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Introduction

References for basic material [?, Lee97, Spi79, War83].

More advanced references: [Bes87, Pet06, Poo81],

1 Lecture 1

1.1 Vectors, and one-forms

Let M be a smooth manifold. A vector field is a section of the tangent bundle,
X ∈ Γ(TM). In coordinates,

X = X i∂i, X i ∈ C∞(M), (1.1)

where

∂i =
∂

∂xi
, (1.2)

is the coordinate partial. We will use the Einstein summation convention: repeated
upper and lower indices will automatically be summed unless otherwise noted.

A 1-form is a section of the cotangent bundle, X ∈ Γ(T ∗M). In coordinates,

ω = ωidx
i, ωi ∈ C∞(M). (1.3)

Remark 1.1. Note that components of vector fields have upper indices, while com-
ponents of 1-forms have lower indices. However, a collection of vector fields will be
indexed by lower indices, {Y1, . . . , Yp}, and a collection of 1-forms will be indexed by
upper indices {dx1, . . . , dxn}. This is one reason why we write the coordinates with
upper indices.

Note that a smooth mapping f : M → N induces mappings

f∗ : TM → TN (1.4)

f ∗ : T ∗N → T ∗M. (1.5)

The first mapping is defined as follows. If X ∈ TpM , let γ : (−ε, ε)→M be a smooth
curve satisfying γ(0) = p, γ′(0) = X. Then

f∗(X) =
d

dt
(f ◦ γ)|t=0. (1.6)

Alternatively, since a tangent vector is equivalent to a linear derivation on germs of
smooth functions around a point, we can define

(f∗X)f(p)φ = X(φ ◦ f), (1.7)

where φ is a germ of a smooth function at f(p).
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The second mapping is then defined by

(f ∗ω)(v) ≡ ω(f∗v). (1.8)

Another way to say this is that under a mapping, we can push forward a vector,
and pull back a one-form.

We always have mapping

f ∗ : Γ(T ∗N)→ Γ(T ∗M). (1.9)

However, in general there is not a mapping

f∗ : Γ(TM)→ Γ(TN), (1.10)

but later we will be able to make sense of the following: if X ∈ Γ(TM), then

f∗X ∈ Γ(f ∗TN), (1.11)

where f ∗TN is called a pull-back bundle.
Note the following important proposition.

Proposition 1.2 (The chain rule). If f : M → N , and h : N → M ′ are smooth
maps, then

(h ◦ f)∗ = h∗ ◦ f∗ : TM → TM ′ (1.12)

(h ◦ f)∗ = f ∗ ◦ h∗ : TM ′ → TM. (1.13)

1.2 Exterior algebra and wedge product

For a real vector space V , a differential form is an element of Λp(V ∗). The wedge
product of α ∈ Λp(V ∗) and β ∈ Λq(V ∗) is a form in Λp+q(V ∗) defined as follows. The
exterior algebra Λ(V ∗) is the tensor algebra

Λ(V ∗) =
{⊕

k≥0

(V ∗)⊗
k
}
/I =

⊕
k≥0

Λk(V ∗) (1.14)

where I is the two-sided ideal generated by elements of the form α ⊗ α ∈ V ∗ ⊗ V ∗.
The wedge product of α ∈ Λp(V ∗) and β ∈ Λq(V ∗) is just the multiplication induced
by the tensor product in this algebra.

The space Λk(V ∗) satisfies the universal mapping property as follows. Let W be
any vector space, and F : (V ∗)⊗

k → W an alternating multilinear mapping. That
is, F (α1, . . . , αk) = 0 if αi = αj for some i, j. Then there is a unique linear map F̃
which makes the following diagram

(V ∗)⊗
k

Λk(V ∗)

W

π

F
F̃
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commutative, where π is the projection

π(α1, . . . , αk) = α1 ∧ · · · ∧ αk (1.15)

We could just stick with this definition and try and prove all results using only this
definition. However, for calculational purposes, it is convenient to think of differential
forms as alternating linear maps from V ⊗

k → R. For this, one has to choose a pairing

Λk(V ∗) ∼= (Λk(V ))∗. (1.16)

The pairing we will choose is as follows. If α = α1 ∧ · · · ∧ αk and v = v1 ∧ · · · ∧ vk,
then

α(v) = det(αi(vj)). (1.17)

For example,

α1 ∧ α2(v1 ∧ v2) = α1(v1)α2(v2)− α1(v2)α2(v1). (1.18)

Then to view as a mapping from V ⊗
k → R, we specify that if α ∈ (Λk(V ))∗, then

α(v1, . . . , vk) ≡ α(v1 ∧ · · · ∧ vk). (1.19)

For example

α1 ∧ α2(v1, v2) = α1(v1)α2(v2)− α1(v2)α2(v1). (1.20)

With this convention, if α ∈ Λp(V ∗) and β ∈ Λq(V ∗) then

α ∧ β(v1, . . . , vp+q) =
1

p!q!

∑
σ∈Sp+q

sign(σ)α(vσ(1), . . . , vσ(p))β(vσ(p+1), . . . , vσ(p+q)).

(1.21)

This then agrees with the definition of the wedge product given in [Spi79, Chapter 7].
Some important properties of the wedge product

• The wedge product is bilinear (α1 + α2) ∧ β = α1 ∧ β + α2 ∧ β, and (cα) ∧ β =
c(α ∧ β) for c ∈ R.

