
CODE FIELD .••
OPERAND FIELD
COMMENT FIELD

DATA STATEMENTS ••••

3.2.1
3.2.2

TWO'S COMPLE!v1ENT
CONSTANT DATA

INDEX REGISTER INSTRUCTIONS

3.3.1
3.3.2

INC
FIN

INCREMENT REGISTER
FETCH INDIRECT • • •

INDEX REGISTER TO ACCUMULATOR INSTRUCTIONS.

3.4.1 ADD ADD REGISTER TO ACCUMULATOR
WITH CARRY ••••• •••...•

3.4.2 SUB SUBTRACT REGISTER FROM ACCUM-
ULATORWITH BORROW • . • • • • •

3.4.3 LD LOAD ACCUMULATOR •••.•••.
3.4.4 XCH EXCHANGE REGISTER AND ACCUM-

ULATOR ..•••

ACCUMULATOR INSTRUCTIONS.

3.5.1
3.5.2
3.5'-3
3.5.4
3.5.5
3.5.6

3.5.7

3.5.8
3.5.9

CLB
CLC
lAC
CMC
CMA
RAL

RAR

TCC
DAC

CLEAR BOTH ••
CLEAR CARRY. •
INCREMENT ACCUMULATOR ••••
COMPLEMENT CARRY •••.•
COMPLEMENT ACCUMULATOR •
ROTATE ACCUMULATOR LEFT
TH ROUGH CARRY ~ • . • • . • •
ROTATE ACCUMULATOR RIGHT
THROUGH CARRY . • • • • • .
TRANSMIT CARRY AND CLEAR.
DECREMENT ACCUMULATOR •

ii

PAGE No.

3-5
3-6
3-7
3-11

3-12

3-12
3-15

3-16

3-17
3-18

3-20

3-21 .

3-22
3-24

3-25

3-26

3-27
3-27
3-28
3-29
3-29

3-30

3-31
3-32
3-32

3. 6

3.7

3.8

TABLE OF CONTENTS -- (Continued)

The INTELLEC 4 Microcomputer System
Programming Manual

3.5.10 TCS
3.5.11 STC
3.5.12 DAA
3.5.13 KBP

TRANSFER CARRY SUBTRACT •••••
SET CARRY .••.•••••...•
DECIMAL ADJUST ACCUMULATOR ..
KEYBOARD PROCESS ••

IMMEDIATE INSTRUCTIONS • • . •

3. 6. 1 FIM FETCH IMMEDIATE
3.6.2 LDM LOAD ACCUMULATOR. • •

TRANSFER OF CONTROL INSTRUCTIONS

3,7.1
3.7.2
3.7.3
3.7.4

JUN JUMP UNCONDITIONALLY
JIN JUMP INDIRECT • • • • ...
JCN JUMP ON CONDITION
ISZ INCREMENT AND SKIP IF ZERO .

SUBROUTINE LINKAGE COMMANDS ~ ,

3.8.1
3.8.2

JMS
BBL

JUMP TO SUBROUTINE .'
BRANCH BACK AND LOAD

3.9 NOP INSTRUCTION NO OPERATION ..
3.10 :tv1EMORY SELECTION INST!{UCTIONS

3. 10.1 DCL DESIGNATE COMMAND LINE
3.10.2 SRC SEND REGISTER CONTROL .

3.11 INPUT/OUTPUT RAM INSTRUCTIONS •..

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5
3.11.6

RDM READ DATA RAM DATA CHARACTER •.
RDn READ DATA RAM STATUS CHARACTER •
RDR READ ROM PORT
WRM VvRITE DATA RAlvI CHARACTER •...
WRn WRITE DATA RAM STATUS CHARACTEH
vVMP WRITE RAIvI PORT

iii

PAGE No.

3-33
3-34
3-34
3-35

3-36

3-36
3-37

3-38

3-38
3-40
3-41
3-43

3-45

3-45
3-46

3-48
3-48

3-48
3-50

3-53

3-54
3-54
3-55
3-56
3-57
3-58

4.0

3.12

TAB LEO F G 0 N TEN T S - - (Continu ed)

The INTELLEC 4 Microcomputer System
Programming Manual

PAGE No.

3.11. 7 WRR WRITE ROM PORT • • • • • • • • • • 3-59
3.11.8 ADM ADD DATA RAM TO ACCUMULATOR

WITH CARRY . • • . • • . • 3-60
3.11.9 SBM SUBTRACT DATA RAM FROM

MEMORY WITH BORROW 3-61
3.11.10 WPM WRITE PROGRAM RAM 3-62

PSEUDO INSTRUCTION •••••

3.12.1 EQUATE FUNCTION
3.12.2 ORIGIN FUNCTION

3-65

3-65
3-66

PROGRAMMING TECHNIQUES •••• 4-1

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

CROSSING PAGE BOUNDARIES
SUBROUTINES • • • • . . . • •
BRANCH TABLE PSEUDOSUBROUTINE
LOGICAL OPERATIONS

4.4.1
4.4.2
4.4.3

LOGICAL "AND" .
LOGICAL II OR" • . • .
LOGICAL "XOR" EXCLUSIVE-OR

MULTI-DIGIT ADDITION •.
MULTI-DIGIT SUBTRACTION
DECIMAL ADDITION
DECIMAL SUBTRACTION. •
FLOATING POINT NUMBERS

4-1
4-3
4-5
4-8

4-8
4-9
4-11

4-13
4-15
4-18
4-20
4-24

APPENDIX "A" INSTRUCTION SUMMARY A-I
APPENDIX "B" INSTRUCTION MACHINE CODES B-1
APPENDIX "C" ASCII TABLES .. . • . . • • . • . • • • . C-1
APPENDIX "DII BINARY-DECIMAL-HEXADECIMAL CONVERSION

TABLES •••••.••.••••••.••••. D-l

iv

Address

Bit

-- TERMS AND ABBREVIATIONS --

A 12 bit number as signed to a read -only-memory or program
random -access memory location corresponding to its sequential
position.

The smallest unit of information which can be represented. (A
bit may be in one of two states I 0 or 1).

Byte A group of 8 contiguous bits occupying a single memory location.

Character A group of 4 contiguous bits of data.

Instruction The smallest single operation that the computer can be directed
to execute.

Obj ect
Program

Program

Source
Program

System
Program

User
Program

nnnB
nnnH

A program which can be loaded directly into the computer's memory
and which requires no alteration before execution. An object program
is usually on paper tape I and is produced by assembling
a source program. Instructions are represented by binary machine
code in an object program.

A sequence of instructions which l taken as a group I allow the
computer to accomplish a desired task.

A program which is readable by a programmer but which must be
transformed into object program format before it can be loaded into
the computer and executed. Instructions in an as sembly language
source program are represented by their assembly language mnemonic.

A program written to help in the process of creating user programs.

A program written by the user to make the computer perform any
desired ta sk.

nnn represents a number in binary format.
nnn represents a number in hexadecimal format.

Note: All numbers in this manual are assumed to be decimal unless other­
wise specified.

A representation of a byte in memory. Bits which are fixed as
o or 1 are indicated by 0 or 1; bits vvhich may be either 0 or 1
in different circumstances are represented by letters; thus RP
represents a three-bit field which contains one of the eight
possible combinations of zeroes and ones.

1.0 INTRODUCTION

This manual has been written to help the reader program the INTEL 4004
microcomputer in assembly language, and to show how it is economical and
practical to do so. Accordingly I this manual assumes that the reader has a good
understanding of logic, but may be unfamiliar with programming concepts.

For those readers vlho do understand programming concepts, several features of the
INTEL 4004 microcomputer are described below. They include:

• 4 bit pa.rallel CPU on a single chip.

• 46 instructions, including conditional branching,
subroutine capability I and binary and decimal
arithmetic modes.

• Direct addressing for 32,768 bits of read-only
memory, 5120 bits of data random-access memory
and 32 I 768 bits of program random-access
memory .

• Sixteen 4 -bit index registers and a three 12 -bit
register stack.

INTEL 4004 microcomputer users will have widely differing programming needs.
Some users may wish to write a few short programs, while other users may have
extensive programming requirements.

For the user with limited programming needs I two system programs resident on the
INTELLEC 4 (Intel! s development system for the MCS-4microcomputer) are provided;
they are an Assembler and a System Monitor. Use of the INTELLEC 4 and its system
programs is described in the INTELLEC 4 Operator's Manual.

For the user with extensive programming needs, cross assemblers are available
which allow programs to be generated on a computer having a FORTRAN compiler
whose word size is 32 bits or greater, limiting INTELLEC 4 use to final checkout of
programs only.

1 --1

2.0 COMPUTER ORGANIZATION

This section provides the programmer with a functional overview of the 4004
computer. Information is presented in this section at a level that provides a pro­
grammer with necessary background in order to write efficient programs.

To the programmer I the computer is represented as consisting of the following
parts:

(1) Sixteen working registers which serve a s temporary storage for data I
and provide the means for addressing memory.'

(2) The accumulator I in vvhich data is processed.

(3) Memories I which may hold program instructions or data (or sometimes
both) I and which must be addressed location by location in order to
access stored information.

(4) The stack I which is a device used to facilitate execution of subroutines,
as described later in this section.

(5) Input/Output I which is the interface between a program and the outside
world.

2-1

2.1 WORKING REGISTERS (INDEX REGISTERS)

The 4004 provides the programmer with sixteen 4-bit registers. These may be ref­
erenced individually by the integers 0 through 15 I or as 8 register pairs by the even
integers from 0 through 14. The register pairs may also be referenced by the symbols
OP through 7P. These correspondences are shown as follows:

Register 0

Register 2

Register 4

Register 6

Register 8

Register 10

Register 12

Register 14

Register Pair o or OP

Register Pair 2 or IP

Regi ster Pair 4 or 2P

Register Pair 6 or 3P

Register Pair 8 or 4P

Register Pair 10 or SP

Register Pair 12 or 6P

Register Pair 14 or 7P

INDIVIDUAL REGISTER REFERENCE

.... 0

~ 2

~ 4

.... 6

... 8 .. 10 .. 12 .. 14

1

3

5

7

9

11

'13

15

.....

.....

.......
......

...
.....

--...

Register 1

Register 3

Register 5

Register 7

Register 9

Register 11

Register 13

Regi'ster 15

REGISTER PAIR REFERENCE

... 0 1

.... 2 3

.. 4 5

.... 6 7

)III 8 9

.... 10 11

.... 12 13 .. 14 15

2-2

2. 2 THE ACCUMULATOR

The accumulator is a special 4-bit register in which data may be transformed by
program instructions.

2.3 MEMORIES

The 4004 can be used with three different types of memory which have different
organizations and characteristics, and are used for different purposes. These
are described below.

2.3.1 READ-ONLY MEMORY

Read-only memory (ROM) is used for storing program instructions and constant
data which is never changed by the program. This is because the program can
read locations in ROM, but can never alter (write) ROM locations.

ROM may be visualized as in Figure 2-1, as a sequence of bytes, each of which
may store 8 bits (two hexadecimal digits). Up to 4096 bytes of ROM may be pre­
sent, and an individual byte is addressed by its sequential number between 0 and
4095.

ROM is further divided into pages I each of which contains 256 bytes. Thus locations
o through 255 comprise page 0 of ROM I location 256 through 511 comprise page
1 and so on.

2-3

DECIMAL HEXADECIMAL
ADDRESS ADDRESS

~ 8 bits ----
0 0

PAGE 0

255 FF -------------
256 100 -------------

PAGE 1

511 IFF ------------- -

•
•

3840 FOO --------------

PAGE 15

4095 FFF -------------- .,

FIGURE 2-1.

ROM ORGANIZATION

f\s described in Section 3, certain instructions function differently when located
in the last byte (or bytes) of a page than when located elsewhere.

2.3.2 PROGRAM RANDOM ACCESS MEMORY

Program random access memory (RAM) is organized exactly like ROM. 4096
locations are always available, which are used to hold program instructions
or data. Unlike ROM, however, program RAM locations can be altered by
program instructions.

2-4

2.3.3 DATA RANDOM ACCESS MEMORY

As its name implies I data random access memory (DATA RAM) is used for the
temporary storage of data by programs.

Figures 2-2 and 2-3 show how this memory is addressed:

"DCL" INSTRUCTION CHOOSES 1 OF 8
DATA RAM BANKS

/ I \ ~~ • • 0

DATA RAM DATA RAM DATA RAM
CHIP 0 CHIP 0 CHIP 0

DATA RAM DATA RAM DATA RAM
CHIP 1 CHIP 1 . CHIP 1 . . .
DATA RAM DATA RAM DATA RAM
CHIP 2 CHIP 2 CHIP 2

DATA RAM DATA RAM DATA RAM
CHIP 3 CHIP 3 CHIP 3

DATA RAM DATA RAM DATA RAM
BANK 0 BANK 1 . . . BANK 7

FIGURE 2-2.

DATA RAM BANK ORGANIZATION.

2-5

Decimal Hexadecimal
Addresses Addresses

0-15
16-31
32-47
48-63

OO-OF
10-1F
20-2F
30-3F

16 Directly Addres sable
4-bit characters per
DATA RAM Register.

4 Specially Addressable
4 bit status characters
per DATA RAM Register.

,,. ____ ---.JA ______ , ...

1:111. 111111

FIG URE 2-3.

DATA RAM CHIP 0 ORGANIZATION

DATA RAM REGISTER 0
DATA RAM REGISTER 1
DATA RAM REGISTER 2
DATA RAM REGISTER 3

In order to address 0. 4 bit character of DATA RAM, the programmer first uses a
"DeL" instruction as described in Section 3.10.1 to choose one of a maximum of
eight DATA RAM BANKS. An eight bit address is then sent via an "SRC" instruc­
tion as described in Section 3.10,2 which chooses one of four DATA RAM CHIPS
within the DATA RAM BANK, one of four 16-character DATA RAM REGISTERS within
the DATA RAM CHIP I and one of 16 4-bit characters within the DATA RAM REGISTER.
Within any particular DATA RAM BANK I then I addres ses 0- 63 indicate which of
the 64 directly addressable characters of DATA RAM CHIP 0 is to be addressed.
Addresses 64-127 correspond to the characters of CHIP I, addresses 128-191
correspond to CHIP 2, and addresses 192-255 correspond to CHIP 3.

In addition, each DATA RAM REGISTER has four 4-bit STATUS characters associated
with it. These status characters may be read and written like the data characters I
but are accessed by special instructions as described in Section 3.

2-6

2.4 THE STACK

The stack consists of three 12-bit registers used to hold addresses of program in­
structions. Since progra~s are always run in ROM or program RAM I the
stack registers will always refer to ROM locations or program RAM locations.

Stack operations consist of writing an address to the stack I and reading an address
from the stack. In order to understand the se operations I it may be helpful to visual­
ize the stack as three registers on the surface of a cylinder I as shown below:

a represents an address

Each stack register is adjacent to the other two stack registers. The 4004 keeps a
pointer to the next stack register available. '

Writing An Address To The StacJs.:

To perform a stack write operation;

(1) The address is written into the register indicated by the pointer.

(2) The painter is advanced to the next sequential register.

Any register may be used to hold the first address written to the stack. More than
three addresses may be written to the stack; however I this will cause a correspond­
ing number of previously stored addresses to be overwritten and lost. This is
illustrated in Figure 2-4.

2-7

After 2 Writes After 3 Writes After 4 Writes

a a d

b b b

c c

a I b I C I d represent any 4 memory addres ses •
...... represents the stack pointer.

FIGURE 2-4.

STACK WRITE OPERATIONS

Storing the fourth address (d) overwrites the first address stored (a).

Reading An Address From The Stack:

To perform a stack read operation;

(1) The pOinter is backed up one register.

(2) The memory addres s indicated by the pOinter is read.

The address read remains in the stack undisturbed. Thus I if 4 addresses are
written to the stack and then three reads are performed, the stack will appear as
in Figure 2 -5 •

2-8

First read:
Address d is read

Second read:
Address c is read

Third read:
Address b is read

d §

d d
b b b
c

c

b, c, d represent any 3 memory addres ses .
-- repres ents the stack pointer.

,'!'111;-

FIGURE 2-5.

STACK READ OPERATIONS.

Section 2.7.7 describes how the stack is used by. programs.

2.5 INPUT/OUTPUT

Programs communicate with the outside world via 4-bit input or output ports. The
operation of these ports is controlled by special I/O instructions described in Sec­
tion 3.

These ports are physically located on the same devices which hold ROMs and
DATA RAMs; therefore, they are referred to as ROM ports or RAM ports. These
are totally separate from the instruction or data locations provided in ROM or
RAM, and should not be confused with them.. The ports associated with RAMs may
be used only for output.

2-9

2. 6 COMPUTER PROGRAM REPRESENTATION IN MEMORY

A computer program consists of a sequence of instructions. Each instruction per­
forms an elementary operation such as the movement of data I an arithmetic
operation on data, or a change in instruction execution sequence. Instruc-
tions are described individually in Section 3.

A program will be stored in Read -Only Memory or Program Random Acces s
Memory. It will appear as a sequence of hexadecimal digits which represent the
instructions of the program. The memory address of the instruction being executed
is recorded in a 12-bit register called the Program Counter I and thus it is pos sible
to track a program a s it is being executed. After ea ch instruction is executed I the
program counter is advanced to the address of the next instruction. Program execution
proceeds sequentially unless a transfer-of-control instruction (jump or skip) is
executed I which causes the program counter to be set to a specified address.
Execution then continues sequentially from this new address in memory.

Upon examining the contents of a ROM or program RAM memory location I
there is no way of telling whether a byte contains Ln encoded instruction or con­
stant data. For example, the hexadecimal code F2 has been selected to represent
the instruction lAC (increment accumulator). Thu s I the hex; value F2 stored in a memory
byte could represent either the instruction lAC or the hex data value F2.