• If α ∈ Λp(V ∗) and β ∈ Λq(V ∗), then α ∧ β = (−1)pqβ ∧ α.

• The wedge product is associative (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

It is convenient to have our 2 definitions of the wedge product because the proofs
of these properties can be easier using one of the definitions, but harder using the
other.

7



2 Lecture 2

2.1 Differential forms and the d operator

A differential form is a section of Λp(T ∗M). I.e., a differential form is a smooth
mapping ω : M → Λp(T ∗M) such that πω = IdM , where π : Λp(T ∗M) → M is the
bundle projection map. We will write ω ∈ Γ(Λp(T ∗M)), or ω ∈ Ωp(M).

Note that for a smooth mapping f : M → N , we have

f ∗(α ∧ β) = (f ∗α) ∧ (f ∗β). (2.1)

Given a coordinate system xi : U → R, i = 1 . . . n, a local basis of T ∗M is given
by dx1, . . . , dxn. Then α ∈ Ωp(U) can be written as

α =
∑

1≤i1<i2<···<ip≤n

αi1...ipdx
i1 ∧ · · · ∧ dxip . (2.2)

Then we also have

α =
1

p!

∑
1≤i1,i2,...,ip≤n

αi1...ipdx
i1 ∧ · · · ∧ dxip , (2.3)

where the sum is over ALL indices.
However, if we want to think of α as a multilinear mapping from TM⊗p → R,

then we extend the coefficients αi1...ip , which are only defined for strictly increasing
sequences i1 < · · · < ip, to ALL indices by skew-symmetry. Then we have

α =
∑

1≤i1,i2,...,ip≤n

αi1...ipdx
i1 ⊗ · · · ⊗ dxip . (2.4)

This convention is slightly annoying because then the projection to the exterior al-
gebra of this is p! times the original α, but has the positive feature that coefficients
depending upon p do not enter into various formulas.

The exterior derivative operator [War83, Theorem 2.20],

d : Ωp(T ∗M)→ Ωp+1(T ∗M) (2.5)

is the unique anti-derivation satisfying

• For α ∈ Ωp(M), d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

• d2 = 0.

• If f ∈ C∞(M) then df is the differential of f . (I.e., f∗ : TM → R is a element
of Hom(TM,R) which is unambiguously an element of Γ(T ∗M) = Ω1(M).)

Next, letting Altp(TM) denote the alernating multilinear maps from TM⊗p → R,
then d can be considered as a mapping

d : Altp(TM)→ Altp+1(TM) (2.6)
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given by the formula

dω(X0, . . . , Xp) =

p∑
j=0

(−1)jXj

(
ω(X0, . . . , X̂j, . . . , Xp)

)
+
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp),

(2.7)

which agrees with the formula for d given in [Spi79, Chapter 7].
Note that in a coordinate system, d is given by

(dα)i0...ip =

p∑
j=0

(−1)j∂ijαi0...îj ...ip . (2.8)

(Note this is indeed skew-symmetric in all indices.)
An important fact is that d commutes with pull-back.

Proposition 2.1. If f : M → N is a smooth mapping, and ω ∈ Ωp(N), then

f ∗(dω) = d(f ∗ω). (2.9)

Another important fact is that we can integrate top-dimensional differential forms
on a compact manifold. But we need to recall orientability. First, an orientation on a
n-dimensional vector space V is a choice of ordered basis (v1, . . . , vn) with equivalence
relation if 2 ordered bases are related by a change of basis matrix with positive
determinant. There are exactly 2 such equivalence classes, and if M is a manifold,
the oriented double cover ofM denoted by M̃ is the double cover obtained by replacing
a point p with the 2 orientations on TpM .

Definition 2.2. A manifold M is orientable if any of the following equivalent condi-
tions are satisfied.

• M admits an coordinate atlas (Uα, φα) such that the overlap maps are orientation-
preserving φα ◦ φ−1

β , that is, the Jacobian (φα ◦ φ−1
β )∗ has positive determinant.

• M admits a nowhere-zero n-form.

• The oriented double cover M̃ →M is trivial, i.e., it has 2 components.

If M is orientable, the choice of one of the components of M̃ is called an orientation
on M .

On an oriented n-dimensional manifold, the integral of ω ∈ Ωn(M) is defined as
follows. Choose an oriented coordinate atlas (Uα, φα). First, assume that ω ∈ Ωn(M)
has compact support in a single coordinate system Uα. Then

(φα)∗(ω) = fdx1 ∧ · · · ∧ dxn, (2.10)
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where f : φα(Uα)→ R has compact support. Define∫
M

ω ≡
∫
φα(Uα)

fdx1 . . . dxn. (2.11)

By the change-of-variables formula for integrals, this definition is independent of
coordinate system containing the support of ω.

Next, if M is compact, or if ω has compact support, let χα be a partition of unity
subordinate to Uα, and define ∫

M

ω =
∑
α

∫
M

χαω. (2.12)

Since the sum is finite, this definition is independent of the choice of coordinate atlas
and choice of partition of unity.

Integration by parts on manifolds is the following.