It is up to the programmer to insure that data is not misinterpreted as an instruc­
tion code, but this is Simply done as follows:

Every program ha s a starting memory address, which is the memory address of the
location holding the first instruction to be executed. Just before the first instruc­
tion is executed, the program counter will automatically be set to this address,
and this procedure will be repeated for every instruction in the program. 4004
instructions may require 8 or 16 bits for their encoding; in each ca se the program
counter is set to the corresponding address as shown in Figure 2-6.

2-10

MEMORY
ADDRESS INSTRUCTION PROGRAM COUNTER
(Hexadecimal) NUMBER CONTENTS

(Hexadecimal)

13A } 1 13A

13B } 2
13B

13C

13D } 3 13D

13E

13F } 4 13F

140 } 5 140
141

FIGURE 2-6.

PROGRAM COUNTER CONTENTS AS INSTRUCTIONS ARE EXECUTED.

In order to avoid errors, the programmer must be sure that a byte of constant data
does not follow an instruction when another instruction is expected. Referring to
Figure 2-6, an instruction is expected in location 13FH, since instruction 4 is to
be executed after instruction 3. If location 13 FH held constant data, the program
would not execute correctly. Therefore, when writing a program, do not place
constant data in between adjacent instructions that are to be executed consecutiv-ely.

A cIa ss of instructions (referred to as transfer-of-control instructions) cause program
execution to branch to an instruction other than the next sequential instruction. The
memory address specified by the transfer of control instruction must be the address
of another instruction; if it is the address of a memory location holding data, the
program will not execute correctly. For example, referring to Figure 2-6, suppose
instruction 2 specifies a jump to location 14 OR I and instructions 3 and 4 were re­
placed by data. Then following execution of instruction 2, the program counter would
be set to 140H and the program would execute correctly. But if, in error, instruction
2 were to specify a jump to 13EH, an error would result since this location now holds
data. Even if instructions 3 and 4 were not altered, a jump to location 13EH would
cau sean error, since this is not the first byte of the instru ction.

2-11

Upon reading Section 3, you will see that it is easy to avoid writing an assembly
language program with jump instructions which have erroneous memory addresses.
Information on this subject is given here rather to help the programmer who is de­
bugging programs by entering hexadecimal codes directly into program RAM
(Programs usually exist in ROM I and therefore cannot be altered in this manner).

2-12

2. 7 MEMORY ADDRESSING

By now it will have become apparent that addressing specific memory bytes con­
stitutes an important part of any computer program. There are a number of ways in
which this can be done I as described in the following subsections.

2.7. 1 DIRECT ADDRESSING

With direct addressing I as the name implies I an instruction provides an exact
memory address. The following instruction provides an example of direct address­
ing:

"Jump to location3A2 H lJ

This instruction is represented by 4 hexadecimal digits in RQM or program
RAM. The first digit is a 4, signifying a jump instruction I while the final 3 digits
specify the address.

This instruction would appear in memory as follows:

ARBITRARY MEMORY
ADDRESS·

(Hexadecimal)

any

any + 1

3A2

3A3

3A4

MEMORY

tJd} J' . ~ ump Instructlon

..... ___ ...) Address 3A2H specified.

2-13

2.7.2 SAME PAGE ADDRESSING

Some instructions supply two hexadecimal digits which replace the lo·vvest 8 bits
of the program counter I addressing a ROM or program RAM location on the
same page as the instruction being executed. (Two addresses are on the same
pcge if the highest order hexadecimal digit of their addresses are equal. See
S e cti on 2. 3 • 1) •

The following instruction provides an example of same page addressing:

II Jump on condition 2 to location 3BH of this page. II

This instruction would appear in memolY a s follows:

MEMORY ADDRESS
(Hexadecimal)

30F

310

3AO

3Al

MEMORY

E1 l ·
{

~ ___ code for jump on condition 2

~I __ address within this page

The identical encoding 120FH if-located at location 501H, would cause a jump to
memory address 50FH.

2-14

2.7.3 INDIRECT ADDRESSING

With indirect addressing I an instruction specifies a register pair which in tum holds
an 8 bit value used for same page addressing (Section 2. 7 .2). Suppose that registers
4 and 5 hold the 4-bit hexadecimal numbers 1 and B I respectively. Then the instruc­
tion:

"Jump indirect to contents of register pair 4"

would appear a s follows:

MEMORY REGISTER PAIR
ADDRESS MEMORY 4
(Hexadecimal)

~ 200)lI.- I B 17
21B S· 21C

The 3 indicates a "jump indirect" instruction; the 5 indicates that the address indicated
on this page is held in register pair 4. If register pair 4 had held the hex numbers 3 and
C, a jump to location 23CH would have occurred.

2-15

2.7.4 IMMEDIATE ADDRESSING

An immediate instruction is one that provides its own data. The following is an ex­
ample of immediate addres sing:

II Load the accumulator with the hexadecimal number 3" •

This instruction would be coded in memory a s follows:

MEMORY

The digit D signifies a "load accumulator immediatefl instruction; the digit 3 is the
number to be loaded.

2.7.5 PROGRAM RAM ADDRESSING

When a program stores an 8 bit value into a program RAM location a· special
sequence of instructions must be used as described in Section 3.11. 10 {the WPM
instruction) •

2.7. 6 DATA RAM ADDRESSING

To address a location in DATA RAM, the DeL and SRC instructions must be used as
described in Sections 2.3.3 I 3.10.1, and 3.10.2. When the DeL has chosen a
specific DATA RAM bank, the address of the specific character is held in a register
pair accessed by the SRC instruction.

2-10

2.7. 7 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING

Before understanding the purpose or effectiveness of the stack I it is necessary to
understand the concept of a subroutine.

Consider a frequently used operation such as addition. The 4004 provides instruc­
tions to add one character of data to another, but what if you wish to add numbers
outside the range of 0 to 15 (the range of one character)? Such addition will require
a number of instructions to be executed in sequence. It is quite possible that this
addition routine may be required many times within one program; to repeat the identi­
cal code every time it is needed is possible, but very wasteful of memory:

i ,
I Program • I ,

Addition
i ,

Program •
Addition ,

• Program • •
Addition ,

I

Etc.

2-17

A more efficient means of accessing the addition routine would be to store it once I
and find a way of accessing it when needed:

Program'

Program

Program

I
l
I

: -------"":Addltion -----. .. . ~---
I
t
I
1
1

A frequently accessed routine such as the addition above is called a subroutine,
and the 4004 provides instructions that call subroutines and return from subroutines.

When a subroutine is executed, the sequence of eve41ts may be depicted as follows:

. .
Main Pro ram

'~all instruction_~ ___ -:..~~_

The arrows indicate the execution sequence.

When the" Call" instruction is executed I the address of the" nextJJ instruction is
written to the stack (see Section 2.4), and the subroutine is executed. The last
executed instruction of a subroutine will always be a special II Return Instruction" I

which reads an address from the stack into the program counter, and thus causes
program execution to continue at -the "Next" instruction as illu strated on the next
page.

2-18

Memory
Address

(Hexadecima 1)

C02
C03
C04
COS
C06

FOO
FOI .
F02
F03

F4E

In struction

CALL SUBROUTINE
AT F02H""'-

Write addres s of next instruction
COSH to the·stack.

NEXTINSTRUCTION----------------~

Branch to
subroutine
starting at FO 2 H

FIRST SUBROUTINE INSTRUCTION --~----.a

Body of Subroutine

Return to next
instruction

F4F RETURN

Read return address
(COS H) from stack.

Since the stack provides three registers I subroutines may be nested up to three
deep; for example, the addition subroutine could itself call some other subroutine t

and so on. An examination of the sequence of write and read stack operations will
show that the return path will always be identical to the call path, even if the same
subroutine is called at more than one level; however, an attempt to nest subroutines
to a depth of more than 3 will cau se the program to fail, since s·.orne addresses will
have been overwritten.

2-19

2 • 8 CARRY BIT

To make programming easier/ a carry bit is provided by the 4004 to reflect the
results of data operations. The descriptions of individual instructions in Section
3 specify which instructions affect the carry bit and '\¥hether the execution of
the instruction is dependent in any wayan the prior status of the carry bit. The
carry bit is "set" if 1 and" reset" if o.

Certain data operations can cause an overflow out of the high-order 3-bit. For
example/ addition of two hexadecimal digits can give rise to an answer that
does not fit in one digit:

321 0 Bit Number

A 1 0 1 a
+7 a 1 1 1

2J 0001

L..-Carry:::: 1

An operation that results in a carry out of bit 3 will set the carry bit.

An operation that could have resulted· in a carry out of bit 3 but did not will reset
the carry bit.

2-20

3.0 THE 4004 INSTRUCTION SET

This section describes the 4004 assembly language instruction set.

For the reader who understands assembly language, Appendix A provides a com­
plete summary of the 4004 instructions.

For the reader who is not completely familiar with assembly language, this section
describes individual instructions with examples and machine code equivalents.

3.1 ASSEMBLY LANGUAGE

3. 1 • 1 HOW ASSEMBLY LANGUAGE IS USED

Upon examining the contents of read-only memory or program random-access
memory, a program would appear as a sequence of hexaaecimal digits which are
interpreted by the machine a s instruction codes, addresses, or constant data. It is
possible to write a program as a sequence of digits (just as they appear in memory) ,
but that is slow and expensive. For example, several instructions reference memory
to addres s -another instruction:

HEXADECIMAL
MEMORY ADDRESS

332

333

334

354

355

356

The above program operates as follows:

3-1

FO

43

56

20

FF

60

Byte 332H specifies that the accumulator and carty bit are to be cleared.

Bytes 333H and 334H specify that program execution is to continue at location 35 6H.

Byte 356H specifies that register 0 is to be incremented.

Now suppose thqt an error discovered in the program logic neces sitates placing
a new instruction after byte 332H. Program code would have to change as follows:

HEXADECIMAL
MEMORY ADDRESS

332
333
334
335

354
355
356
357

OLD CODE

FO
43
56

2-D
FF
60

NEW CODE

FO
New In s tru ction

43
57

. 2:0
FF
60

Note that many instructions have been moved and as a result some must be changed
to reflect the new addresses of instructions. The potential for making mistakes
is very high and is aggravated by the complete unreadability of the program.

Writing programs in assembly language is the first and most significant step to­
wards economical programming; it provides a readable notation for instructions,
and separates the programmer from a need to know or specify absolute memory
addresses.

Assembly language programs are written as a sequence of instructions which are
converted to executable hexadecimal code by a special program caned an ASSEMB­
LER.

3-2

Assembly language
program written by ----programmer

SOURCE PROGRAM

ASSEMBLER
PROGRAM

FIGURE 3-1.

-
Executable hexa­
decimal machine

code

OBJECT PROGRAM

ASSEMBLER PROGRAM CONVERTS ASSEMBLY LANGUAGE
SOURCE PROGRAM TO HEXADECIMAL OBJECT PROGRAM

As illustrated in Figure 3-1, the assembly language program generated by a pro­
grammer is called a SOURCE PROGRAM. The assembler converts the SOURCE
PROGRAM into an equivalent OBJECT PROGRAM I which consists of a sequence of
hexadecimal codes that can be loaded into ROM or program RAM and executed.

For example:

Source Program

NOW, CLB
JUN

FIM
NXT I INC

NXT

o 255
o

is converted by
the As sembler to

3-3

On-e Pas sible Version of
the Obj ect Program

FO
4356

2-OFF
60

Now if a new instruction must be added, only one change is required. Even
the reader who is not yet familiar with assembly language will see how simple
the addition is:

NOW, CLB

NXT I

(New instruction inserted here)
TUN NXT

FIM
INC

o 255
o

The assembler takes care of the fact that a new instruction will shift the rest
of the program in memory.

3.1.2 STATEMENT MNEMONICS

Assembly language instructions must adhere to a fixed set of rules as described
in this section. An instruction has four separate and distinct parts or FIELDS.

Field 1 is the LABEL field. It is the instruction location's label or name, and it
is used to reference the instruction.

Field 2 is the CODE field. It defines the operation that is to be performed by the
instruction.

Field 3 is the OPERAND field. It provides any address or data information needed
by the CODE field.

Field 4 is the COMMENT field. It is present for the programmer's convenience
and is ignored by the assembler. The programmer uses comment fields to describe
the operation and thus make the program more readable.

The assembler uses free fields; that is I any number of blanks may separate fields.

3-4

Before describing each field in detail, here are some general examples:

LABEL CODE OPERAND COMMENT

CMI, CLB / Clear accumulator and carry.

LAB, INC 3 / Increment register 3.

JUN CMI / Jump to instruction CMI.

FCH, FIM OP 255 / Load hex FF (decimal 255) into
/ register pair o.

3.1.3 LABEL FIELD

This is an optional field. If present, the first character of a label mu st be a
letter of the alphabet. The remaining characters may be letters or decimal digits e

The label field must end with a comma, immediately following the last character of
the label. Labels may be any length, but should be unique in the first three char­
acters; the assembler cannot always distinguish between labels whose first three
characters are identical. If no label is present, at least one blank must begin the line.

Here are some examples of valid label fields:

CMO,
NUL,
EGO,

Here are some invalid labels:

4GE,
AGE
A/A,

does not begin with a letter.
valid label, but label field does not end with a comma.
contains invalid character.

The following label ha s more than 3 characters:

STROB

The assembler may not be able to differentiate, this label from others beginning
with the characters STR.

3-5

Since labels serve as instruction addresses, they cannot be duplicated. For
example, the sequence:

NOW, JUN NXT

NXT, INC 2

NXT I CLB

is ambiguous; the ·assembler cannot detennine which NXT address is referenced
by the rUN instruction.

3.1.4 CODE FIELD

This field contains a code which identifies the machine operation (add, subtract I
jump, etc.) to be performed: hence the term operation code or op-code. The
instructions described i~ Sections 3. 3 thru 3. II, are each identified by a
mnemonic label which must appear in the code field. For example, since the
II jump unconditionally" instruction is identified by the letters "JUN", these
letters mu st appear in the code field to identify the instruction a s II jump uncon­
ditionally" •

There must be at least one space following the code field. Thus:

LAB, rUN AWY

is legal, but:

LAB, rUNAWY

is illegal.

3-6

3.1.5 OPERAND FIELD

This field contains information used in conjunction with the code field to define
precisely the operation to be performed by the instruction. Depending upon the
code field, the operand field may be absent or may consist of one item or two
items separated by blanks.

There are five types of information [(a) through (e) below] that may be requested
as items of an operand field, and the information may be specified in five ways
[(1) through (5) below].

The five ways of specifying information are as follows:

(1) A decimal number.

Example:

LABEL CODE

ABC, LDM

OPERAND

14

COMMENT

/Load accumulator with decimal
/14 (Il10 binary).

(2) The current program counter. This is specified as the character' *' and
is equal to the address of the first byte of the current instruction.

Example:

LABEL. CODE OPERAND

GO, JUN *+6

If the instruction above is being as sembled at location 213, it will cause
program control to be transferred to address 219.

3-7

(3) Labels that have been a ssigned a decimal number by the assembler.
(See Section 3.12. 1 for the equate procedure) .

Example:

Suppose label VAL ha s been equated to the number 42 I and ZER
has been equated to the number O. Then the following instruc-
tions all load register pair zero with the hexadecimal value 2A (decimal 42):

LABEL CODE OPERAND

AI, FIM 0 42
A2, FIM ZER 42
A3 FIM ZER VAL

~

(4) Labels that appear in the label field of another instruction.

Example:

LABEL CODE OPERAND COMMENT

LPl, TUN LP2 / Jump to instruction at LP2.

LP2, CMA

(5) Arithmetic expressions involving data types (1) to (4) above connect-
ed by the operators + (addition) and - (subtra ction). Th-e se operators
treat their arguments as 12-bit quantities, and generate 12-bit quantities
as their result. If a value is generated which exceeds the number of
bits available for it in an instruction I the value is truncated on the left.

For example I if VAL refers to hexadecimal address FFE, the instruction:

TUN VAL

is encoded as 4FFEH; a 4 -bit operation code and 12 bi-t value. However J the
instruction:

TUN VAL + 9

will be encoded as 4007H, where the value i007H has been truncated on the left
to 12 bits (three hex digits) giving a value oi ::007 H.

3-8

Using some or all of the above data specifications, the following five types
of information may be requested:

(a) A register to serve as the source or destination in a data operation.
Methods I, 3, or 5 may be used to specify the register, but the
specification must finally evaluate to one of the decimal numbers
o to 15.

Example:

LABEL

II,
I2,
13,

CODE

INC
INC
INC

OPERAND

4
R4
16-12

As suming label R4 ha s been equated to 4, all the above instructions
will increment register 4.

(b) A register pair to serve a~ the source or destination in a data op­
eration. The specification must evaluate to one of the even deci­
mal numbers from 0 through 14 (corresponding to register pair desi­
gnators OP through 7P) •

Example:

LABEL

II,
12,
13,

CODE

SRC
SRC
SRC

OPERAND

IP
2
RG2

Assuming label RG2 has been equated to 2, all of the above instructions
refer to register pair 1 P (registers 2 and 3).

(c) Immediate data, to be used directly as a data item.

3-9

Example:

LABEL CODE

ACl, LDM

OPERAND

DATA

COMMENT

/Load the accumulator with
/the value of DATA.

DATA could take any of the following fonns:

19
12 + 72 - 3
VAL {where VAL has been equated to a number} •

(d) A 12 bit addres s, or the label of another location in memory.

Example:

LABEL

HR,

CODE

TUN
TUN

OPERAND

OVR
513

COMMENT

/Tump to instruction at OVR.
/Tump to hex address 201 (decimal 513).

(e) A condition code for use by the TCN (jump on condition) instruction.
This must evaluate to a number from 0 to 15.

Example:

LABEL CODE OPERAND

TCN 4 LOC
TCN 2+2 LOC

The above instructions cause program control to be transferred to address LOC if
condition 4 (accumulator zero) is true.

3.1.6 COMMENT FIELD

The only rule governing this field is that it must begin with a slash (/). It is
terminated by the end of the line.

A comment field may appear alone on a line:

LOC, CLB /This is a comment
/This is a comment line

3-11

3.2 DATA STATEMENTS

This section describes ways in which data can be specified in and interpreted
by a program. Any 4 bit character in DATA RAM contains one of the 16 possible
combinations of zeros and ones.

Arithmetic instructions assume that the DATA RAM characters upon which they
operate are in a special format called "two's complement" I and the operations
performed on these bytes are called "two's complement arithmetic" •

3.2.1 TWO'S COMPLEMENT

When a character is interpreted as a signed two's complement number I the low
order 3 bits supply the magnitude of the number, while the high order bit is
interpreted as the sign of the number (0 for positive numbers I 1 for negative).

The range of positive numbers that can be represented in signed two's comple­
ment notation is, therefore, from 0 to 7~

0::: OOOOB

I ::: 0001B·

601 lOB

7 0 1 lIB

To change the sign of a number represented in two's complement I the following
rules are applied:

(a)

(b)

Example:

Invert each bit of the number (producing the -so-called
one's complement).

Add one to the result I ignoring any carry out of the
high order bit position.

Produce the two's complem-ent r-epresentation of -6
Following the rules above I

+6::: 0110B

.

Invert each bit: 100 1 B
101 0 B Add one

3-12

Therefore I the two' s complement representation of -6 is the hexadecimal number
r A'. (Note that the sign bit is set I indicating a negative number.)

Example: What is the value of the hexadecimal number' C' interpreted as a signed
two's complement number? The high order bit is set, indicating that this is a
negative number. To obtain its value, again invert each bit and add one. (This is
equivalent to subtracting one f:um the number and inverting each bit) .

CH

Invert ea ch bit
Add one

= 1 1 0 0 B

ODIIB
o 1 0 0 B

Thus, the value of -CH is - 4.

The range of negative numbers that can be represented in signed two's comple­
ment notation is from -1 to -8.

-1
-2

-7
-8

=
=

=

=

III 1 B
1 1 1 0 B

100 1 B
100 0 B

To perform the subtracti()n 6-3 I the following operations are performed:

Take the two' s complement of 3 = 1 1 0 1 B

Add the result to the minuend:
6 = all0B

+ (-3) = 1 1 a 1 B

o 0 lIB = 3 I the correct answer

When a data character is interpreted as an unsigned two's complement number I its
value is considered positive and in the range a to 15.

O=OODO B
1=0001 B

7 = o 1 1 1 B
8 = 1 0 0 0 B

15 1 1 1 1 B

3-13

Two's complement arithmetic is still valid. When performing an addition opera­
tion, the carry bit is set when the result is greater than 15. When performing
subtraction, the carry bit is set when the result is positive". If the carry bit
is reset, the result is negative and present in its two's complement form.

Example: Subtract 3 from 10 using unsigned two's complement arithmetic.

10 = 1 0 lOB
-3 = 1 1 0 1 B

-L1 0111B

Lcarry = 1

Since the carty bit is set, the result (7) is correct and positive.

Example: Subtract 15 from 12 u sing unsigned two's complement arithmetic.

12 = 1 1 0 0 B
-15 = 0 0 0 1 B

JU 1101 B = -3

L..-Carry = 0

Since the carry bit is reset, the result is negative and in its two's complem€nt
form.

WHY TWO'S COMPLEMENT?

Using two's complement notation for negative numbers I any subtraction problem
becomes a sequence of bit inversions and additions. Therefore I fewer circuits
are needed to perform subtraction.

3-14

3.2.2 CONSTANT DATA

Eight-bit data values can be assembled into ROM or program RAM loca-
tions by writing a blank code field and an operand field beginning with a posi­
tive number. If the operand is greater than 8 bits I it will be truncated on the
left.

Example:

LABEL

Cl 1

C2 1

C3,

Assume that label VAL has been equated to 14 I and the label
LOC appears on an instruction a s sembled at hexadecimal
location 34B.

CODE OPERAND

O+VAL
4095
O+LOC

ASSEMBLED DATA

OE
FF
4B

The following are irivalid data statements.:

LABEL

C4,
C5,

CODE OPERAND

ABC
-18

COMMENT

/Does not begin with a number.
/Number is not positive.

3-15

3.3 INDEX REGISTER INSTRUCTIONS

This section describes two instructions which involve index registers or regis­
ter pairs.

These instructions occupy one byte a s follows:

FIN:

INC:

10 a 1 1 I R P I 01
_ f •• _t '. _

~

Looo
001
010
all
100
101
110
III

E~ 'W

Loooo
0001
OOlD
0-011
01-00
0101
0110
0111

3-16

for register pair a or OP.
for register pair 2 or 1 P.
for register pair 4 or 2P.
for register pair 6 or 3~.
for register pair 8 or 4P.
for register pair 10 or 5P.
for register pair 12 or 6P.
for register pair 14 or 7P.

for regi ster 0
for register 1
for register 2
for register 3
for regis"ter 4
for "reg! ster 5
for regi ster 6
for regi ster 7

1000 for regi ster 8
1001 for register 9
1010 for register 1 {)
1011 f-Or register 11
lIDO for register 12
1101 for register 13
1110 for register 14
1111 for register 15

3.3.1 INC INCREMENT REGISTER

Format:

LABEL CODE OPERAND

INC REG

I /
1011 OI:E G'I
_ f I I _ , , I .

Description:

The index register indicated by REG is incremented by one.

The carry bit is not affected.

Example: If register 3 contains the number 6, the instruction:

INC 3

will cause register 3 to contain the number 7.

If register 8 contains the number 15 (1 1 1 1 binary) I the instruction:

INC 8

will cause register 8 to contain -{) I leaving the carry bit unchanged.

3-17

3 • 3 .2 FIN FETC HIND IRECT

Format:

LABEL CODE OPERAND

FIN RP I 1,-----'/
--.......-..

. Description:

The contents of registers 0 and 1 are concatenated to form the lower 8 bits of a
ROM or program. RAM address. The upper 4 bits of the address are assumed
equal to the upper 4 bits of the address at which the FIN instruction is located
(that is I the address of the FIN instruction and the address referenced by register
o and 1 are on the same page). The 8 bits at the designated addres s are loaded
into the register pair specified by RP. The 8 bits at the designated address are
unaffected; the contehts of registers 0 and I are unaffected unles s RP = O.

The carry bit is not affected.

Example: Suppose a program in memory appears as follows:

DECIMAL
ADDRESS

603

681

HEXADECIMAL
ADDRESS

25B

2A9

INSTRUCTION

110

FIN 7P

ASSEMBLED
DATA

6E

3E

If register 0 contains the hex digit 5 and register 1 contains the hex digit B when
the FIN instruction is executed I the 8 bits located at hex addres s 25B vvill be
loaded into register pair 7 P. Thus regi ster 14 will ~ontain the hex digit 6 (D 11 0
binary) and register 15 will contain the hex .nigit E {1 11 {j binary) .

3-1B

If registers 0 and 1 had conta:ined CH and 4 when the FIN was executed I the 8
bits at hex address 2C4 '\vould have been loaded into registers 14 and 15.

NOTE: If a FIN instruction is located in the last location of a page I the upper
4 bits of the designated address will be assumed equal to the upper 4 bits of the
next page.

Thu s if the in struction :

FIN 7P

is located at decimal addres s 511 (hex 1 IT) and registers 0 and I contain 3 and
CH I the 8 bits at hex address 13C (not 13C) will be loaded into registers 14 and 15.

This is dangerous programming practice and should be avoided whenever possible.

3-19

3.4 INDEX REGISTER TO ACCUMULATOR INSTRUCTIONS

This section describes instructions which involve an operation between an index
register and the accumulator. Instructions in this clas s occupy one byte as
follows:

00 for ADD~
01 for SUB
10 for LD

·11 for XCH

L 0000 for register a
0001 for register 1
0010 for register 2
0011 for register 3
0100 for register 4
0101 for register 5
0110 for register 6
o III for register 7

1000 for register 8
100 1 for register 9
1010 for register 10
1011 for register 11
1100 for register 12
110 1 for register 13
1110 for register 14
1111 for register 15

The general assembly language instruction format is:

LABEL

LABEL,
"-v-'"

I
CODE

OP

OPERAND

REG

T ____ o through 15

t ~--...,------- ADD I SUB, LD I or XCH

Optional instruction label

3-2{)

3.4.1 ADD ADD REGISTER TO ACCUMULATOR WITH CARRY

Format:

LABEL CODE OPERAND

ADD REG

~ I
~

11 1
0 10

I 01 ~ E G I
Description:

The contents of the index register REG plus the contents of the carry bit are
added to the accumulator. The result is kept in the accumulator; the contents
of REG are unchanged. The carry bit is set if there is, a carry out of the high­
order bit position, and reset if there is no carty.

Example:

Suppose the accumulator contains 6, register 14 contains 9 I and the carry bit
= o.

Then the instruction:

ADD 14

will perform the following operation:

Accumulator = o 11 0 B
Register 14 = 1001 B
Carry = 0

.JLI 1 11 1 B = Result = 15

t = Carry

The accumulator contains 15 and the carry bit is reset. If the carry bit had been
one at the start of the previous operation, the following woul-d have occurred:

3-21

Accumulator
Register 14
Carry

0110 B
1 001 B

1

...LJ OOOOB = Result = 0

+ = Carry

The accumulator would contain 0 I while the cany bit would be set.

3.4.2 SUB SUBTRACT REGISTER FROM ACCUMULATOR WITH BORROW

Format:

LABEL CODE OPERAND

SUB REG

\ I
~ _.---

Description:

The contents of index register REG are subtracted with borrow from the accumulator.
The result is kept in the accumulator; the contents of REG are unchanged. A borrow
from the previous subtraction is indicated by the carry bit being equal to one ·at
the beginning of this instruction. If the carry bit equals zero at the beginning of
this instruction it is assumed that no borrow occurred from the previous subtraction.

This instruction sets the carry bit if there is no borrow out of the high order bit
position, and resets the carry bit if there is a borrow.

The subtract with borrow operation is actually performed by complementing each bit
of the contents of REG and adding the resulting value plus the complement of the
carry bit to the accumulator.

Note: This instruction may he used to subtract numbers greater than 4 bits in
lengt~. The carry bit must be complemented by the program between each required
subtraction operation. For an example of this, see Section 4.8.

Example: In order to perform a normal subtraction, the carry bit should = O.
Suppose the accumulator contains 6, register + 0 contains 2 I and the carry bit = O.
Then the instruction:

SUB 10

will penorm the followif:}g operation:

3-22

Accumula tor
Register 10. = 001 0
Complemented
Complement of carry

=

=

l..J

0110 B

1101 B
1

o 1 0 0 B = Re suI t = 4

\----__ Carry = 1 indicating no borrow

Had the carry bit been = 1/ the operation would have produced the following:

Accumulator 10
Complement of register 14
Complement of carry

=
=

=

2J
\

3-23

0110
1 1 0 1

0

001 1

B
B

B Result = 3

. Carry = 1 indicating no borrow .

3.4.3 LD LOAD ACCUMULATOR

Format:

LABEL CODE OPERAND

LD REG

\ I

Description:

The contents of REG are stored into the accumulator I replacing the previou s contents
of the accumulator. The contents of REG are unchanged. The carry bit is not
affected.

Example: If register 12 contains 0 1 0 0 B I the instruction

LD 12

will cause the accumulator also to contain 0 1 0 0 B.

3-24

3.4.4 XCH EXCHANGE REGISTER AND ACCUMULATOR

Format:

LABEL CODE OPERAND

XCH REG

\ I .----..

11 I 01 ~ &,1] ~ E G
• ,

Description:

The contents of the register specified by REG are exchanged with the contents of
the accumulator.

The carry bit is not affected.

Example: If the accumulator contains 1 100 B I and register 0 contains 0 0 lIB I
then the in struction

XCH 0

will cause the accumulator to contain 00 lIB and register 0 to
contain 1 100 B.

3-25

3.5 ACCUMULATOR INSTRUCTIONS

This section describes instructions which operate only on the contents of the
accumulator and/or the carry bit.

Instructions in this class occupy one byte as follovvs:

[1,1 ,I ,I J~iX;~] -
,'------ 0000 for CLB

0001 for CLC
0010 for lAC
0011 for CMC
0100 for CMA
0101 for RAL

0110 for RAR
0111 for TCC
1000 for DAC
1001 for TCS
1010 for STC
1011 for DAA
1100 for KBP

The general assembly language instruction format is:

LABEL

LABEL,

CODE OPERAND

OP -....- ~

t-----AIWayS blank.

t ----------CLB, CLC, lAC, CMC, CMA, RAL,
RAR, TCC, DAC, TCS I STC I DAA,
or KBP •

'"---------------- Optional instruction label.

3-26

3.5 • 1 CLB CLEAR BOTH

Format:

LABEL

Description:

CODE

CLB

~

OPERAND

The accumulator is set to 0000 B I and the carry bit is reset.

3.5.2 CLC CLEAR CARRY

Format:

LABEL

Description:

The earlY bit is reset to ().

CODE

GLC

~

OPERAND

3-27

3.5.3 lAC INCREMENT ACCUMULATOR

Format:

LABEL OPERAND

De scription:

The contents of the accumulator are incremented by one. The carry bit is set if
there is a carry out of the high order bit position I and reset if there is no carry.

Example: If the accumulator contains 1001 B I the instruction rAC will perform
the following operation:

Accumulator =
+

1001B
0001B

.JU 1 0 lOB = Ne"\v contents of accumulator.

,,'----- Carry = 0

If the accumulator contains 1111 B I the instruction rAC will perform the following
operation:

Accumulator = 1 1 lIB
+ OOOlB

-1J 0 0 0 0 B = N GW contents of accumulator.

\~---- Carry = 1

3-28

3.5.4 CMC COMPLElvlENT CARRY

Format:

LABEL CODE OPERAND

Description:

If the carry bit = 0 I it is set to 1. If the carry bit is = 1, it is set to O.

3.5.5 CMA COMPLEMENT ACCUMULATOR

Format:

LABEL CODE OPERAND

CMA

~

Description:

Each bit of the contents of the accumulator is complemented (produ-cing the so­
called one's complement).

The carry bit is not affected.

Example: If the accumulator contains 0110 B, the instruction CMA v;ill caus-e
the accumulator to contain lODl B.

3-29

3.5.6 RAL ROTATE ACCUMULATOR LEFT THROUGH CARRY

Format:

LABEL CODE OPERAND

RAL

"" -~
Description:

The contents of the accumulator are rotated one bit position to the left.

The high-order bit of the accumulator replaces the carry bit I while the carry bit
replaces the low-order bit of the accumulator.

Example: Suppose the accumulator contains 1101 B, and the carry bit = O.

Before RAL is executed:

Carry Accumulator

After RAL is executed:

101 0 , t ,_

Carry = 1 Accumulator

3-30

3.5.7 RAR ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Format:

LABEL

Description:

CODE

RAR

'\
OPERAND

The contents of the accumulator are rotated one bit position to the right.

The low-order bit of the accumulator replaces the carry bit, while the carry bit
replaces the high-order bit of the accumulator. \7

Example: Suppose the accumulator contains 0110B, and the carry bit = 1

Before RAR is executed:

Accumulator Carry

r lO ,1 ,I , 0 I

After RAR is executed:

101 1 , . ,

Accumulator Carry = 0

3-31

3.5.8 TCC TRANSMIT CARRY AND CLEAR

Format:

LABEL CODE OPERAND

TCC

~
(1 .1 ,1 .1 10 .1 ,1 .1

. Description:

If the carry bit = a I the accumulator is set to OOOOB. If the carry bit = I, the
accumulator is set to 0001B. In either case I the carry bit is then reset.

3.5.9 DAC DECREMENT ACCUMULATOR

Format:

LABEL CODE OPERAND

DAC

~

Description:

The contents of the accumulator are decremented by one. The cany bit is set
if there is no borrow out of the high-order bit position I and reset if there is a
borrow.

Example: If the accumulator contains 1001 B, the instruction DAC will perform
the following operation:

3-32

Accumulator = 1 0 0 1 B
+ (-1) = 1 1 1 1 B

..LI 1 0 0 0 B = New contents of accumulator

'--------Carry = 1 indicating no borrow.

If the accumulator contains 0000, the instruction DAC will perform the following:

Accumulator = 0 0 0 0 B
+ (-1) - 1 1 lIB

JLJ 11 11 B= New contents of accumulator

,'------Carry = 0 indicating a borrow.

3.5.10 TCS TRANSFER CARRY SUBTRACT

Format:

LABEL

Description:

CODE

TeS

~

OPERAND

If the carry bit = -0, the accumulator is set to 9. If the carry bit = I, the
accumulator is set to 10. In either case~ the carry bit is then reset.

NOTE: This instruction is used when subtracting decimal numbers greater than
4 bits in length. For an example of this, see Section 4.8.

3-33

3.5.11 STC SET CARRY

Format:

LABEL

Description:

The carIY bit is set to 1.

CODE

STC

~

OPERAND

3.5.12 DAA. DECIMAL ADJUST ACCUMULATOR

Format:

LABEL

Description:

CODE

DAA

~

OPERAND

If the contents of the accumulator are greater than 9, or if the carty bit = I,
the accumulator is incremented by 6. Otherwise, the accumulator is not affected.

If the result of incrementing the accumulator produces a carry out of the high order
bit position, the cany bit is set. Otherwise the carry bit is unaffected (in particular I
it is not reset) .

NOTE: This instruction is used when adding decimal numbers. For an example of
this I see Section 4. 7 •

3-34

3.5.13 KBP KEYBOARD PROCESS

Format:

LABEL

Description:

CODE

KBP

~

OPERAND

If the accumulator contains OOOOB, it remains unchanged. If one bit of the accumu­
lator is set, the accumulator is set to a number from 1 to 4 indicating which bit was
set.

If more than one bit of the accumulator is set, the accumulator is set to 1111 B.

This process is summarized as foll~ws:

BINARY CONTENTS OF BINARY CONTENTS OF
ACCUMULATOR BEFORE ACCUMULATOR AFTER

KBP KBP

0000 0000
0001 0001
0010 0010
0100 0011
1000 0100
0011 1111
0101 1111
0110 1111
0111 1111
1001 1111
1010 1111
1011 1111
1100 1111
1101 1-111
1110 1111
1111 tIll

The carry bit is not affected.