Theorem 2.3 (Stokes’ Theorem). Let (M,∂M) be a compact oriented manifold with
boundary of dimension n. If ω ∈ Ωn−1(M), then∫

∂M

ω =

∫
M

dω, (2.13)

where the boundary has the orientation induced from the outer normal, i.e., if vi ∈
Tp(∂M), then the ordered basis (v1, . . . vn−1) is oriented if (v, v1, . . . , vn−1) is positively
oriented, for any outward pointing normal vector v.

3 Lecture 3

3.1 Classical tensor calculus

A vector field is a section of the tangent bundle, X ∈ Γ(TM), and the components
of X with respect to a coordinate system x : U → Rn are functions X i : U → R,
i = 1 . . . n, defined by

X = X i ∂

∂xi
(3.1)

on U , where ∂
∂xi

is the ith coordinate partial, which is a vector field on TU . Given
another overlapping coordinate system x̃ : U → Rn, we can write

X = X̃ i ∂

∂x̃i
. (3.2)

Proposition 3.1. The components of a vector field are related by

X̃j =
∂x̃j

∂xi
X i. (3.3)

Conversely, any collection of locally-defined functions satisfying this relation gives a
well defined vector field X ∈ Γ(TM).
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Proof. Since vector fields are derivations on germs of functions, plug in the function
x̃j to the equality

X i ∂

∂xi
= X̃ i ∂

∂x̃i
, (3.4)

to obtain

X i ∂

∂xi
(x̃j) = X̃j. (3.5)

Similarly, a 1-form is a section of the cotangent bundle, ω ∈ Γ(T ∗M), and the
components of ω with respect to a coordinate system x : U → Rn are functions
ωi : U → R, i = 1 . . . n, defined by

ω = ωidx
i (3.6)

on U . Given another overlapping coordinate system x̃ : U → Rn, we can write

ω = ω̃idx̃
i. (3.7)

Proposition 3.2. The components of a 1-form are related by

ω̃j =
∂xi

∂x̃j
ωi. (3.8)

Conversely, any collection of locally-defined functions satisfying this relation gives a
well defined 1-form ω ∈ Γ(T ∗M).

Proof. Plug in the vector field ∂
∂x̃j

to the equality

ωidx
i = ω̃idx̃

i, (3.9)

to obtain

ωidx
i

(
∂

∂x̃j

)
= ω̃j. (3.10)

But recall the definition of df , where f : U → R is a function. We claim that

df(X) = X(f). (3.11)

To see this, the left hand side is

df(X) =
∂f

∂xi
dxi
(
Xj ∂

∂xj

)
=
∂f

∂xi
X i. (3.12)

For the right hand side, let γ : (−ε, ε)→M satisfy γ(0) = p, γ′(0) = Xp, then

X(f) =
d

dt
(f ◦ γ)|t=0 =

∂f

∂xi
dγi

dt t=0
=
∂f

∂xi
X i
p. (3.13)

Then plugging (3.11) into (3.10), we have

ω̃j = ωi
∂xi

∂x̃j
. (3.14)
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For a general tensor T ∈ Γ((TM)⊗
p ⊗ (T ∗M)⊗

q
) we can locally write

T = T
j1...jp
i1...iq

∂

∂xj1
⊗ · · · ⊗ ∂

∂xjp
⊗ dxi1 ⊗ · · · ⊗ dxiq , (3.15)

and in another coordinate system

T = T̃
j1...jp
i1...iq

∂

∂x̃j1
⊗ · · · ⊗ ∂

∂x̃jp
⊗ dx̃i1 ⊗ · · · ⊗ dx̃iq , (3.16)

The above transformation formulas combine to give the following.

Proposition 3.3. The components of T satisfy the transformation formulas

T̃
j1...jp
i1...iq

=
∂x̃j1

∂xl1
· · · ∂x̃

jp

∂xlp
∂xk1

∂x̃i1
· · · ∂x

kq

∂x̃iq
T
l1...lp
k1...kq

(3.17)

Conversely, any collection of locally-defined functions satisfying this relation gives a
well defined tensor T ∈ Γ(TM⊗p ⊗ T ∗M⊗q).

Exercise 3.4. Show that the Kronecker δ symbol, defined by

δij =

{
1 i = j

0 i 6= j
(3.18)

defines a tensor. Consequently,

T = δij
∂

∂xi
⊗ dxj (3.19)

is a well-defined global tensor. Show that under the canonical isomorphisms

TM ⊗ T ∗M ∼= T ∗M ⊗ T ∼= Hom(TM, TM), (3.20)

the tensor T corresponds to the identity transformation Id : TM → TM .

We note that for a n-form, we can write

ω = ω1...ndx
1 ∧ · · · ∧ dxn, (3.21)

In another coordinate system, we can write

ω = ω̃1...ndx̃
1 ∧ · · · ∧ dx̃n, (3.22)

These components are related by

ω̃1...n = det

(
∂xi

∂x̃j

)
ω1...n, (3.23)

which is why the integral is well-defined. If M is not orientable, we can define a
density to be a collection of function so that under coordinate changes,

ω̃1...n =
∣∣∣ det

(
∂xi

∂x̃j

) ∣∣∣ω1...n, (3.24)

It turns out that these quantities are sections of a trivial 1-dimension line bundle, but
their integral is well-defined, even on a non-orientable manifold.