3-35

3.6 IMMEDIATE INSTRUCTIONS

This section describes two instructions which use data that is part of the instruc­
tion itself.

3.6.1 FIM FETCH IMMEDIATE

The FIM instruction occupies two bytes.

Format:

LABEL CODE OPERAND

F~ RP DATA

~/.
~, " "

10,0,110'* rio I. p, l} ;r lA, I

Description:

~, ./ L k 8-bit data quantity

000 for register pair a or OP
001 for register pair 2 or IP
010 for register pair 4 or 2P
011 for regi ster pair 6 or 3P
100 f-or regi ster pair 8 or 4P
101 for register pair 10 or SP
110 for register pair 12 or 6P
III for register pair 14 or 7P

The 8 bits of immediate data are loaded into the register pair specified by RP.
The earlY bit is not affected.

3-36

Example: The instruction

FIM 2 254

will cause register 2 to contain 15, and register 3 to con~ain 14. This is because
254 decimal is encoded as FE hexadecimal; the upper four. bits are loaded into
register 2 and the lower four bits are loaded into register 3.

The instruction:

FIM IP 6

will cause register 2 to contain 0, and register 3 to contain 6.

3.6.2 LDM LOAD ACCUMULATOR IMMEDIATE

The LDM instruction occupies one byte.

Format:

LABEL CODE

LDM

OPERAND

DATA

/
11 1 0 liD A T AI
- ," _ ., 1_

L A 4-bit data quantity

Description:

The 4 bits of immediate data are loaded into the accumulator.

The carry bit is not affected.

Example: The instruction:

LDM 0

will clear the accumulator.

3-37

The instruction:

LDM 15

will set each bit of the accumulator.

3.7 TRANSFER OF CONTROL INSTRUCTIONS

This section describes instructions which alter the normal execution sequence of
instructions.

3.7.1 rUN rUMP UNCONDITIONALLY

The rUN instruction occupies two bytes:

Format:

LABEL CODE OPERAND

rUN ADDR

I
~ ______ .~A, ________ ~~

'~ ________ ~~ _________ J

~A 12-bit memory address.

Description:

Program execution is transferred to the instruction at location ADDR, which may
be anywhere in memory. (If the rUN is located in ROM, ADDR is a ROM address;
if located in program RAM, ADDR is a program RAM addres s).

The carry bit is not affected.

NOTE: This instruction and the rMS instruction (Section 3.8.1), use a 12
bit address, and can reference any memory location. Their operation is not in­
fluenced by their position within a page of memory I wherea s some other instruc-

3-38

tions are. Therefore, only a rUN or rMS instruction should be u sed to transfer
control from one page of memory to another.

Example:

Arbitrary Memory
Address (Hex) Label Code Operand As sembled Data

360 rUN LRG 43EO
362 AD, ADD 1 82

370 LAC, LDM 3 D3
371 rUN AD 4362

3EO LRG, FIM OP 4 2004
3E2 rUN LAC 4370

Normally, program instructions are executed sequentially. A 12-bit register
called the program counter holds the address of the instruction to be executed.
The rUN instruction replaces the program counter contents, causing program
execution to continue at that address.

Thus the execution sequence of this example is as follows:

The rUN instruction at 360H replaces the contents of the program counter with 3EOH.
The next instruction .executed is the FIM at" location LRG which loads register
o with the value 0, and register 1 with the value 4. The rUN at 3E2H is then
executed.

The program counter is set to 370H, and the LDM at this address loads the accumu­
lator with the value 3. The rUN at 37lH sets the program counter to 362H, where the
ADD instruction adds the contents of register I plus the carry bit to the accumulator.

From here, normal program execution continues at location 36 3H .

3-39

3.7.2 JIN JUMP INDIRECT

The JIN instruction occupies one byte.

Format:

LABEL CODE OPERAND

Description:

JIN /RP
~

IO,O,l,d~ ~hl
~

Looo
001
OJ.O
011
100
101
110
111

for register pair 0
for register pair 2
for register pair 4
for register pair 6
for register pair 8
for -regi ster pair 10
for regi ster pair 12
for register pair 14

or OP
or IP
or 2P
or 3P
or 4P
or SP
or 6P
or 7P

The 8 bits held in the register pair specified by RP are loaded into the lower 8
bits of the program counter. The highest 4 bits of the program count-er are un­
changed. Therefore I program execution continues at this address on the same
page of memory in which the JIN instruction is loaded.

The carry bit is not affected.

Example:

Hexadecimal
Memory Address

3E4
3E6

Code

FIM
JIN

Operand

OP 21
OP

3-40

Assembled Data

2015

The FIM instructions loads register 0 with the value I and register I with the
value 5. The JIN instruction then causes a jump to hexadecimal location 315.

NOTE: If the JIN instruction is located in the last location of a page in
memory, the highest 4 bits of the program counter are incremented by one, causing
control to be transferred to the corresponding location on the next page.

If the above example, the JIN had been located at address 255 decimal (OFF hexa­
decimai) I control would have been transferred to address 115 hexadecimal, not 015
hexadecimal. Thi s is dangerous programming practice I and should be avoided
whenever possible.

3.7.3 TCN JUMP ON CONDITION

The JCN instruction occupies two bytes.

Format:

LABEL CODE OPERAND

JCN CN ADDR

// ---

L An 8-bit address

"------- A four bit condition code

Description:

If the condition specified by eN is false I no action occurs and program execution
continues with the next sequential instruction. If the condition specified by
eN is true I the 8 bits specified by ADDR replace the lower 8 bits of the program
counter. The highest 4 bits of the program counter are unchanged. Therefore I
program execution continues at the specified addres s on the same page of memory
in which the JCN instruction is located. The carry bit is not affected.

3-41

The condition code is specified in the assembly language statement as a decimal
value from 0 to 15, which is represented in the assembled instruction as the
corresponding 4 bit hexadecimal digit. Each bit of the condition code has a
meaning, as follows:

CN

l I
, ~ L-. If this bit = 1, jump if the test signal of the 4004 is = O.

~ If this bit = 1, jump if the carry bit = 1.

If this bit = I, jump if the accumulator = o.
If this bit = I, invert the other jump conditions.

More than one condition at a time may be tested. If the leftmost bit of the condition
code is zero I a jump occurs if any of the remaining specified conditions is true (an
.. or" condition). If the leftmost bit is one I a jump occurs if the logical inverse of the
"ortl condition is true. In Boolean notation I the equation for the jump condition is as
follows: JUMP = C, • ((ACC = 0) • ~ . + (carry = 1) • ..,£3 + TEST • C 40

C J • «(ACC =f:. 0) + C2} • «carry = 0) +C 3 ' 8 (TEST + C4))
Example:

Hexadecimal
Memory Address

302

38B
38D

Label Code·

LOG, LDM

JCN

Operand Assembled Data

4 D4

..
bLOC 1602

The condition code is encoded as 0110 B. Therefore I the JCN will cause a jump to
address .302 H if the accumulator = 0, or if the carry bit = 1. If neither of these is
true I program execution continues with the instruction at location 3BDH.

NOTE: If the JCN instruction is located in the last two locations of a page in
memory and the jump condition is true f the highest 4 bits of the program counter
are incremented by 1, causing control to be transferred to the corresponding loca­
tion on the next page.

3-42

If in the above example, the JCN had been located at addresses 254 and 255
decimal (OFE and OFF hexadecimal) a true condition would have caused jump
to location 102 hexadecimal rather than 002 hexadecimal. This is dangerous
programming practice { and should be avoided whenever pos sible.

3.7.4 ISZ INCREMENT AND SKIP IF ZERO

The ISZ instruction occupies two bytes.

Format:

LABEL CODE

ISZ

OPERAND

REG ADDR

-,---~-------j"'---.,

Description:

ADD R

,---__ -"'1

An B bit addres s
L''----..L

000 0 for register a
0001 for register 1

1111 for register 15

The index register specified by REG is incremented by one. If the result is 0000 B,
program execution continues with the next sequential instruction. If the result
does not equal 0000 B I the 8 bits specified by ADDR replace the lovve st 8 bits of
the program counter. The highest 4 bits of the program counter are unchanged.
Therefore I program execution continues at the specified address on the same page
of memory in which the ISZ instruction is located.

The carry bit is not affect€d.

3-43

Example:

Hexad ecima I Label
Memory Addres s

Code Operand Assembled Data

30F FIM OP 0 2000
311 LP, XCH 2 B2

31A ISZ 0 LP 7011
31C

The FIM instruction loads registers 0 and 1 with O.

The XCH is then executed. Program execution continues until the ISZ is reached.
Register 0 is incremented to contain l, and I since this result is non-zero, pro­
gram control is transferred back to location 311H. This process continues until
register 0 = 1111B. Then the ISZ increments register 0 producing a result of OOOOB,
and execution continues with the instruction at 31CH. '

NOTE: If the ISZ instruction is located in the last two locations of a page in
memory and the incrementation produces a non-zero result, the highest 4 bits of
the program counter are incremented by I, causing control to be transferred to the
corresponding location on the next page.

If in the above example, the ISZ had been located at decimal addresses 1022 and 1023
(3FE and 3FF hexadecimal), control would have been transferred to location 411
hexadecimal and the XCH and remaining instructions would have been executed
only once. Thus I this is dangerous programming practice (and should be avoided
whenever possible.

3-44

3.8 SUBROUTINE LINKAGE COMMANDS

This section describes the commands which call and cause return from subroutines.
They cause a transfer of program control and use the address stack (see Sections 2.4
and 2. 7 • 7) •

3.8.1 JMS JUMP TO SUBROUTINE

The JM S instruction occupie s two bytes.

'Format:

LABEL CODE

JMS

OPERAND

ADDR

/
r~------~A ______ __

, v~------~I

LA 12-bit memory address

Description:

The address of the instruction immediately following the JMS is written to the
address stack for later use by a BBL instruction. Program execution continues at
memory address ADDR, which may be on any page.

The carty bit is not affected.

NOTE: Since the JMS uses a 12 bit memory address I it operates the same wher-
ever it is located in memory I and can reference any address in memory. For this
reason I only a JMS or JUN instruction should be used to transfer program control
from one page of memory to another.

3-45

Example:

Hexadecimal Label Code Operand As sembled Data
Memory Address

011 JMS SUB 53AO
013 XCH 0 DO

3AO SUB, INC 1 61

BBL 6 C6

The JMS instruction causes the 12 bit address 013H (the address of the instruction
following the JMS) to be written to the address stack. Execution continues with
the INC instruction at SUB, and proceeds sequentially from this pOint.

3.8.2 BBL BRANCH BACK AND LOAD

The BBL instruction occupies one byte.

Format:

LABEL CODE OPERAND

BBL DATA

/
(1 11 I 0 I 0 I D I A .T IA I

LA 4-bit DATA value

Description:

The 4 bits of immediate data encoded in the instruction are loaded into the accumu-
1ator. Then the last 12 bit address saved on the address stack (by a JMS instruction)

3-46

is read from the stack and placed in the program counter. Thus, ~xecution con­
tinues with the instruction immediately following the last JMS instruction.

The carry bit is not affected.

Example: In the example of Section 3.8. I, the BBL instruction load s the value
6 into the accumulator. The address 013 is read into the program counter, and pro­
gram execution proceeds with the XCH instruction.

3-47

3.9 NOP INSTRUCTION NO OPERATION

This instruction occupies one byte.

Format:

LABEL

Description:

CODE

NOP

OPERAND

No operation is performed. The program counter is incremented by one and execu­
tion continues with the next sequential instruction.

The carry bit is not affected.

3.10 MEMORY SELECTION INSTRUCTIONS

This section describes instructions which specify DATA RAM data and status char­
acters I RAM output ports and ROM input and output ports to be operated on by
I/O and RAM instructions described in Section 3. 11 .

3.10. 1 DCL DESIGNATE COMMAND LINE

The DCL instruction occupies one byte.

Format:

LABEL CODE OPERAND

DCL

3-48

Description:

As described in Section 2.3. 3 there may be up to 8 DATA RAM BANKS I each of
which consists of four DATA RAM units. The DCL instruction uses the rightmost
3 bits of the accumulator to determine which of the 8 DATA RAM BMJKS will be
referenced during subsequent operations.

The selection is made as follows:

RIGHTMOST 3 BITS DATA RAM BANK
OF ACCUMULATOR SELECTED

0,

000 0
001 1
010 2
all 3
100 4
101 5
110 6
III 7

This choice remains in effect until the next DCL is executed, or an external RESET
signal is received. A RESET causes DATA RAM BANK a to be selected.

The carry bit is not affected.

Example: The following instructions will select DATA RAM BANK 3:

LDM 3 /Load accumulator with 0011 B
DCL

3-49

3.10.2 SRC SEND REGISTER CONTROL

The SRC instruction occupies one byte.

Format:

LABEL

Description:

CODE OPERAND

SRC RP

~
1°,0,1,0 If. f 11 I

"-v--

L 000 for register pair a or OP
001 for register pair 2 or 1 P
010.for register pair 4 or 2P
011 for register pair 6 or 3P
100 for regi·ster pair 8 or 4P
101 for register p.air 10 or 5P
110 for register pair 12 or 6P
III for register pair 14 or 7P

The 8 -hits contained in the register pair specified byRP are used as an address.
This address may designate a particular DATA RAM data character, a DATA RAM
status character, a RAM output port, or a ROM input/output port. (A description
of these elements appears in Section 2). In fact, the address designates
all of these simutaneously; it is up to the programmer to then write the correct
I/O or RAM instruction (described in Section 3.11) to access the proper entity.

The address sent by the SRC remains in effect until changed by a subsequent
SRC.

The only DATA RAM bank which receives the SRC address is the one selected by
the last previous DCL instruction.

The carry bit and the contents of the register pair are unaffected.

The 8 bits of the address sent by the SRC are interpreted as follows:

3-50

(1) When referencing a DATA RAM data character:

~ -v- ------

!
1 1 of 16 4-bit data characters within

I '--___ i:-======~_-_-_the register.
~ 1 of 4 registers within the DATA RAM

chip.

1 of 4 DATA RAM chips within the DATA
RAM bank previously selected by a DeL
instruction.

(2) When referencing a DATA RAM status character:

I . I '
~-----

1 ~l-_____ These bits are not relevant for this reference.

1 of 4 registers within the DATA RAM chip.

1 of 4 DATA RAM chips within the DATA RAM
bank previously selected by a DeL instruction.

(3) When referencing a RAM output port:

I I I

~

, +-J-----._---- These bits are not relevant for this reference.

'-. _________ The port associated with 1 of 4 DATA RAM
chips within the DATA RAM bank previously
selected by a DeL.

3-51

(4) When referencing a ROM input or output port:

I . • I

I
I

t ________ These bits are not relevant for this
reference.
The port associated with 1 of 16
ROM's.

Example: The instructions:

FIM
SRC

IP
IP

180

will cause the eight bit value 101101 OOB to be used as an address. Subsequent
instructions could then reference DATA RAM data character number 4 of register
3 of chip 2/ any of the status characters associated with DATA RAM register 3
of chip 2/ RAM output port number 2 (the port a ssociated with DATA RAM chip 2) ,
or ROM port number 11 (the port associated with ROM number 11). The address
remains in effect until another SRC instruction is executed.

3-52

3. 11 INPUT/OUTPUT AND RAM INSTRUCTIONS

This section describes instructions which access DATA RAM characters or per­
form input or output operations. One instruction, WPM, allows the programmer
to read or write 8-bit program RAM locations. These instructions use
addresses selected by the DCL and SRC instructions described in Section 3. 1 . o.

Instructions in this class occupy one byte as follows:

1 1 1 0 1 o P

0000 for WRM ! 1000 for SBM
0001 for WMP 1001 for RDM
0010 for WRR 1010 for RDR
0011 for WPM 1011 for ADM
0100 for WRO 1100 for RDO
0101 for WRI 1101 for RDl
0110 for WR2 1110 for RD2
0111 for WR3 1111 for RD3

The general assembly language instruction format is:

LABEL

LAB,
-...---.-

CODE OPERAND

OP

I L Always blank

WRM, WMP, WRR, WPM, WRO, WRI, WR2, WR3,
SBM, RDM I RDR, ADM I RDO I RDl, RD2 I or RD3

''------ Optional instruction label.

3-53

3.11.1 RDM READ DATA RAM DATA CHARACTER

Format:

LABEL CODE OPERAND

\1,1, 1
1°11,0,° 11 I

Description:

The DATA RAM data character specified by the last SRC instruction is loaded into
the accumulator. The carry bit and the data character are not affected.

Example:

LABEL CODE

rIM
SRC
RDM

OPERAND

2P
2P

5

The above instructions will read the contents of DATA RAM data character number
5 of register 0 of chip 0 of the currently selected DATA RAM bank into the accumu­
lator.

3.11.2 RDn READ DATA RAM STATUS CHARACTER

Format:

LABEL CODE OPERAND

RDn

\ 1 ! 1 101 1
I I I !

'-y-J

t
n = b, 1 I 2, or 3

3-54

De"scription:

The DATA RAM status character whose number from 0 to 3 is specified by n I assoc­
iated with the DATA RAM register sp'ecified by the last SRC in'struction, is loaded
into the accumulator.

The carry bit and the status character are not affected.

Example:

LABEL CODE

FIM
SRC
RD3

OPERAND

2P 5
2P

The above instructions will read the contents of DATA RAM status character 3 of
register 0 of chip 0 of the currently selected DATA RA11 bank into the accumulator.

3.11.3 RDR READ ROM PORT

Format:

LABEL CDDE OPERAND

RDR~

~

3-55

Description:

The ROM port specified by the last SRC instruction is read. When using the 4001
ROM I each of the 4 lines of the port may be an input or an output line; the data on
the input lines is transferred to the corresponding bits of the accumulator. Any
output lines cause either a 0 or a 1 to be transferred to the corresponding bits of
the accumulator. Whether a 0 or a 1 is transferred is a function of the hardvv:are I

not under control of the programmer.

The carry bit is not affected.

Example:

LABEL CODE

FIM
SRC
RDR

OPERAND

3P
3P

160

The above instructions will read the contents of the port associated with ROM number
ten into the accumulator. If the leftmost I/O line is an output line and the remaining
I/O lines are input lines containing 01 OB I the accumulator will contain either 101 OB
or OOIOB.

NOTE: On the INTELLEC 4, a ROM port may be used for either input or output. If
programs tested on the INTELLEC 4 are to be run later with a 4001 ROM I the programmer
must be careful not to use one port for both functions.

3. 11 .4 WRM WRITE DATA RAM CHARACTER

Format:

LABEL

Description:

CODE

WRM

\
OPERAND

.---A-....

The contents of the accumulator are written into the DATA RAM data character speci­
fied by the la st SRC instruction.

The carry bit and the accumulator are not affected.

3-56

Example:

LABEL CODE

FIM
SRC
LDM
WRM

OPERAND

OP 180
OP
15

The above instruction will cause DATA RAM data character number 4 of register 3
of chip 2 of the DATA RAM bank selected by the last DCL instruction to contain
15 (1111B).

3. 11. 5 WRn WRITE DATA RAM STATUS CHARACTER

Format:

LABEL

-Description:

CODE

WRn

OPERAND

0, I, 2, or 3

The contents of the DATA RAM s:tatus character whose number from 0 to 3 is speci­
fied by n, associated with the DATA RAM register specified by tbe last SRC'
instruction, are repla ced by the contents of the accumulator.

The carry bit and the a-ccumulator are not affected.

3-57

Example:

LABEL CODE

FIM
SRC
LDM
WRI

OPERAND

OP
OP
2

o

The above instructions will write the value 2 into status character 1 of DATA RAM
register 0 of chip 0 of the currently selected DATA RAM bank.

3.11.6 WMP WRITE RAM PORT

Format:

LABEL CODE OPERAND

WMP

"-...--"----..

11 ,1,1,01 0,0,0,11

Description:

The contents of the accumulator are written to the output port as sociated with the
DATA RAM chip selected by the la st SRC instruction. This value will stay at th€
output port until overwritten.

The carry bit and the accumulator are unchanged •

Example:

LABEL CODE

FIM
SRC
LDM
WMP

3-58

OPERAND

3P 64
3P
6

The above instructions will write the value 6 to the output port associated with
DATA RAM chip 2 of the currently selected DATA RAM bank.

3.11. 7 WRR WRITE ROM PORT

Format:

LABEL CODE OPERAND

11 ,1,1,01 0 ,0,1 1° I

Description:

The contents of the accumulator are written to the output port associated with the
ROM selected by the last SRC instruction. This value will stay at the output port
until overwritten.

The carry bit and the accumulator are unchanged.

Example:

LABEL CODE

FIM
SRC
LDM
WRR

OPERAND

4P
4P
15

64

The above instructions will write the 'value 15 to the output port associated with
ROM number 4.

3-59

3.11.8 ADM ADD DATA RAM TO ACCUMULATOR WITH CARRY

Format:

LABEL CODE OPERAND

ADM

"-.... -"-

Description:

The DATA RAM data character specified by the last SRC instruction, plus the
carry bit, are added to the accumulator.

The carry bit will be set if the result generates a carry I and will be reset other­
wise.

The data character is not affected.

Example:

LABEL CODE

FIM
SRC
ADM

OPERAND

OP
OP

o

If the carry bit = 0 I the accumulator contains 10 , and DATA RAM data character
o of register 0 of chip 0 contains 7 I the ADM will perform the following operation:

Accumulator =
Data character =
Carry bit =

1 0 lOB
o 1 11 ~

o
1I __ 0_0_0_1_B_=_ New contents. of accumulator.
~ Carry bit will be set.

3-60

3.11.9 SBM SUBTRACT DATA RAM FROM MEMORY WITH BORROV\T

Format:

LABEL CODE OPERAND

SBM~

~

\1,1,1,0111°1°1° I
De scription:
The value of the DATA RAM character specified by the last SRC instruction is subtracted
from the accumulator with borrow. The data character is unaffected. A borrow from the
previous subtraction is indicated by the carry bit being equal to one at the beginning
of this instruction. No borrow from the previous subtraction is indicated by the carry
bit being equal to zero at the beginning of this instruction.

This instruction sets the carry bit if the result generates no borrow I and resets the
carry bit if the result generates a borrow.

The subtract with borrow operation is actually performed by complementing each bit of
. the data character and adding the. resulting value plus the complement of the carry bit
to the accumulator.

NOTE: When this instruction is used to subtract numbers greater than 4 bits in
length J the carry bit must be complemented by the program between each required
subtraction operation. For an· example of this, s€e Section 4.8.

Example:

LABEL CODE

FIM
SRC
SBM

OPERAND

1P
1P

1

If the carry bit = I, the accumulator contains 7, and DATA RAM character 1 of
register 0 of chip 0 contains 5, the SBM will perform the following operation:

Accumulator =
Data character = 0101 B

Complemented =
Complement of Carry =

o 11 1 B

101 0 B
·0

.QJ 000 1 B == New contents of accumulator.

,'-------- Carry bit will be reset indicating a borrow.

3-61

3 . 11 . 10 v'lPM WRITE P ROG RAM RAM

Format:

LABEL CODE OPERAND

111,1010,0,1,1\

Description:

This is a special instruction which may be used to write the contents of the accumu­
lator into a half byte of program RAM I or read the contents of a half byte of program
RAM into a ROM input port where it can be acces sed by a program.

The carry bit is unaffected.

NOTE: Two WPM instructions must always appear in close succes sion; that is,
each time one WPM instruction references a half byte of program RAM as indicated by
an SRC address, another WPM must access the other half byte before the SRC
address is altered. An internal counter keeps track of which half-byte is being
accessed. If only one WPM occurs, this Gounte-r will be out of sync with the program
and errors will occur. In this situation I a RESET pulse must -be used to re-initialize
the machine.

NOTE: A vVPM instruction requires an SRC address to access program RAM.When-
ever a WPM is executed, the DATA RAM which happens to correspond to this SRC
address will also be written. If data needed later in the program is being held in
such a DATA RAM, the programmer must save it elsewhere before executing the
WPM instruction.

Storing Data Into Program RAM:

A program must perform the following actions in order to store eight bits of data into
a program RAM location:

(1) The value 1 must be written to ROM port number 14. Thi sis a "write enable"
signal, permitting the store operation to work.

{2} The highest 4 bits of the program RAM address to be accessed must be
written to ROM port number 15.

(3) The lowest 8 bits of the program RAM address to be accessed must be sent
out by an SRC instruction.

3-62

(4)

(5)

The higher 4 bits of data to be written must be loaded into the accumu­
lator and.written with the first WPM; the lower 4 bits of data must then
be loaded into the accumulator and written with the second WPM.

The value 0 must be written to ROM port number 14, clearing the "write

enable" .

Reading Data From Program RAM:

A program must perform the following actions in order to read eight bits of data
from a program RAM location:

(1) The highest 4 bits of the program RAM address to be accessed must be
written to ROM port 15.

(2) The lowest 8 bits of the program RAM address to be accessed must be sent
out by an SRC instruction.

(3) Two WPM instructions in succession must be executed. The first reads,
the leftmost 4 bits of the program RAM location into ROM port 14; the second
reads the rightmost 4 bits of the program RAM location into ROM port 15 ..

Example: The following routines access a program RAM location whose address
is held in status characters 0, 1, and 2 of DATA RAM register 0 of DATA RAM chip o.

DATA RAM cmp 0

Register 0
Regi-ster 1
Register 2
Register 3

'----v-'"
Status Cnara cters

PROGRAM RAM
Hex Address

4AA
4AB
4AC

Routine STR stores the contents of registers 2 and 3 into the addressed location;.
routine FeR reads the contents of the addressed location into registers 2 and 3.

3-63

LABEL CODE OPERAND COMMENT

STR , rIM OP 224
SRC OP / Select ROM port 14.
LDM 1
WRR I Turn on write enable.
JMS COM / Routine COM sets up PRAM

/ address.
LD 2 / High 4 data bits to accumulator.
WPM / Write to PRAM
LD 3 I Low 4 data bits to accumulator.
WPM
FIM OP 224
SRC OP / Select ROM port 14.
CLB
WRR / Turn off write enable.
BBL 0 / Return to program

/
/
COM 1 FIM OP 0

SRC OP / Select DATA RAM chip 0 register o.
RDI / Read mid-dle 4 bits of address.
XCH 10 / Save in register 10.
RD2 / Read lowest 4 bits of address.
XCH 11 / Save in regi ster 11.
RDO / Read highest 4 bits of address.
FIM OP 240
SRC OP I Select ROM port 15.
WRR / Write high address
SRC SP / Write middle + low address
BBL 0 I Return to STR or FCH

/
/
FCH JMS COM / Routine COM sets up PRAM address.

W-FM /PAAM data to ROM port 14.
WPM I_PRAM data to ROM port 15 •
FIM OP 224
SRC OP / Select port 14.
RDR / Read to accumulator.
XCH 2 / -Save in register 2.
INC {)

SRC OP / Select port 15.
RDR / Read to accumulator
XCH 3 . / Save in register 3.
BBL 0 ! Return to progra m

3~£4

3. 12 PSEUDO INSTRUCTION

This section describes the functions of the pseudo instruction recognized by the
assembler. The pseudo instruction is indicated by the character = (equal sign)
written in the code field of an assembler statement. No executable object code
is generated by the pseudo instruction. It acts merely to provide the assembler
with information to be used subsequently while generating obj ect code.

3. 12. 1 EQUATE FUNCTION

Format:

LABEL CODE OPERAND

SYM - EXP
'-v-' "-v-'"

L L- An expres~ion
Required symbol

Des cription:

The symbol SYM is assigned the value EXP by the a.ssembler. Whenever the symbol
SYM is encountered subsequentlY by the assembler, this value will be used.

Example: The statements

CZ = 10

JeN CZ ADDR

are equivalent to the statement

TCN 10 ADDR

The statements .

DAT = 5

LDM DAT

will load the value 5 into the accumulator.

3-65

3. 12. 2 ORIGiN FUNCTION

Format:

LABEL CODE OPERAND

~ - ~p

L ,--------~ An expression

Blank label field

Description:

The assembler's location counter I is set to the value of EXP. The next machine
instruction or data byte-generated will be assembl~d at address EXP.

NOTE: The equal sign may appear in the first position of the line.

Example:

LABEL

LO,

CODE

o
rUN
=
LDM

OPERAND

LO
512
7

The rUN instruction will be assembled in locations 0 and 1 of ROM or program
RAM. The location counter is ihen set to 512 I causing the LDM instruction to be
assembled at location 512, the first location on the second memory pa-ge. The rUN
will therefore cause a jump to location 512.

NOTE: The pseudo instruction also makes -it possible to assemble constant data
values into a program. For a description of how to do this, see Section 3.2.2.

3-66

4.0 PROGRAMMING TECHNIQUES

This section describes some techniques which may be of help to the programmer.

4.1 CROSSING PAGE BOUNDARIES

As described in Section 2 I programs are held in either ROM or program
RAM I both of which are divided into pages. Each page consists of 256 8 -bit
locations. Addresses 0 through 255 comprise the first page,256-511 comprise the
second page I and so on.

In general I it is good programming practice to never allow program flow to cross .
a page boundary except by using a TUN or TMS instruction. The following example
will show why this is true. Suppose a program in memory appears as below:

Decimal Addres s

o

200

253
255

PI

PAGE 0

LDM

TCN 12
XCH

o

PI
3

If the accumulator is non-zero when the TCN is executed, program control will be
transferred to location 200, as the programmer intended.

Suppose now that an error discovered in the program requires that a new instruc­
tion be inserted somewhere between locations 200 and 253. The program would
now appear as follows:

4-1

Decimal Address

o

200

254

256

456

511

PI

PAGE 0

LDM 0

TCN 12 PI I--

PAGE 1

XCH 3

:~

Since the TCN is now located in the last two locations of a page I it functions
differently. Now if the accumulator is non-zero ~Nhen the TCN is executed I program
control will be erroneously transferred to location 456, causing invalid results.

Since both the TUN and TMS instructions use 12-bit addresses to directly address
locations on any page of memory I only thesE instructions should be used to eros s
page boundaries.

4-2

4.2 SUBROUTINES

Frequently I a group of instructions must be repeated many times in a program.
The group may be written lin" times if it is needed at lin II different points in a
program I but better economy can be obtained by using subroutines.

A subroutine is coded like any other group of assembly language statements, and
is referred to by its name, which is the label of the first instruction. The program­
mer reference s a subroutine by writing its name in the operand field of a JMS
instruction. When the JMS is executed I the address of the next sequential instruc-
tion after the JMS is written to the address stack (see Section 2.4), and
program execution proceeds with the first instruction of the subroutine. When
the subroutine has completed its work I a BBL instruction is executed, which loads
a value into the accumulator and causes an address to be read from the stack into
the program counter I causing program execution to continue with the instruction
following the JMS. Thus ,one copy of a subroutine may be called from many
different points in memory, preventing duplication of code. Note also that since
the address stack and the JMS instruC?tion use l2-bit addresses, calling programs
and subroutines may be located anywhere in ROM or control program RAM (they
need not be on the same page in memory) .

Example: Subroutine IN increments an 8 bit number passed in index register 0
and 1 and then returns to the instruction following the last JMS instruction executed.

LABEL

IN,

NC,

CODE ---
XCH
lAC
XCH
JCN
INC
BBL

OPERAND

1

1
10 NC
o
o

Assume IN appears as follows:

/ Reg 1 to Accum.
/ Increment value and produce carry
/ Restore reg 1.
/ Jump if Carry = o.
/ Increment high order 4 bits
/ Return

4-3

Arbitrary Memory
Address
(Hex)

3CO JMS IN
3C2

401
403

JMS IN

~
I~~---/'-----~

When the first JMS is executed I address 3C2H is written to the address stack I and
control is transferred to IN. Execution of the BBL statement will cause the addres s
3C2H to be read from the stack and placed in the program counter I causing execu­
tion to continue at 3C2H (since the JMS occupies two bytes) .

Address Stack
Before JMS

ADR 1

ADR 2

ADR 3

Stack While IN
Is Executing

3C2H

ADR 2-
ADR 3

_Stack After BBL
Is Perfromed.

3C2 H

ADR 2

ADR 3

When the second JMS is executed I address 403H is written to the stack I and control
is again transferred to IN. This time I the BBL will cause execution to resume at
403H.

Note that IN could have called another subroutine during its execution I causing
another address to be written to the stack. This can occur only up to three levels I

however I since the stack can hold only three addres ses • Beyond this point I
some addresses will be overwritten and BBLls will transfer program control to
incorrect addresses.

4-4

4.3 BRANCH TABLE PSEUDOSUBROUTINE

Suppose a program consists of several separate routines, any of which may
be executed depending upon some initial condition {such as a bit set in the
accumulator}. One way to code this would be to check each condition sequen­
tially and branch to the routines accordingly as follows:

CONDITION = CONDITION 1 ?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2 ?
IF YES BRANCH TO ROUTINE 2

BRANCH TO CONDITION N

A sequence as above 'is inefficient I and can be improved by using a branch table.

The logic at the beginning of the branch table program computes an index into
the branch table. The branch table itself consists of a list of starting addresses
for the routines to be selected. Using the table index, the branch table program
loads the selected routine's starting addres s into a register pair and executes a
"jump indirect" to that address. For example I consider a program that executes
one of five routines depending upon which bit (possibly none) of the accumulator
is set:

Jump to routine a if accumulator = 0000 B
Jump to routine 1 if accumulator = 0001 B
Jump to routine 2 if accumulator = 0010 B
Jump to routine 3 if accumulator = 0100 B
Jump to routine 4 if accumulator = 1000 B

A program that provides the above logic is given at the end of this section. The
prog!,am is termed a "pseudosubroutine" because it is treated as a subroutine by
the programmer, (i. e. I it appears ju st once in memory) I but it is entered via a
regular "jump" instruction rather than via a JMS instruction. This is possible
because the branch routines control subsequent execution I and will never return
to the instruction following JMS;

4-5

LABEL

ST,

NC,

BTL,

ERR,

MAIN PROGRAM
BRANCH TABLE

PROGRAM

~ -- - - -.------
~

CODE

KBP

NORMAL SUBROUTINE
RETURN SEQUENCE NOT
FOLLOWED BY BRANCH
TABLE PROGRAM.

OPERAND

JUMP ROUTINES

/ Convert Accum to branch table
/ index •

lAC
JeN
DAC
FIM

. I If = 1111 B I ERRO R

CLC
ADD
XGH
JCN
INR
FIN

JIN

0+ RTO
0+ RTI
0+ RT2
0+ RT3
0+ RT4

4 ERR

OP B.TL

1
1
10 NC
o
OP

OP

4-6

/ Jump if lAC produced zero.
/ O.K., restore accumulator.
/ Regs 0 and 1 = addr-es s of
/ branch table.
/ Carry = 0
/ Add index to branch tab-le address
/ Store back in reg 1
/ Jump if no carry
/ If carry, increment reg O.
/ Regs 0 and 1 = address of
/ routine.
I Jump to correct routine.

/ Branch table. Each-entry
/ is an a-bit a-ddress

/ Error handling routine.

NOTE: Since FIM, FIN, and TIN operate with 8-bit addresses, routines ST,
BTL, and RTO through RT4 must all reside in the same page of memory_

If the accumulator held 01 OOB when location ST was reached, the KBP would
convert it to 00 11 B _ The 8 bit addres s at BTL + 3 would therefore be loaded into
registers 0 and I, and the TIN would cause program control to be transferred to
routine RT3_

4-7

4.4 LOGICAL OPERATIONS

This section gives three subroutines which produce the logical operations
II AND II I "0R II

I and "XOR II (exclusive -OR).