Remark 3.5. Since a density bundle is just a trivial bundle, it seems we could define
an integral for section of any trivial line bundle. But this is not possible: to define the
integral of densities you need to look at how these behave under changes of coordinates
systems on the base manifold, not for an arbitrary trivialization of the bundle.
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4 Lecture 4

4.1 Lie derivatives

Given a vector field X ∈ Γ(TM), the Lie derivative of Y with respect to X is

LXY = [X, Y ], (4.1)

where [X, Y ]f = X(Y f)− Y (Xf)

Proposition 4.1. For X, Y ∈ Γ(TM), the bracket [X, Y ] ∈ Γ(TM).

Proof. In a local coordinate system, write

X = X i ∂

∂xi
, Y = Y i ∂

∂xi
, (4.2)

then

[X, Y ]f = X i ∂

∂xi

(
Y j ∂f

∂xj

)
− Y j ∂

∂xj

(
X i ∂f

∂xi

)
= X i

(
∂Y j

∂xi
∂f

∂xj
+ Y j ∂2f

∂xi∂xj

)
− Y j

(
∂X i

∂xj
∂f

∂xi
+X i ∂2f

∂xj∂xi

)
.

(4.3)

Since f is smooth, we have equality of the mixed partials, so

[X, Y ]f = X i

(
∂Y j

∂xi
∂f

∂xj

)
− Y j

(
∂X i

∂xj
∂f

∂xi

)
=

(
X i∂Y

l

∂xi
− Y j ∂X

l

∂xj

)
∂f

∂xl
.

(4.4)

This shows that [X, Y ] is a derivation on germs of function, so is a well-defined vector
field. Alternatively, using the classical method, we can prove this directly as follows,

X̃ i∂Ỹ
l

∂x̃i
− Ỹ j ∂X̃

l

∂x̃j
= X̃ i ∂

∂x̃i

(
Y k ∂x̃

l

∂xk

)
− Ỹ j ∂

∂x̃j

(
Xk ∂x̃

l

∂xk

)
= X i ∂

∂xi

(
Y k ∂x̃

l

∂xk

)
− Y j ∂

∂xj

(
Xk ∂x̃

l

∂xk

)
=

(
X i∂Y

k

∂xi
− Y j ∂X

k

∂xj

)
∂x̃l

∂xk
,

(4.5)

since the mixed partial terms cancel out, thus showing [X, Y ] is a globally defined
vector field.

Next, for X, Y ∈ Γ(TM), and ω ∈ Γ(T ∗M), define

LXω(Y ) = X(ω(Y ))− ω(LXY ). (4.6)

Proposition 4.2. If X ∈ Γ(TM) and ω ∈ Γ(T ∗M), then LXω ∈ Γ(T ∗M).
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Proof. Let f : M → R. Then

LXω(fY ) = X(ω(fY ))− ω(LX(fY ))

= X(fω(Y )− ω([X, fY ])

= (Xf)ω(Y ) + fX(ω(Y ))− ω(f [X.Y ]− (Xf)Y )

= fX(ω(Y ))− ω(f [X, Y ]) = fLXω(Y ).

(4.7)

Since this expression is linear over C∞ functions, it is a well-defined tensor. To see
this, let α : Γ(TM) → C∞(M) be a mapping which is linear over C∞-functions. It
sufices to show that α(X)(p) = 0 if Xp = 0. This is because if we let X and X̃ be
any smooth extensions of Xp, then since X − X̃ vanishes at p

ω(X − X̃)(p) = 0, (4.8)

so ω(X)(p) = ω(X̃)(p) has a well-defined value, independent of the extension of Xp.
To proceed, given a coordinate system around p, choose a cutoff function which is 1
in a coordinate neighborhood of p, and 0 outside. Then

X = (φX i)(φ
∂

∂xi
) + (1− φ2)X. (4.9)

Both terms in the above are smooth vector fields on M , so using linearity,

α(X)(p) = (φ(p)X i(p))α(φ
∂

∂xi
)(p) + (1− φ2)(p)α(X)(p) = 0. (4.10)

Next, consider a (p, q)-tensor field

Ω ∈ Γ
(

(TM)⊗
p ⊗ (T ∗M)⊗

q
)
. (4.11)

We define LXΩ as follows. For any tensor product of tensors, define

∇X(s⊗ s′) = (∇Xs)⊗ s′ + s⊗ (∇′Xs′). (4.12)

For example,

LX(Y ⊗ ω) = LX(Y )⊗ ω + Y ⊗ LXω
= [X, Y ]⊗ ω + Y ⊗ LXω,

(4.13)

where the last term is defined in (4.6).
We can also define a Lie derivative operator on differential forms in Λp(M) by

LX(ω1 ∧ · · · ∧ ωp) =

p∑
i=1

ω1 ∧ · · · ∧ (LXωi) ∧ · · · ∧ ωp, (4.14)

14



for ωi ∈ Γ(T ∗M). There is a analogous formula for the Lie derivative as (2.7)

(LXω)(X1, . . . , Xp) = X
(
ω(X1, . . . , . . . , Xp)

)
+

p∑
i=1

(−1)iω([X,Xi], X1, . . . , X̂i, . . . , Xp).
(4.15)

The Lie derivative operator can be defined by using the 1-parameter group of
diffeomorphisms generated by X via

LXY =
d

dt
(Φ−t)∗Y

∣∣∣
t=0

(4.16)

LXω =
d

dt
(Φt)

∗ω
∣∣∣
t=0
, (4.17)

with similar formulas for higher tensor fields.
An important formula is Cartan’s formula relating the Lie derivative and the

exterior derivative: if ω ∈ Ωp(M), then

LXω = d(Xyω) +Xydω, (4.18)

where the interior product Xy : Ωr(M)→ Ωr−1(M) is defined by

Xyα(X1, . . . , Xr−1) = α(X,X1, . . . , Xr−1). (4.19)

Note Cartan’s formula implies that

LX(dω) = d(LXω). (4.20)

Here is an important point: the expression LXω is NOT tensorial in the variable
X. In fact, we have the formula

Lfω = fLXω + df ∧ (Xyω), (4.21)

To obtain a derivative which is tensorial in X will lead us to the concept of a connec-
tion.

5 Lecture 5

5.1 Riemannian metrics

Let (M, g) be a Riemannian manifold, with metric g ∈ Γ(S2(T ∗M)). In coordinates,

g =
n∑

i,j=1

gij(x)dxi ⊗ dxj, gij = gij, (5.1)

and gij >> 0 is a positive definite matrix. The symmetry condition is of course
invariantly

g(X, Y ) = g(Y,X). (5.2)

Note that any manifold admits a Riemannian metric, by using a partition of unity to
patch together the Euclidean metric in local coordinates.
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5.2 The musical isomorphisms

The metric gives an isomorphism between TM and T ∗M ,

[ : TM → T ∗M (5.3)

defined by

[(X)(Y ) = g(X, Y ). (5.4)

The inverse map is denoted by ] : T ∗M → TM . The cotangent bundle is endowed
with the metric

〈ω1, ω2〉 = g(]ω1, ]ω2). (5.5)

Note that if g has components gij, then 〈·, ·〉 has components gij, the inverse matrix
of gij.

If X ∈ Γ(TM), then

[(X) = Xidx
i, (5.6)

where

Xi = gijX
j, (5.7)

so the flat operator “lowers” an index. If ω ∈ Γ(T ∗M), then

](ω) = ωi∂i, (5.8)

where

ωi = gijωj, (5.9)

thus the sharp operator “raises” an index.

5.3 Inner product on tensor bundles

The metric induces a metric on Λk(T ∗M). We give 3 definitions, all of which are
equivalent:

• Definition 1: If

ω1 = α1 ∧ · · · ∧ αk

ω2 = β1 ∧ · · · ∧ βk,
(5.10)

then

〈ω1, ω2〉 = det(〈αi, βj〉), (5.11)

and extend linearly. This is well-defined.
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• Definition 2: If {ei} is an ONB of TpM , let {ei} denote the dual basis, defined
by ei(ej) = δij. Then declare that

ei1 ∧ · · · ∧ eik , 1 ≤ i1 < i2 < · · · < ik ≤ n, (5.12)

is an ONB of Λk(T ∗pM).

• Definition 3: If ω ∈ Λk(T ∗M), then in coordinates

ω =
∑

1≤i1<···<ik≤n

ωi1...ikdx
i1 ∧ · · · ∧ dxik . (5.13)

Then

‖ω‖2
Λk = 〈ω, ω〉 =

∑
1≤i1<···<ik≤n

ωi1...ikωi1...ik , (5.14)

where

ωi1...ik =
∑

1≤l1<···<lk≤n

gi1ligi2l2 . . . giklkωl1...lk . (5.15)

To define an inner product on the full tensor bundle, we let

Ω ∈ Γ
(

(TM)⊗
p ⊗ (T ∗M)⊗

q
)
. (5.16)

We call such Ω a (p, q)-tensor field. As above, we can define a metric by declaring
that

ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq (5.17)

to be an ONB. If in coordinates,

Ω = Ω
i1...ip
j1...jq

∂i1 ⊗ · · · ⊗ ∂ip ⊗ dxj1 ⊗ · · · ⊗ dxjq , (5.18)

then

‖Ω‖2 = 〈Ω,Ω〉 = Ω
j1...jq
i1...ip

Ω
i1...ip
j1...jq

, (5.19)

where the term Ω
j1...jq
i1...ip

is obtained by raising all of the lower indices and lowering all

of the upper indices of Ω
j1...jq
i1...ip

, using the metric. By polarization, the inner product
is given by

〈Ω1,Ω2〉 =
1

2

(
‖Ω1 + Ω2‖2 − ‖Ω1‖2 − ‖Ω2‖2

)
. (5.20)

Remark 5.1. Recall we are using (1.17) to identify forms and alternating tensors. If
ω ∈ Λp(T ∗M), then if we view ω as an alternating p-tensor, then

‖ω‖(T ∗M)⊗p =
√
p!‖ω‖Λp . (5.21)

For example, as an element of Λ2(T ∗M), e1 ∧ e2 has norm 1 if e1, e2 are orthonormal
in T ∗M . But under our identification with tensors, e1 ∧ e2 is identified with e1 ⊗
e2 − e2 ⊗ e1, which has norm

√
2 with respect to the tensor inner product. Thus our

identification in (1.17) is not an isometry, but is a constant multiple of an isometry.
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We remark that one may reduce a (p, q)-tensor field into a (p − 1, q − 1)-tensor
field for p ≥ 1 and q ≥ 1. This is called a contraction, but one must specify which
indices are contracted. For example, the contraction of Ω in the first contrvariant
index and first covariant index is written invariantly as

Tr(1,1)Ω, (5.22)

and in coordinates is given by

δj1i1 Ω
i1...ip
j1...jq

= Ω
li2...ip
lj2...jq

. (5.23)

6 Lecture 6

6.1 Review of theory of vector bundles

We will next define real vector bundles, but note that everything we will say works
for complex bundles, by replacing R with C.