4.4.1 LOGICAL "AND"

The AND function of two bits is given by the following truth table:

a 1

oQJTI
lL±J

Since any bit ANDed with a zerC? produces a zero, and any bit ANDed with a one
remains unchanged I the AND function is often used to zero groups of bits.

The following subroutine produces the AND, bit by bit, of the two 4-bit quantities
held in index registers a and 1. The result is placed in register 0, while register
1 is set to O. Index registers 2 and 3 are also us-ed.

For example ,.: if register a = 11 lOB and register 1 = OOllB I register a will be
- replaced with 00 lOB.

1110 B
AND -0011 B

0010 B

The subroutine produces the AND of two bits by placing the bits in the leftmost
position of the accumulator and register 2, respectively I and zeroing the right­
most three bits of the accumulator and register 2,. Register 2 is then added to the
accumulator I and the resulting carry is equal to the AND of the two bits.

4-8

LABEL CODE OPERAND

AND, FIM IP 11 / REG 2 ::: 0, REG 3 = 11

Ll, LDM 0 / GET BIT OF REG 0; SET ACC = 0
XCH 0 / REG 0 DATA TO ACC; REG 0 = 0
RAL / 1st "AND' BIT TO CARRY
XCH 0 / SAVE SHIFTED DATA IN REG 0; ACC={)
INC 3 / DONE'IF REG 3 = 0
XCH 3 / REG 3 TO ACC
JCN 4 L2 / RETURN IF ACC = 0
XCH 3 / OTHERWISE RESTORE ACC AND REG3
RAR / BIT OF REG 0 IS ALONE IN ACC
XCH 2 / SAVE 1 st 'AND' BIT IN REG 2
XCH 1 / GET BIT OF REG 1
RAL / LEFT BIT TO CARRY
XCH 1 / SAVE SHIFTED DATA IN REG 1
RAR / 2ND lAND' BIT TO ACC
ADD 2 / 'ADD' GIVES 'AND' OF THE 2 BITS
JUN Ll / IN CARRY

L2, BBL 0 / RETURN TO MAIN PROGRAM.

4.4.2 LOGICAL "0R"

The OR function of two bits is given by the following truth table:

o 1

:GI8
Since any bit ORed with a one produces a one I and. any bit ORed with a zero
remains unchanged, the OR function is often used to set groups of bits to one.

The following subroutineprodu~es t-he OR, bit by bit I of the -two 4"""bit quantities
held in index registers 0 and 1. The result is place-d in register 0 I while register
1 is set to o. Index registers 2 and 3 are also used.

4-9

For example, if register 0:::: 0100B and register l:::: 0011B, register 0 will be
replaced with 0 I11B.

0100 B
OR 0011 B

0111 B

The subroutine produces the OR of two bits by placing the bits in the leftmost
position of the accumuiator and register 2 I respectively, and zeroing the rightmost
three bits of the accumulator and register 2. Register 2 is then added to the
accumulator. If the resulting carry = I, the OR of the two bits:::: 1. If the resulting
carry :::: 0, the OR of the two bits is equal to the leftmost bit of the accumulator.

LABEL CODE OPERAND

OR, FIM IP 11 I REG 2 :::: 0, REG 3 :::: 11
Ll, LDM 0 I GET BIT OF REG 0; SET ACC = 0

XCH 0 I REG 0 DATA TO ACC; REG 0 :::: 0
RAL lIst 'OR' BIT TO CARRY
XCH 0 I SAVE SHIFTED DATA IN REG 0; ACC::::O
INC ~ I DONE IF REG 3 :::: 0
XCH 3 / REG 3 TO ACC
JCN 4 L2 I RETURN IF ACe :::: 0
XCH 3 I OTHERWISE RESTORE ACC ANDREG3
RAR I BIT OF REG .() IS ALONE IN ACC
XCH 2 I SAVE 1st 'OR' BIT IN REG 2
LDM 0 I GET BIT IN REG 1; SET ACC :::: 0
XCH 1
RAL I LEFT BIT TO GARRY
XCH 1 I SAVE SHIFTED DATA IN REG 1
RAR I 2ND 'OR' 'BIT TO ACC
ADD 2 I PRODUCE THE OR OF THE BITS.
TCN 2 L1 I JUMP IF CARRY = 1 BECAUSE 'ORi ::::l
RAL I OTHERvVISE 'OR' = LEFT BIT OF
TUN Ll I ACCUMULATOR

L2, BBL 0 I TRANSMIT TO CARRY BY RAL

4-10

4.4.3 LOGICAL "XOR" EXCLUSIVE-OR

The XOR (exclusive -OR) function of two bits is given by the following truth
table:

o 1

o ffiB 1

Since the e~clusive OR of two equal bits produces a zero and the exclusive OR
of two unequal bits produces a one, the exclusive OR function can be used to
test two quantities for equality. If the quantities differ in any bit position, a
one will be produced in the result.

The following subroutine produces the exclusive - OR of the two 4-bit quantities
held in index registers a and I. The result is placed in register 0, while register
1 is set to O. Index registers 2 and 3 are also u.sed.

For example if register 0 = OOIIB and register 1 = 0010B, register 0 will be
replaced with OOOlB.

0011 B
XOR 0 010 B

0001 B

, The .s.ubroutine produces the XOR of two bits by placing the bits in the leftmost
POSItlO~ of the accumulator and register 2, respectively, and zeroing the rightmost
three bIts of the accumulator and register 2. Register 2 is then added to the
accumulator. The XOR of the two bits is then equal to the leftmost bit of the
a ccum ula tor. .

4-11

LABEL CODE OPERAND

XOR, FIM IP 11 / REG 2 = 0, REG 3 = 11
Ll, LDM 0 / GET BIT OF REG 0; SET ACC =0

XCH @ / 'REG 0 DATA TO ACC; REG 0=0
RAL / 1ST XOR BIT TO CARRY
XCH 0 / SAVE SHIFTED DATA IN REG 0; ACC = 0
INC 3 / DONE IF. REG 3 = 0

XCH 3 / REG 3 TO ACC

JCN 4 L2 / RETURN IF ACC = O.
XCH 3 / OTHERWISE RESTORE ACC & REG 3

RAR / BIT OF REG 0 IS ALONE IN ACC

XCH 2 / SAVE 1ST XOR BIT IN REG 2

LDM 0 / GET BIT IN REG 1; SET ACC = 0
XCH 1
RAL / LEFT BIT TO CARRY
XCH 1 / SAVE SHIFTED DATA IN REG 1

RAR / 2ND 'XOR1 BIT TO ACC

ADD 2 I PRODUCE THE XOR OF THE BITS

RAL / XOR'= LEFT BIT OF ACCUM; TRANSMIT

rUN Ll / TO CARRY BY RAL.
L2, BBL 0

4-12

4.5 MULTI-DIGIT ADDITION

The carry bit may be u sed to add unsigned data quantities of arbitrary length.
Consider the following addition of two 4-digit hexadecimal numbers:

381 C
+ 69F2

A20E

This addition may be performed by setting the carry bit = 0 I adding the two
low-order digits of the numbers I then adding the resulting carry to the two next
higher order digits I and so on:

r
3
6

A

Carry = 1

8
9

2

Carry = 1

1
F

o

Carry = 0

C
2

E

The following subroutine will perform a sixteen .digit addition I making these assump­
tions:

The two numbers to be added are stored in DATA RAM chip 0 I registers 0 and 1.

The numbers are stored with the least significant digit first (in character 0) .

The result will be stored least significant digit first in register C replacing the
contents of register 1.

Index register 8 will count the number of digits (up to 16) which have been added.

4-13

Register 0

1

2

3

Register 0

AD,

ADl,

OVR,

1

2

3

DATA RAM CHIP 0 BEFORE ADDITION Status Chars.

,---A----..

C 1 8 3 0 0 0 0 0 0 0 0 0 0 0 0

2 F 9 6 0 0 0 0 0 0 0 0 0 0 0 0

DATA RAM CHIP 0 A;FTER ADDITION

C 1 8 3 0 0 0 0 0 0 0 0 0 0 0 0

E 0 2 A 0 0 0 0 0 0 0 0 0 0 0 0

FIM 2P 0 / REG PAIR 2P -= RAM CHIP 0 OF

/ REG 0
FIM 3P 16 / REG PAIR 3P = RAM CHIP 0 OF

-I REG 1
CLB / SET CARRY = 0
XCH 8 / SET DIGIT COUNTER = 0
SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC 3P / SELECT RAM REG 1
ADM / ADD DIGIT + CARRY TO ACCUMU-

/ LATOR
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHAR. OF RAM

/ REG 0
INC 7 / ADDRESS NEXT CHAR OF RAM

/ REG 1
ISZ 8 ADI / BRANCH IF DIGIT COUNTER

< 16 (NON ZERO)
BBL 0

4-14

When location OVR is reached, RAM register I will contain the sum of the two 16
digit numbers arranged from low order digit to high order digit. {The reason
multi-digit numbers are arranged this way is that it is easier to add numbers
from low order to high order digit, and it is easier to increment addresses than
to decrement them.

The first time through the program loop, index register pair 2 (index register 4
and 5) contains 0 and index register pair 3 (index registers 6 and 7) contains 16,
referencing the first data characters of DATA RAM registers 0 and I, respectively.

On succeeding repitions of the loop, index registers 5 and 7 are incremented,
referen cing sequential data characters, until all 16 digits have been added.

4.6 MULTI-DIGIT SUBTRACTION

The earlY bit may be used to subtract unsigned data quantities of arbitral}' length.
Consider the following subtraction of two 4-digit hexadecimal numbers:

54BA
- 14F6

3FC4

This subtraction may be performed by first setting the carry bit = 1. Then for each
pair of digits, the program must complement the carty bit and perform the subtrac­
tion. By this process I the carry bit will adjust the differences, taking into account
any borrows which may have occurred.

This process applied to the above subtraction proceeds as follows:

(1) Set carry bit = 1.

(2) Complement carry bit. Carry now = O.

(3) Subtract low -order digits:

A = 1010B
6= 1001B

carry = 1

. ..u0100B= 4

4-15

(4) Complement resulting carry. Carry now = O.

(5) Subtract next digits:

B = 1011 B

F = 0000 B

carry = 1

..QjIIOO B = CH

(6) Complement resulting carry. Carry now = 1 ..

(7) Subtract next digits:

4 = 0100 B
4" = 101 1 B

carry = 0

.JLllll1 B = FH

(8) Complement resulting carry. Carry now = 1.

(9) Subtract next digits:

5 = 0101 B
T = III 0 B

carry = 0

.1JOOll B = 3

Thus the correct result, 3FC4H,. is bbtained. The following subroutine will
perform a sixteen digit subtraction, making these assumptions;

As in the example of Section 4. 2 I the two numbers are stored in DATA RAM chip
0, registers 0 and 1 (register 1 containing the subtrahend). The numbers are
stored with the lea st significant digit in character 0, and the result is stored back
into register 1. Index register 8 will count the number of digits (up to 16) which
have been subtracted.

4-16

SB, FIM 2P 0 / REG PAIR 2P ::= RAM CHIP 0
/ REG 0

FIM 3P 16 / REG PAIR 3P ::= RAM CHIP 0
/ REG 1

CLB
XCH 8 / SET DIGIT COUNTER = 0
STC / SET CARRY = 1

SB1, CMC / COMPLEMENT CARRY BIT
SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC 3P / SELECT RAM REG 1
SBM / SUBTRACT DIGIT AND CARRY

/ FROM ACCUMULATOR
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHAR. OF RAM

/ REG 0
INC 7 / ADDRESS NEXT CHAR. OF RAM

/ REG 1
ISZ 8. SBl / BRANCH IF DIGIT COUNTER

/.< 16 (NON-ZERO).
OV, BBL 0

When location OV is reached I RAM register 1 will contan the difference of the two
16 digit numbers. Note that the carry bit from the previous subtraction is com-:
p1emented by the CMC instruction each time through the program loop.

4-17

4. 7 DECIMAL ADDITION

Each 4 bit data quantity may be treated as a decimal number as long as it repre­
sents one of the decimal digits from 0 through 9, and does not contain any of the
bit patterns representing the hexadecimal digits A through F. In order to preserve
this decimal interpretation when perfonning addition, the value 6 must be added
to the accumulator whenever an addition produces a result between 10 and 15.
This is because each 4 bit data quantity can hold 6 more combinations of bits
than there are decimal digits.

The DAA (decimal adjust accumulator) instruction is provided for this purpose.
Also, to permit addition of multi-digit decimal numbers I the DM adds 6 to the
accumulator whenever the carry bit is set indicating a decimal carry from pre­
vious additions. The carry bit is unaffected unless the addition of 6 produces
a carry I in which case the carry bit is set.

To perform the decimal addition:

469
+ 329

798

the process works as follows.

(1) Clear the carry and add the lowest-order digits

9 == 1001 B
9 = 1001B

carry == 0

2..10 0 10B

"'-carry = 1

(2) Perform aDAA operation, which will add 6 to the accumulator. Since no
carry is produced by this operation I the carry bit is left unaffected I
remaining = 1.

4-18

Accum. = 0010 B
6 = 0110 B

Carry = a
~ 1000 B = 8

(3) Add the next two digits.

6 = a 11 a B

2 = 0010 B
Carry = 1

..Qj 1001 B = 9

'carry = a

(4) Perform a DAA operation. Since the accumulator is not greater than 9 and
the carry is not set I no action occurs.

(5) Add the next two digits:

4 = 0100 B
:3 = 0011 B

Carry = a

J2.I a 11 1 B = 7

" a Carty =

(6) Perform a DAA operation. Again, no action occurs. Thus the correct
decimal result 798 is generated in three 4 bit data characters.

A subrout1ne which adds two 16 digit decimal numbers, then, is exactly analagous
to the 16 digit hexadecimal addition subroutine of Section 4.2, and may be pro­
duced by inserting the instruction DAA after the ADM instruction of that example.

4-19

4.8 DECIMAL SUBTRACTION

Each 4 bit data quantity may be treated as a decimal number as long as it repre­
sents one of the decimal digits 0 through 9. The TCS (transfer carry subtract)
and DAA (decimal adjust accumulator) may be used to subtract two decimal numbers
and produce a decimal number. In fact, the TCS instruction permits subtraction
of multi-digit decimal numbers.

The process consists of generating the ten's complement of the subtrahend digit
(the difference between the subtrahend digit and 10 decimal), and adding the
result to the minuend digit. For instance, to subtract 2 from 7, the ten's com­
plement of 2 (l 0-2 = 8) is added to 7, producing 15 decimal which, when truncated
to a 4 bit quantity gives 5 (the required result). If a borrow was generated by
the previous subtraction, the 9' s complement of the subtrahend digit is produced
to compensate for the borrow.

In detail, the procedure for subtracting one multi -digit decimal number from
another is as follows:

(1) Set the carry bit = 1 indicating no borrow.

(2) Use the TCS instruction to set the accumulator to either 9 or 10 decimal.

(3) Subtract the subtrahend digit from the accumulator, producing either
the 9' s or 10' s complement.

(4) Set the carry bit = o.

(5) Add the minuend digit to the accumulator.

(6) Use the DM instruction to make sure the result in the accumulator is
in decimal fonnat, and to indicate a borrow in the carry bit if one
occurred.

Save this re suI t •

(7) If there are more digits to subtract, gO to step 2.

Otherwise stop,

4-20"

Example: Perfonn the decimal subtraction

(1) Set ca rlY = 1. '

51
- 38

13

(2) TCS sets accumulator = 101 OB and carry = O.

(3) Subtract the subtrahend digit 8 from the accumulator.

Accumulator = 1 0 lOB
8= 0111 B

-=---CarlY = 1

0010 B

(4) Set carlY = O.

(5) Add minuend digit 1 to accumulator.

Accumulator = 0 0 lOB
1 - 0001 B

earlY = a
JU 0011B = 3

... Carry = a
(6) DAA leaves accumulator = 3 = first digit of result, and' carry = 0,

indicating that a borrow occurred.

(7) TCS sets accumulator = 1001B and carry = o.

(8) Subtract the subtrahend digit 3 from the accumulator.

Accumulator
3"

Carry

1 001 B
11 0 OB

1

011 a B

4-21

(9) Set carry = O.

(10) Add minuend digit 5 to accumulator.

Accumulator = o 1 1 0 B
5 = 0101 B

Cany = 0

..2J 1011 B

"-Carry = 0

(11) DAA adds 6 to accumulator and sets carry = I, indicating that no borrow
occurred.

Accumulator = 1 0 lIB
6 = 0110 B

~ 0 0 0 1 B = 1 = Second digit of result.

" Carry = 1

Therefore the result of subtracting 38 from 51 is 13.

The following subroutine will subtract one 16 digit decimal number from another I
using the following assumptions.

The minuend is stored least significant digit first in DATA RAM chip 0 I register
O.

The subtrahend is stored least significant digit first in DATA RAM chip 0 I register
1.

The result will be stored lea st significant digit first in DATA RAM chip 0 I register
o I replacing the minuend.

Index register 8 will count the number of digits (up to 16) which have been sub­
tracted.

4-22 '

SD, FIM 2P 0 / REG PAIR 2P = RAM CHIP 0, REG 0
FIM 3P 16 / REG PAIR 3P = RAM CHIP 0

/ REG 1
CLB
XCH 8 / SET DIGIT COUNTER = 0
STC / SET CARRY = 1

SDl, TCS / ACCUMULATOR = 9 OR 10
SRC 3P / SELECT RAM REG 1
SBM / PRODUCE 9's OR la's

/ COMPLEMENT
CLC / SET CARRY = 0
SRC 2P / SELECT RAM REG 0
ADM / ADD MINUEND TO ACCUMU-

/ LATOR
DM / ADJUST ACCUMULATOR
WRM / WRITE RESULT TO REG 0
INC 5 / ADDRESS NEXT CHAR. OF RAM

/ REG 0
INC 7 / ADDRESS NEXT CHAR. OF RAM

/ REG 1
ISZ 8 SDI / BRANCH IF DIGIT COUNTER <. 16

I (NON -ZERO) •
DN, BBL 0

4-23

4.9 FLOATING POINT NUMBERS

The structure of DATA RAM chips is fully described in Section 2.3.3.
One use to which a 16-character DATA RAM register and its 4 status characters
can be put is to store a 16 digit decimal floating point number.