Definition 6.1. A smooth real vector bundle of rank k over a smooth manifold Mn

is a topological space E together with a smooth projection

π : E →M (6.1)

such that

• For p ∈M , π−1(p) is a vector space of dimension k over R.

• There exists local trivializations, that is, there are smooth mappings

Φα : Uα × Rk → E (6.2)

which maps p× Rk linearly onto the fiber π−1(p) for every p ∈ Uα.

The transition functions of a bundle are defined as follows.

ϕαβ : Uα ∩ Uβ → GL(k,R) (6.3)

defined by

ϕαβ(x)(v) = π2(Φ−1
α ◦ Φβ(x, v)), (6.4)

for v ∈ Rk.
On a triple intersection Uα ∩ Uβ ∩ Uγ, we have the identity

ϕαγ = ϕαβ ◦ ϕβγ. (6.5)

Conversely, given a covering Uα of M and transition functions ϕαβ satifsying (6.5),
there is a vector bundle π : E →M with transition functions given by ϕαβ. (It turns
out this bundle is uniquely defined up to bundle equivalence, which we will define
below.) If the transitions function ϕαβ are C∞, then we say that E is a smooth
vector bundle.
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Example 6.2. (The tangent bundle) Given a coordinate system (Uα, xα) on a smooth
manifold M , let

Φα(x, (v1, . . . , vn)) =
n∑
i=1

vi
∂

∂xiα
. (6.6)

On Uβ, we have

Φβ(x, (ṽ1, . . . , ṽn)) =
n∑
i=1

ṽi
∂

∂xiβ
. (6.7)

Recall that

∂

∂xiβ
=

n∑
j=1

∂xjα
∂xiβ

∂

∂xjα
, (6.8)

so then

Φ−1
α ◦ Φβ(x, (ṽ1, . . . , ṽn)) = Φ−1

α

(
n∑
i=1

ṽi
∂

∂xiβ

)

= Φ−1
α

(
n∑
i=1

ṽi
n∑
j=1

∂xjα
∂xiβ

∂

∂xjα

)

= Φ−1
α

(
n∑
j=1

(
n∑
i=1

ṽi
∂xjα
∂xiβ

)
∂

∂xjα

)
.

(6.9)

Consequently,

ϕαβ(x)(v1, . . . , vn) =
n∑
i=1

ṽi
∂xjα
∂xiβ

(6.10)

A vector bundle mapping is a mapping f : E1 → E2 which is linear on fibers,
and covers the identity map. Assume we have a covering Uα of M such that E1 has
trivializations Φα and E2 has trivializations Ψα. Then any vector bundle mapping
gives locally defined functions

fα : Uα → Hom(Rk1 ,Rk2) (6.11)

defined by

fα(x)(v) = π2(Ψ−1
α ◦ F ◦ Φα(x, v)). (6.12)

It is easy to see that on overlaps Uα ∩ Uβ,

fα = ϕE2
αβfβϕ

E1
βα, (6.13)
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equivalently,

ϕE2
βαfα = fβϕ

E1
βα. (6.14)

We say that two bundles are E1 and E2 are equivalent if there exists an invertible
bundle mapping f : E1 → E2. This is equivalent to non-singularity of the local
representatives, that is, det(fα) 6= 0. A vector bundle is trivial if it is equivalent to
the trivial product bundle. That is, E is trivial if there exist functions

fα : Uα → GL(k,R) (6.15)

such that

ϕβα = fβf
−1
α . (6.16)

7 Lecture 7

7.1 Operations on bundles

The direct sum E1 ⊕ E2 of bundles E1 and E2 is a vector bundle with transition
functions

ϕE1⊕E2
αβ = ϕE1

αβ ⊕ ϕ
E2
αβ. (7.1)

The tensor product E1⊗E2 of bundles E1 and E2 is again a bundle, and has transition
functions

ϕE1⊗E2
αβ = ϕE1

αβ ⊗ ϕ
E2
αβ. (7.2)

The dual E∗ of any bundle E, is a bundle, and has transition functions

ϕE
∗

αβ =
(
(ϕEαβ)−1

)T
= (ϕEβα)T . (7.3)

Note that for any linear map f : Rk → Rk, there is a naturally induced mapping

Λpf : Λp(Rk)→ Λp(Rk) (7.4)

therefore for any vector bundle E, the pth exterior power Λp(E) is defined to be the
bundle with transition functions

ϕ
Λp(E)
αβ = Λp(ϕEαβ). (7.5)

For a complex vector bundle π : E → M , there is another operation called the
conjugate bundle E which is the complex vector bundle obtained by replacing each
fiber of E with the complex conjugate vector space. The transition functions are
simply

ϕEαβ = ϕEαβ. (7.6)

Remark 7.1. In the above, we only defined morphisms in the category of vector
bundle to be mappings covering the identity map. We could have instead morphisms
to cover arbitrary diffeomorphisms. This would lead to a coarser notion of equivalence.
More on this later.
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7.2 Riemannian metrics on real vector bundles

If π : E → M is a real vector bundle, a Riemannian metric on E is a choice of
smoothly varying positive definite symmetric inner product on each fiber. That is
g ∈ Γ(E∗ ⊗ E∗) satisfying

g(e1, e2) = g(e2, e1), (7.7)

and

g(e, e) > 0 for e 6= 0. (7.8)

Proposition 7.2. If E is any real vector bundle, then E admits a Riemannian metric.

Proof. Take the Euclidean metric on trivializations, and patch together using a par-
tition of unity.

Corollary 7.3. For any real vector bundle E, E∗ ∼= E.

Proof. Choose a Riemannian metric g on E. Then the mapping [ : E → E∗ defined
by

[(e1)(e2) = g(e1, e2) (7.9)

is an ismorphism on fibers, and covers the identity map.

In bundle terms, existence of a Riemannian metric implies that there is always a
non-zero section of S2(E∗), which says that

S2(E∗) = A⊕B (7.10)

always admits a trivial 1-dimensional subbundle. Of course, the metric gives a iso-
morphism

E∗ ⊗ E∗ ∼= E∗ ⊗ E ∼= Hom(E,E), (7.11)

and the latter bundle always admits the identity section. The latter choice is canon-
ical, but the sub-bundle A is not.

Note the following corollary.

Corollary 7.4. If E1 ⊂ E is a sub-bundle, then there exists a subbundle E2 ⊂ E
such that

E ∼= E1 ⊕ E2. (7.12)

Furthermore, the quotient bundle (E/E1) ∼= E2.

Proof. Choose a Riemannian metric g on E, and let E2 = (E1)⊥. Use Gram-Schmidt
to construct local trivializations for (E1)⊥ to show this is indeed a subbundle.
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7.3 Hermitian metrics on complex vector bundles

If π : E → M is a complex vector bundle, a Hermitian metric on E is a choice of
smoothly varying Hermitian inner product on each fiber. That is h ∈ Γ(E∗ ⊗ E

∗
)

satisfying

g(e1, e2) = g(e2, e1) (7.13)

and

g(e, e) > 0 for e 6= 0. (7.14)

Proposition 7.5. If E is any complex vector bundle, then E admits a hermitian
metric.

Proof. Take the Euclidean metric on Cn, i.e.,

hEuc(v, w) =
∑

vjwj (7.15)

on trivializations, and patch together using a partition of unity.

Corollary 7.6. For any complex vector bundle E, we have E
∗ ∼= E. Equivalently,

E ∼= E∗.

Proof. Choose a hermitian metric h on E. Define the mapping [ : E → E
∗

by

[(e1)(e2) = h(e1, e2) (7.16)

Note that [(e1) is a complex anti-linear mapping E to C, and thus in indeed an
element of E

∗
. It is easy to see this is an isomorphism.

8 Lecture 8

8.1 Reduction of Structure group

Definition 8.1. If a bundle π : E →M is equivalent to a bundle which has transition
functions ϕαβ : Uα∩Uβ → K, where K is a subgroup of GL(k,R) (or GL(k,C)), then
we say that the structure group of E can be reduced to K.

Another way to state the results from the previous section is as follows.

Proposition 8.2. We have the following.

• A bundle is trivial if and only if its structure group can be reduced to {Id}.

• The structure group of any real vector bundle π : E → M of rank k can be
reduced to O(k) if and only if E admits a Riemannian metric.

• The structure group of any complex vector bundle π : E → M of rank k can be
reduced to U(k) if and only if E admits a Hermitian metric.
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Proof. The first case is clear. For the second cases, if E admits a Riemannian metric,
then consider only bundle charts given by local orthonormal frames. Then overlaps
maps then necessarily lie in O(k). Conversely, if the overlap maps lie in O(k), then
just patch together the Euclidean metric using the corresponding bundle charts. The
complex case is analogous using Hermitian frames.

8.2 Real line bundles

Note for a real 1-dimensional line bundle π : L → M , we have that the structure
group can be reduced to O(1) = {±1}, or equivalently, there exists a Riemannian
metric g on L. Consider the set

M̃ = {v ∈ L |g(v, v) = 1} (8.1)

Since there are exactly two unit norm vectors in any fiber, we have that π : M̃ →M
is a 2-fold covering space. So any real line bundle give an associated 2-fold covering
space. Conversely, any 2-fold covering space gives a real line bundle, which is uniquely
determined up to equivalence. To see this, note that a 2-fold covering space can be
viewed as a fiber bundle with group Z2, and viewing Z2 = {±1} ⊂ GL(1,R), we
naturally obtain an associated real line bundle.

Using some basic topology, we have the isomorphisms

H1(M,Z2) ∼= Hom(H1(M),Z2) ∼= Hom(π1(M),Z2). (8.2)

The latter space corresponds to index 2 subgroups of π1(M), so corresponds to 2-fold
coverings of M . Consequently, we have proved the following.