Such a number can be represented in the form:

+ .DDDDDDDDDDDDDDDD * 10+ EE

The 16 data characters of a RAM register could then be used to store the digits
of the number I two status characters could be used to hold the digits of the
exponent I while the remaining two status characters would hold the signs of the
number and its exponent.

If a value of one is chosen to represent minus and a value of zero is chosen to
represent plus, status characters 0 and 1 hold the exponent digits I status char­
acter 2 holds the exponent sign and status character 3 holds the number's sign,
then the number

+.12345.67890812489 x 10-
23

would appear in a RAM register as follows:

RAM REGISTER 0
RAM REGISTER 1
RAM REGISTER 2
RAM REGISTER 3

1 2 3 4 5

RAM CHIP

6 7 8 9 0 8 1 2 4 8 9 2 3 1 0

~-----------------v------------------~~
DATA CHARACTERS

4-24

Status
Characters

APPENDIX "A"

INSTRUCTION SUMMARY

This appendix provides a summary of 4004 instructions. Abbreviations used are as
follows:

ABB REVIATION

A

An

ADDR

carry

PC

peR

PCL

PCM

RAM

REG

RO

Rl

ROM

RP

STK

value

DESCRIPTION

The accumulator.

Bit n in the accumulator, where n may have
any value from 0 to 3.

A read-only memory or program random-access
memory address.

The carry bit.

The 12 bit Program Counter.

The high-order 4 bits of the Program Counter.

The low-order 4 bits of the Program Counter.

The middle 4 bits of the Program Counter.

Random-access memory.

Any index register from 0 to 15 ..

Index register 0 ~

Index register 1.

Read-only memory.

Any index register pair from .op to 7P.

The address stack.

The number obtained by comp1ementing each bit
of value.

A-I

(Continued) :

ABBREVIATION

X:Y

[]

()

DESCRIPTION

The value' obtained by concatenating the values
X and Y.

An optional field enclosed by brackets.

Contents of register or memory enclosed by
parentheses.

Replace value on left hand side of arrow with value
on right hand side of arrow.

A-2

A.I INDEX REGISTER INSTRUCTIONS

Format:

[LABEL I] FIN RP

-- or--

(LABEL ,] INC REG

Code Description

FIN (RP) ---- ({ PCR: RO: Rl)) Load RP with 8 bits of ROM data
addressed by register pair O.

INC (REG) --- (-REG) + 1 Increment register REG.

A.2 INDEX REGISTER TO ACCUMULATOR INSTRUCTIONS

Format:

[LABEL,] CODE REG

Code Des cription

ADD - (A) --- (A) + (REG) + (carry) Add REG plus carry bit to accumu-
lator.

SUB (A) --- (A) + (REG) +(carry) Subtract REG from a ccumu lator
with borrow.

LD (A) .. (REG) Load accumulator from REG •

.... •
XCH (A) (REG) Exchange -contents of accumulator

and REG.

A-3

A.3 ACCUMULATOR INSTRUCTIONS

Format:

Code

CLB

CLC

lAC

CMC

CMA

RAL

RAR

TCC

DAC

TCS

STC

DM

KBP

[LABEL] CODE

(A)---- a I (carry) --- 0

(carry)--- a

(A)--- (A) + 1

(carry) ---- (carry)

(A)---- (10

Description

Clear both accumulator and carry.

I

Clea r carry.

. Increment accumulator.

Complement carry.

Comp"lement each bit of the accumu-
lator.

Rotate accumulator left
through carry.

An ---- A 1 (carry) ~AO' .A3--- (carry) n+ , .
Rotate accumulator right
through carry.

(A)--'- 0 . AO--'- (carry), (cair.y)~ 0 Transmit the value of the
carry to the accumulator l

then clear carry.

(A)-.-(A) -1

If (carry) = 0 I (A) --- 9
10

If (carry) = 1, (A)~IOIO

(carry)---- 0

(c."'-arry) --- 1

If(A) > 9
10

or (carry)
= 11 (A).....-(A) + 6

Decrement accumulator

Adjust accumulator for decimal
subtract.

Set carry.

Adjust accumulator for decimal
add.

Convert accumulator from I of n code
to binary value --_ ____________ ...u ... _________ I!IIInIil~.$H.~~1~'I::~;::iII .. ____ '"

A-4

A.4 IMMEDIATE INSTRUCTIONS

Format:

[LABEL,] FIM RP DATA

-- or--

[LABEL,] LDM DATA

Code Description

FIM (RP)~DATA Load 8 bit immediate DATA into register
pair RP.

LDM (A) -lIE- DATA Load 4 -bit immediate DATA into the
accumulator.

A.S TRANSFER OF CONTROL INSTRUCTIONS

Format:

(LABEL,] JCN eN ADDR

-- or--

-[LABEL,] JIN RP

-- or--

[LABEL,] ISZ REG

-- or--

{LABEL,] JUN ADDR

A-S

Code Description

JUN (PCH:PCM:PCL)-'-ADDR Jump to location ADDR.

JIN (peM: PCL) ----(RP) Jump to the address in register
pair RP.

JCN If CN true, (PCM: PCL)--- ADDR Jump to ADDR if condition true.
If CN false, (PL) --- (PL) + 2

ISZ C REG) --- (REG) + 1 Increment REG. If zero, skip.
If re suI t = 0, (PL) --- (PL) + 2 If non zero, jump to ADDR
If result = 1, (PCM: PCL)---ADDR

A.6 SUBROUTINE LINKAGE INSTRUCTIONS

Format:

[LABEL,] JMS ADDR

-- or--

[LABEL,] BBL DATA

Code Description I

JMS (STK) --- (PC) I (PC)---ADDR Call subroutine and push return
address onto stack.

BBL (PC)--- (STK) I (A) ---- DATA Return from subroutine and load
accumulator with immediate DATA.

A-6

A.7 NOP INSTRUCTION

Format:

[LAB EL ,] NO P

Code De scription

NOP ------------------- No operation

A.8 MEMORY SELECTION INSTRUCTIONS

Format:

[LABEL,] SRC RP

-- or--

[LABEL,] DCL

Code Description

.SRC DATA BUS---(RP) Contents of RP select a RAM or
ROM address to be used by I/O
and RAM instructions.

DeL CPU:~A2: Al : AD Select.a particular RAM bank.

A-7

A.9 I/O AND RAM INSTRUCTIONS

Format:

Code

WRM

WMP

WRR

WPM

WRn

RDM

RDR

RDn

·ADM

SBM.

[LABEL,] CODE

(RAM)---A

RAM output port (A)

ROM output port -.;1-(A)

(PRAM) ---(A)

RAM status
character n~(A)

(A)--- RAM

(A) --- ROM input port

(A)~ RAM status
character n

(A)---(A) + (RAM)"
+ (carry)

Description

Write accumulator to RAM.

Write accumulator to RAM output port.

Write accumulator to ROM output port.

Write accumulator to Program RAM.

Write accumulator to RAM status char&cter
n (n = 0, 1 i 2 or 3).

Load accumulator from RAM.

Load accumulator from ROM input port.

Load accumulator from RAM status
character n (n = 0, I, 2, or 3) .

Add RAM data plus carry to accumulator.

(A)--- (A) + (RAM) + (carry) Subtract RAM data from accumulator with
borrow.

A-8

APPENDIX "BII

-- INSTRUCTION MACHINE CODES --

In order to help the programmer examine memory when debugging programs I this
appendix provides the as sembly language instruction represented by each of the
256 possible instruction code bytes.

Where an instruction occupies two bytes I only the first (code) byte is given.

B-1

DEC OCTAL HEX MNEMONIC COMMENT

0 000 00 NOP
1 001 01 ---
2 002 02 ---
3 003 03 ---
4 004 04 ---
5 005 05 ---
6 006 06 --.-

7 007 07 ---
8 010 08 ---
9 all 09 ---
10 012 OA ---
II 013 OB ---
12 014 OC ---
13 015 OD ---
14 016 OE ---
IS 017 OF ---
16 020 10 JeN CN = 0
17 021 11 TeN eN'= 1
18 022 12 TeN eN = 2
19 023 13 JCN eN = 3
20 024 14 JCN CN= 4
21 025 15 JeN eN= 5
22 026 16 JCN CN = 6
23 027 17 JCN CN = 7
24 030 18 JCN eN = 8
25 031 19 JCN eN = 9
26 032 IA JeN CN = 10
27 033 IB JCN CN = 11
28 034 IC JCN CN = 12
29 035 ID JeN CN = 13
30 036 IE JCN eN = 14
31 037 IF JCN CN = 15
32 040 20 FIM OP
33 041 21 SRC OP
34 042 22 FIM 1P
35 043 23 SRC 1P
36 044 24 FIM 2P
37 045 25 SRC 2P
38 046 26 FIM 3P
39 047 27 SRC 3P
40 050 28 FIM 4P

B~2

DEC OCTAL HEX MNEMONIC COMMENT

41 051 29 SRC 4P
42 052 2A FIM 5P
43 053 2B SRC 5P
44 054 2C FIM 6P
45 055 2D SRC 6P
46 056 2E FIM 7P
47 057 2F SRC 7P
48 060 30 FIN OP
49 061 31 JIN OP
50 062 32 FIN IP
51 063 33 TIN IP
52 064 34 FIN 2P
53 065 35 TIN 2P
54 066 36 FIN 3P
55 067 37 TIN 3P
56 070 38 FIN 4P
57 071 39 TIN 4P
58 072 3A FIN 5P
59 073 3B TIN SP
60 074 3C FIN 6P
61 075 3D JIN 6P
62 076 3E FIN 7P
63 077 3F JIN 7P
64 100 40 JUN "
65 101 41 JUN
66 102 42 JUN
67 103 43 JUN
68 104 44 JU,N
69 105 45 rUN
70 106 46 JUN Second hex digit is
71 107 47 JUN > part of jump addres s.
72 110 48 JUN
73 III 49 JUN
74 112 4A TUN
75 113 4B TUN
76 114 4C rUN
77 115 4D TUN
78 116 4E JUN
79 117 4F TUN
80 120 50 JMS
81 121 51 JMS

B-3

DEC OCTAL HEX MNEMONIC COMMENT

82 122 52 JMS "
83 123 53 JMS

84 124 54 JMS

85 125 55 JMS

86 126 56 JMS

87 127 57 JMS Second hex digit
88 130 58 JMS

89 131 59 JMS
is part of jump

90 132 5A JMS
address.

91 133 5B JMS

92 134 5C JMS

93 135 5D JMS

94 136 5E JMS

95 137 SF JMS

96 140 60 INC 0

97 141 61 INC 1

98 142 62 INC 2

99 143 63 INC 3

100 144 64 INC '1

101 145 65 INC 5

102 146 66 INC 6

103 147 67 INC 7

104 150 68 INC 8

105 151 69 INC 9

106 152 6A INC 10

107 153 6B INC 11

108 154 6C INC 12

109 155 6D" INC 13

110 156 6E INC 14

III 15'7 6F INC 15

112 160 70 ISZ 0

113 161 71 ISZ 1

114 162 72 ISZ 2

115 163 73 ISZ 3

116 164 74 ISZ 4

117 165 75 ISZ 5

118 166 76 ISZ 6

119 167 77 ISZ 7

120 170 78 ISZ 8

121 171 79 ISZ 9

122 172 7A ISZ 10

£-4

DEC OCTAL HEX MNEMONIC COMMENT
..

123 173 7B ISZ 11
124 174 7C ISZ 12
125 175 7D ISZ 13
126 176 7E ISZ 14
127 177 7F ISZ 15
128 200 80 ADD 0
129 201 81 ADD 1
130 202 82 ADD 2
131 203 83 ADD 3
132 204 84 ADD 4
133 205 85 ADD 5
134 206 86 ADD 6
135 207 87 ADD 7
136 210 88 ADD 8
137 211 89 ADD 9
138 212 8A ADD 10
139 213 88- ADD 11
140 214 8e." ADD 12
141 215 8D .~

i
ADD 13

142 216 8E "' ADD 14 -:

143 217 8F ADD 15
144 220 90 SUB 0
145 221 91 SUB 1
146 222 92 SUB 2
147 223 93 f SUB 3
148 224 94 " SUB 4
149 225 95 j SUB 5
150 226 96 SUB 6
151 227 97 SUB 7
152 230 98 SUB 8
153 231 99 SUB 9
154 232 9A SUB 10
155 233 9B SUB 11
156 234 9C SUB 12
157 235 9D SUB 13
158 236 9E SUB-" 14
159 237 9F SUB 15
160 240 AD LD D
161 241 Al LD 1
162 242 A2 LD 2
163 243 A3 LD 3

B-S

DEC OCTAL HEX MNEMONIC COMMENT

164 244 A4 LD 4

165 245 AS LD 5

166 246 A6 LD 6

167 247 A7 LD 7

168 250 A8 LD 8

169 251 A9 LD 9

170 252 AA LD 10

171 253 AB LD 11

172 254 AC LD 12

173 255 AD LD 13

174 256 AE LD 14

175 257 AF LD 15

176 260 BO XCH 0

177 261 Bl XCH 1

178 262 B2 XCH 2

179 263 B3 XCH 3

180 264 B4 XCH 4

181 265 B5 XCH 5

182 266 B6 XCH 6

183 267 B7 XCH 7
184 270 B8 XCH 8

185 271 B9 XCH 9

186 272 BA XCH 10

187 273 BB XCH 11

188 274 BC XCH 12

189 275 BD XCH 13

190 276 BE XCH 14

191 277 BF XCH 15

192 300 CO BBL 0

193 301 Cl BBL 1

194 302 C2 BBL 2

195 303 C3 BBL 3

196 304 C4 BBL 4

197 305 C5 BBL 5

198 306 C6 BBL 6

199 307 C7 BBL 7

200 310 C8 BBL 8

201 311 C9 BBL 9

202 312 CA BBL 10

203 313 CB BBL 11

204 314 CC BBL 12
'.i!~~

B-6

DEC OCTAL HEX MNEMONIC COMMENT

205 315 CD BBL 13

206 316 CE BBL 14

207 317 CF BBL 15
208 320 DO LDM 0
209 321 Dl LDM 1
210 322 D2 LDM 2

211 323 D3 LDM 3
212 324 D4 LDM 4
213 325 D5 LDM 5
214 326 D6 LDM 6
215 327 D7 LDM 7
216 330 D8 LDM 8
217 331 D9 LDM 9
218 332 DA LDM 10
219 333 DB LDM 11
220 334 DC LDM 12 I

221 335 DD LDM 13
222 336 DE LDM 14
223 337 DF LDM 15
224 340 EO WRM
225 341 E1 WMP
226 342 E2 WRR
227 343 E3 WPM
228 344 E4 WRO
229 345 E5 WR1
230 346 E6 WR2
231 347 E7 WR3
232 350 E8 SBM
-233 351 E9 RDM
234 352 EA RDR
235 353 EB ADM
236 354 EC RDO
237 355 ED RDI
238 356 EE RD2
239 357 EF RD3
240 360 FO CLB
241 361 Fl CLC
242 362 F2 lAC
243 363 F3 CMC
244 364 F4 CMA
245 36-5 F5 RAL

B-1

DEC OCTAL HEX MNEMONIC COMMENT

246 366 F6 RAR
247 367 F7 TCC
248 370 F8 DAC
249 371 F9 TCS
250 372 FA STC
251 373 FB DAA
252 374 FC KBP
253 375 FD DCL
254 376 FE
255 377 FF

B-8

APPENDIX "C"

-- ASCn TABLE--

The 4004 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code
with the parity (high order) bit always reset.

Graphic or Control

NULL
SOM
EOA·
EOM
EOT
WRU
RU
BELL
FE
H.Tab
Line Feed
V. Tab
Fonn
Return
SO
SI
DCO
X-On
Tape Aux. On
X-Off
Tape Aux. Off
Error
Sync
LEM
SO .
Sl
S2
83
S4
S5
86
S.7

C-l

ASCII (Hexadecimal)

00
01
02
03
04
OS
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18

'19
lA
IB
lC
ID
lE
IF

Graphic or Control ASCII Hexadecimal

ACK 7C
Alt~ Mode

,"
7D

Rub out 7F
. 1 21

" 22
23
$ 24
% 25
& 26

27
(28
) 29
'It 2A
+ 2B

2C
" 2D-

2E •
/ 2F

3A . 3B
, ,
(3C

= . 3D.
') 3E

? 3F
'['5B

I 50
J SD
It- SE
(- SF
@ 40
blank, 20

0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

, .

C-2

Graphic or Control

A
B
C
n·
E
F
G

., H

I
J
K
L
M
N
o
P
o
R
S
T
U
V
W
X
y,

Z

ASCII Hexadecimal

4'1
42
43
44

·45
. 46
·47

48
49
4A
4B
4C
4D
4E
4F

... 50

51
52 .
53

. 54
55
56
57
58

.59
SA

C-3

'." .

APPENDIX liD"

-- BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES --

D-l

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

1 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10

2 03 04 OS 06 07 08 09 OA 08 OC 00 Of OF 10 11

3 04 05 06 07 08 09 OA OS OC OD OE OF 10 11 12

4 OS,,' 06 07 08 09 OA 08 OC OD oe OF 10 11 12 13

5 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14

6 07 08 09 OA OB ex: 00 OE OF 10 11 12 13 14 15

7 08 09 OA OB DC 00 OE OF 10 11 12 13 14 15 16

8 09 OA OB ex: 00 OE OF 10 11 12 13 14 15 16 17

9 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18

A OB DC 00 Of OF 10 11 12 13 14 15 16 17 18 19

8 ex: 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA

C 00 DE OF 10 11 12 13 14 15 16 17 18 19 lA 18

0 OE OF 10 11 12 13 14 15 16
I

17 18 19 lA 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 lA lB lC 10

F 10 J1 12 13 14 15 16 17 18 19 lA 18 lC 10 1E

MUL l'IPLICATION TABLE

1 2 3 4 5 6 7 8 9 A 8 C 0 E F

2 04 06 OB OA ex: DE 10 12 14 16 18 lA lC IE

3 06 09 OC OF 12 15 18 18 IE 21 24 27 2A 20

4 08 ex: 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 OA Of 14 19 IE 23 28 20 32 37 3C 41 46 48

6 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 lC 23 2A 31 38 3F 46 40 54 5B 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 20 36 3F 48 51 5A 63 6C 75 7E 87

A 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96

8 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 84

0 lA 27 34 41 4E 58 68 75 82 8f 9C A9 86 C3

E lC 2A 38 46 54 62 70 7E BC 9A A8 86 C4 02

F IE 20 ' 3C 48 SA 69 78 87 96 AS 64 C3 02 El

D-2

POWE RS 0 F nvo

tot.o
2 I 0.5
~. 2 0.25
8 3 0.12'

16 4 0.062'
32 5 0.031 2'
64 6 0.015 6ZS

128 7 0.007 812 S

256 8 0.003 9'06 25
512 , 0.001 953 125

I 024 1O 0.000 976 S61 5
2 0.48 " 0.000 488 281 25

.096 12 0.000 2-« 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 OJ, 156 25
32 768 tS 0.000 030 511 578 125

65 536 \6 0.000 015 258 789 062 5
131 072 '7 0.000 007 629 394 531 25
262 1'4 18 0.000 (0) 814 691 265 625
52. 288 IV 0.000 001 907 3.118 632 812 S

, 0.48 576 ~ 0.000 000 953 674 31' 406 25
2 097 152 'I 0.000 000 '76 817 158 X>J 125
4194m 22 . 0.000 000 238 .18 579 101 562 5
• 388 609 23 0.000 000 119 209 m 5:)() 781 25

I, m 21, 24 0.000 000 OS9 6().C 6« n5' 390625
33 S5-4 '32 25 0.000 000 029 B02 322 387 1)95 312 5
67 lOS U4 26 0.000 000 01. 9()1 161 193 8~] 656 .15

134 217 728 27 0.000 OOQ 001 "SO sao 596 923 828 12S

268 .3S 456 28 0.000 000 003 n5 29() 298 461 "".062"
536 870 '12 29 0.000 000 001 862 645 149 230 9S7 031 2'

I 073 i'4I 824 30 0.000 000 000 931321 57. 61S .78 sa 625
J 147 483648 31 0.000 000 000 465 661 281 307 739 257 812 S

4 294 967 296 32 0.000 000 000 732 830 6-43 6.53 ~9 628 9Or6 2'
• 589 934 592 33 0.000 000 000 116 o4lS 311 826 934 814 "53 125

11 179 869 1M ~ 0.000 000 000 058 207 ~., 9\3 467 407 226 562 5
3-4 3Sf 738 368 3l 0.000'000 000 029 103 83 ... 56 733 703613 281 25

68 7" 476 736 36 0.000 000 000- 014 551 '1.5 229 366 as, 806 6.&0 625
137 438 953 412 31 0.000 000 000 007 275957 614 183 425 903 320 312 5
274 8n 906 9« 38 0.000 000 coo 003 631 978 807 091 712 951 660 156 25
"'9 75S 813 888 39 0.000 000 000 001 818 989 403 545 856 475 Bla 078 U5

1 099 SII 627 n6 40 0.000000 000 000 909 "'" 701 777 928 217 915 039 062 5
2 199 023 2j5 552 41 0.000 000000 OOJ 45-4747350 886 0464·118 95751' 53125
4 398 ~ 511 104 42 0.000 000 000 000 227 373 675 U3 232 OS9 478 159 765 625
e 796 093 022 208 "3 0.000 000 ClOO 000 113 686 837 721 616 029 139 379 882 812 S

17 592 ,~ 0« 416 « 0.000 000 000 000 056 843 418 860 800 014 869 689 941 406 25
351M 372 088 832 H 0.000 000 000 000 028 421 709 430 404 007 434 8 •• 970 703 US
10 368 7« 177 664 46 0.000 000 000 000 014 210 e54 715 202 003 717 422 .. es JSI 562 5

140 737 "S8 355 328 41 il.OOO 000 OOR 000 007 105 "21 351 601 001 858 711 242 675 78\ 25

281 47.c 976 710 656 "8 0.000 000 000 000 003 552 713 678 800 SOO 929 355621 337 890 625
562 949 953 421 312 4' 0.000 000 000 000 OOt 776 356 B39 400 250 4604 677 810 668 945 312 5

I 125 899 906 8.t2 6H so 0.000 000 000 000 000 88B 178 419 700 125232 339905 334 .72 656 25
2 251 799 813 695 248 51 0.000 000 000 000 000 4 .. 089 209 850 062 616 169 .52 667 236 328 I2S

.c 503 599 627 370 496 52 0.000 000 000 000 000 222 0.' 604 925031 309 oe4 726 33J 618 164 062 5
9 007 199 25-4 740 992 53 0.000 000 000 000 000 III 022 302 462 515 65. 042 l6J 166 809 062 031 2S

18 014 398 509 ~81 984 5. 0.000 000 000 000 000 05S 511 151 231 257 827 021 181 583".1104 5·" 015 625
36 o'a 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 S07112 5

n 051 594 031 927 936 56 0.000 000 000 000 000 013 877 787 807 81. 456 755 295 395 851 135 253 906 2S
l.e4 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 9()3 907 228 377 6~7 697 925 567 626 '5l 125
2~ 230 376 151 '711 744 58 0.000 000 (tOO 000 000 003 "69 446951 953614 18e 823 9.c8 962 783813 476 562 5
576 460 752 303 423 488, 59 0.000 000 000 000 000 001 734 723 "75976 80] 09 .. 4" 924.8\ 391 906 738 281 25

, 152 921 S04 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 40J 5-47 205 962 2.0 695 953 369 1.0 625
2 305 9.e3 009 213 693 952 6t 0.000 000 000 000 000 000 .el3 680 868 994 201 773602 981 120 ~7 916 684 510 312 5
.c 611 686 018 "27 381 90. 62 0.000 000 000 000 000 000 216 8.(0 4304 491 100 886 eol 490 560 173 988)"2 21' 156 25
t 223 311 036 ~4 115 IlO8 6l 0.000 000 ClOG 000 (100 000 101 420211 241 5SO 44J 400 14" .210 OM "4 171 142 57. 125

D-3

3

23

163

OEO

8AC7

, TABLE or POWEPS or SIXTEEN 1 0

16"

1

16

256

4 006

65 536

I 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

099' 511 '627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

" 1~"
o 0.10000 00000 00000 00000 x 10

0.62500 00000 00000 00000 x .10- 1

2 0.39062 50000 00000 00000 x 10-2

3 0.24414 06250 00000 00000 x '10-3

4 0.15258 78906 25000 00000 x 10-
4

5 0.95367 43164 06250 00000 x 10.6

6 0.59604 64477 53906 25000 x 10-
7

7 0.37252 90298 46191 40625 x 10-8

8 0.23283 06436 53869 62891 x 10-9

9 0.J4551 91522 8~668 51807 x 10. 10

10 . 0.90949 47017 72928 23792 x 10. 12

11 0.56843 41886 08080 14870 x 10- 13

12 0.35527 J3678 80050 09294 x 10. 14

13 0.22204 46049 25031 30808 x 10- 15

14 0.13877 78780 78144 56755 x 10. 16

15 0.86736 17379 88403 54721 x 10. 18

TAB I ,. or POWER::> or 1016

2

17

ES

916

5AF3

S07E

8652

4578

8683

2304

F

98

5F5

389A

5408

4876

04A5

4E72

107A

A4C6

6FCI

5D8A

A764

89E8

10"

A

64

3ES

2710

86AO

4240

9680

E 100

CAOO

E 400

E SOO

1000

AOOO

4000

8000

0000

0000 .

0000

0000

"
o I~OOO 0000 0000 0000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

D-4

0.1999

0.2 8F 5

0.4189

0.6808

O.A7C5

0.10C6

0.IA07

0.2 AF 3

0.4 4B 8

0.6 OF 3

O.AF E B

0.1197

0.IC25

0.2009

0.480E

9999

C2SF

3748

88AC

AC47

F 7 AD

F 29A

IOC4

2FAO

7F67

FFOB

9981

e268

370D

8E78

0.734A eASF

0.8877 AA32

0.127'2 5001

0.1083 C94f

9999

5C28

C6A7

710e

1847

B 5E 0

BCAF

6118

9B5A

5EF6

(824

20E A

4976

4257

9058

6226

36A4

024 J

8602

999A

F5e3 x

EF9E x

8296 x

8423 x

8037 x

4858 x

73BF x

52(e x

EADF x

AAFF x

1119 x

81C2)(

3604)(

566D x

FOAE x

8449 x

ABAI x

AC35 x

16- 1

16- 2

J6- 3

16- 4

16-4

16-5

16-6

16-7

16- 8

16~9

16-9

16- 10

16 -11

16- 12

16- 13

16- 14

16- 14

16- 15

HEXADECIMAL·DECIMAL INTEGER CONVERSIOr~
The table below proyldes (or direct conversions betweon hexo- ,
decimal Integers.>ln the range O-FFF and decImal Integers In
the range 0-4095. For eorlY.rslon of largt"r Integer., 'he '
table values may be added to the following figures:

Hexadecimal DecJma! Hexadecimal Decimal - •
OIOVO 4096 20000 131072
02000 8 192 30000 196608
03000 12288 40000 262 144
04 000 16384 50000 327660
05000 20480 60000 . 393216
06 000 24576 70000 458752
07000 28672 80000 524 288
08000 32768 90000 589824
09000 36 864 AOOOO 655 360
OA 000 40960 80000 7208%
OB 000 45056 . co 000 786 432
OC 000 49 152 00000 851 968
00000 53248 EO 000' 917504
OE 000 57344 FO 000 983040
OF 000 61440 100000 1 048576
10000 65536 200000 2097 152
11 -000 69632 . 300 000 . 3 145728
12000 73728 ' 400 000 ' 4 194304
13000 77824 500000 5 242 880
14000 81 920 . 600 000 6 291 456
15 000, 86 016 700000 '1,340032
16000 90 112 aoo 000 8388608
17000 94208 900000 9437 164
t8000 98304 AOO 000 10 485 760
19000 102400 BOO 000 11 534336
lA 000 106 496 COO 000 12582912
18000 110592 000000 13631 408
lC 000 114668 Eoo 000 14 680 ()6.4

10000 118784 FOO 000 IS 72861$0
1E 000 122 800 1-000000 16777 216
IF 000 126 976 2000 000 33554432

0 1 2 3 4 S 6 7 8 9 A 8 C 0 E F
,---

000 0000 0001 0002 0003 0004 0005 0006 0007 0000 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
070 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 ()().i2 0043 00« 0045 0046 0047
030 0().i8 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

O~O 0064 0065 0066 0067 0068 <>ru9 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0001 OOB2 0083 0084 0085 0006 0087 0088 - nOB9 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 017) 0172 0173 0174 0175
OBO. 0176 0177 0178 0179 0160 01BI 0)82 0183 0184 0185 0186 0187 0188 0189 0190 0191

oeo 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
OD<> 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 02)9 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 023-4 0235 0236 0237 0236 0239
Of 0 0240 0241 0242 02.3 0244 0245 '0246 0241 0248 0249 0250 0251 0252 0253 0254 0255

D-5

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 I 2 3 4 5 6 7 8 9 A 8 C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0289 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 03tO 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 032" 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 034J OJM 03-45 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0336 0357 0359 0359 , 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 03704 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 a.. 06 0407 0.(08 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 ()418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
IBO 0432 0433 0434 0435 ().436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0440 0447

lCO 04-48 0449 ()4S0 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0491 ()493 0494 0495
IFO 0496 ().497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 051~ 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 • 0546 0547 05-48 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 ()568 056~ 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 . 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 " 0612 0613 0614 9615 ~16 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q6JO 0637 0638 0639

280 0640 0641 0642 0643 0644 06-45 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 01>63 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 069 .. 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 Oll3 0714 0715 ' 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0126 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0/43 0744 0745 0746 0747 ," 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

... ~ ..

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0640 0841 0842 0843 0844 0845 OW> 0847
350 0848 0849 0850 0851 0852 0B53 0854 0B55 0856 OBS7 OSS8 0859 0860 086\ 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

j

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 091 I
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
JOO 0976 0977 0978 0979 0980 0981 0982 0903 09&4 0985 0986 0987 0988 0989 0990 0991
JEO 0992 0993 0994 0995 0996 0997 0998 0999 1000 fOOl 1002 1003 1004 1005 1006 t007
JFO l00S 1009 1010 1011 lOl2 1()13 1014 1015 1016 1017 lOIS lO19 1020 102l t022)023

D-6

HEXADEClMAL- DECIMAL INTEGER CONVERSION (Cont.)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 105B 1059 1060 1061 1062 1063 1064 1065 1066 1067 I06B 1069 1070 1071

430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 . 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

460 1120 1121 1122 1123 1124 1125 1126 1127 112B 1129 1130 1131 ·1132 1133 1134 1135
470 1136 1137 1138 "39 1140 1141 1142 1143 1144 1145 1146. 1147 1148 \149 1150 1151

\

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193. ,1194 1195 1196 1197 1198 1199
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

ACO 1216 1217 1218 ·1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4fO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 128-i 1285 12M 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 . 1308 1309 1310 1311
520 1312 1313 \314 1315 1316 1317 1318 1319 1320 1321 1322 1323 " 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

..• 5.:4~ \344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550. 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1364 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 ·1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1.-i5S 1459 1460 1461 1462 1463 1464 1465 1466 1467· 1468 1469 . 1470 1471

I,'

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 14Bl 1482 1483 ·1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 .1517 1518 1519

5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 153B 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 15511 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

620 1568 1569 1570 15it 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

630 1584 1585 1586 1581 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 160B 1609 1610 1611 1612 1613 1614 1615

650 16\6 1617 16J8 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656· 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
':'

D-7

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 ·1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160. 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 .2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

aco 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
BEO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2109 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 23M 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 243.~ 2435 2436 2437 2438 2439 2440 2441 2442 24-4·3 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9(0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 7511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2516 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

""~WII d!I.-!.\lf'~" all: illj~.,~~

D-8

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)
. '

0 , 2 3 4 5 6 7 8 9 A B ._ C 0 E r-

AOO 2560' 2561 2562 2563 256"4 256.S 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 : 2620 2621 2622 2623

A40 2624 2625 2626 2627 i 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 . 2733 2734 2735
ABO. 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 277i 2772 2773 2774 2775 2776 2777 2778 2779 - 2780 2781 2782 2783
AEO 2784 2785 2796 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2007 2808 2809 2810 2811 . 2812 2813 2814 281S

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2930 2831
BIO 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2960 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 ~872 2873 2874 2875 2876 ·2877 2878 2879

\
B40 2880 2881 2882 2883 2884 2885 2886 2e87 2888 2889 2890 2891 2892 2893 2894 2895
B50 ?896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 . . 2924 2925 2926 2927
870 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 295" 2955 ·2956 2957 2958 2959
890 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 29U 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 299.9 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 301t 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 30'~8 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BfO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3~6 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 30B3 3084 3065 3086 3087
C10 J088 3089 3090 3091 3092 3093 3094' 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3 I t1 3112 3113 31U 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132' 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 316i 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 318-1 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191. 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 ~ 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
ceo 3248 3249 3250 3251 3252 3253 3254 ·3255 3256 3257 3258 3259 3260 3261 3262 3263

ceo 3264 3265 3266 3267 3268 3269 3270 !2;1 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3797 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 331 I
efO 3312 3313 3314 3315 33;6 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

D-9

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont.)

0 I 2 3 .. 5 6 7 8 "9. A 8 C 0 E F

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 .3357 3358 3359
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 33B9 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3~08 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3423 3429 3430 3·Ut 3432 3~33 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAQ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
080 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 35.15 3516 3517 3518 3519

oeD 3520 3521 3522 3523 3524 3525 3526 3527 352'8 3529 "3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 -.3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587. 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E 10 3600 3601 3602 3603 3604 3605 ~606 3607 3608 3609 361-0 3611 3612 3613 3614 3615
no 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 . 3692 3693 3694 3695
f70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
£80 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
HO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3B29 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 J843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3975 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 -3974 3'975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAD 4000 4001 4002 4003 4004 4005 4006 4007 4D08 4009 4010 4011 4012 4013 4014 4015
Fao 4016 4017 40 18 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

Feo 4032 4033 4034 4035 4036 4037 403B 4039 4040 4041 4042 404,3 4044 4045 404<1 ~047

FOO 4048 4049 4050 4051 4052 4053 4054 ,(055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 406.4 4())5 4066 4067 4068 4 (A) 9 4070 4071 4072 ~073 4074 .4075 4076 4077 4076 4079
HO 4080 ~al 4082 4083 4()8.4 4085 4086 4087 40B8 4089 4090 <4091 40Vi 4093 4094 .t095

D-IO

inter

West: 17291 Irvine Blvd., Suite 262/(714)838-1126, TWX: 910-595-1114/Tustin, California 92680
Mid-America: 800 Southgate Office Plaza/501 West 78th St./(612)835-6722, TWX: 910-576-2867/Bloomington, Mi"nnesota 55437
Northeast: 2 Militia Drive, Suite 4/(617)861-1136, Telex: 92-3493/Lexington, Massachusetts 02173
Mid-Atlantic: 21 Bala Avenue/(215)664-6636/Bala Cynwyd, Pennsylvania 19004
Europe: Intel OfficelVester Farimagsgade 7/45·1-11 5644, Telex: 19567/DK 1606 Copenhagen V
Orient: Intel Japan Corp.lHan·Ei 2nd Building/1-1, Shinjuku, Shinjuku-Ku/03-354-8251, Telex: 781-28426/Tokyo 160 © 1973/Printed in U.S.A./MCS-030-1273-150

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	xBack