Proposition 8.3. The real line bundles on M up to bundle equivalence, are in one-
one correspondence with H1(M,Z2).

8.3 Orientability of real bundles

Proposition 8.4. Let π : E → M be a real vector bundle of rank k. The following
are equivalent.

• The line bundle Λk(E) is trivial.

• Λk(E) admits a non-zero section.

• The double cover M̃ corresponding to Λk(E) is a trivial 2-fold covering space.

• The structure group of E can be reduced to

GL+(k,R) ≡ {A ∈ GL(k,R) | det(A) > 0} (8.3)

• The structure group of E can be reduced to SO(k)

Proof. The proof follows from the above discussion.
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Definition 8.5. We say that a real vector bundle π : E → M is orientable if any of
the equivalent conditions in Proposition 8.4 are satisfied.

We can restate the above as follows. Given any real rank k vector bundle E over
M , we let w1(E) ∈ H1(M,Z2) be the cohomology class associated to Λk(E) using the
isomorphisms (8.2) above. We call w1(E) the first Stiefel-Whitney class of E. We
can state the above as follows.

Proposition 8.6. A real vector bundle π : E → M is orientable if and only if
w1(E) = 0.

This immediately implies the following.

Corollary 8.7. If H1(M,Z2) = 0, then every vector bundle over E is orientable.

Example 8.8. Thus, every vector bundle over Sn is orientable for n ≥ 2. But for
n = 1, we have H1(S1,Z2) = Z2, so there is exactly one non-orientable line bundle
over S1, called the Möbius bundle.

Exercise 8.9. We have H1(T 2,Z2) ∼= Z2 ⊕ Z2, so there are exactly 4 real line bun-
dles over T 2 up to equivalence. Describe these bundles in terms of open covers and
transition functions.

9 Lecture 9

9.1 Tensor product of line bundles

The set of real line bundles form a group with operation the tensor product, i.e., for
line bundles π1 : L1 →M and π2 : L2 →M then

π : L1 ⊗ L2 →M (9.1)

is also a line bundle. We claim that inverses exists. So let π : L → M be any
line bundle, with transition functions ϕLαβ : Uα ∩ Uβ → GL(1,R) = R∗. Then the
transition functions of the dual bundle are given by

ϕL
∗

αβ = ((ϕLαβ)−1)T = (ϕLαβ)−1. (9.2)

So the transition functions of L⊗ L∗ are

ϕL⊗L
∗

αβ = ϕLαβ · ϕL
∗

αβ = ϕLαβ · (ϕLαβ)−1 = 1. (9.3)

But we know that L∗ ∼= L, so any line bundle L is its own inverse.

Proposition 9.1. For any two line bundles π1 : L1 →M and π2 : L2 →M we have

w1(L1 ⊗ L2) = w1(L1) + w1(L2). (9.4)
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Proof. Recall the definition of the first Stiefel-Whitney class. Given any line bundle
π : L→M , associate the double covering M̃ of M and use the isomorphisms

H1(M,Z2) ∼= Hom(H1(M),Z2) ∼= Hom(π1(M),Z2). (9.5)

Given an element [γ] in π1(M), choose a representative γ ∈ π1(M). We can assume
that γ : S1 →M is a smooth imbedding. Then L restricted to γ(S1) is a line bundle
over S1. Recall that since H1(S1,Z2) = Z2, there are exactly 2 line bundles over
S1, S1 × R = E0 and the Mobius bundle, which we call E1. Equivalently, there are
exactly 2 double covers of S1. Note that the double cover M̃ restricted to the image
of γ is a trivial covering if and only if the corresponding homomorphism from π1(M)
to Z2 maps γ to 0. Otherwise, it is the nontrivial covering of S1. Consequently, we
have

w1(L)(γ) = w1(L|γ(S1)). (9.6)

Returning to the tensor product L1⊗L2. Assume that L1|γ(S1) = Ei, where i = 0
or i = 1, and L2|γ(S1) = Ej, where j = 0 or j = 1. Then we have

w1(L1 ⊗ L2)(γ) = w1((L1 ⊗ L2)|γS1) = w1(Ei ⊗ Ej). (9.7)

But note that

w1(Ei ⊗ Ej) = w1(Ei) + w1(Ej), (9.8)

because E0 ⊗E0
∼= E0, E0 ⊗E1

∼= E1 ⊗E0
∼= E1 and E1 ⊗E1

∼= E0. So therefore we
have

w1(L1 ⊗ L2)(γ) = w1(Ei) + w1(Ej)

= w1(L1|γ(S1)) + w1(L2|γ(S1)) = w1(L1)(γ) + w1(L2)(γ).
(9.9)

Consequently, w1 gives an isomorphism from the multiplicative group of line bun-
dles with the tensor product operation to the additive group H1(M,Z2).

9.2 First Stiefel-Whitney class of direct sums

Now we can prove the following.

Proposition 9.2. Let π1 : E1 →M be a real vector bundle of rank k1 and π2 : E2 →
M be a real vector bundle of rank k2. Then

w1(E1 ⊕ E2) = w1(E1) + w1(E2) (9.10)

Proof. Recall that if ϕE1
αβ and ϕE2

αβ are transition functions for E1, E2 respectively, then
the transition functions for E1 ⊕ E2 are given by

ϕE1⊕E2
αβ =

(
ϕE1
αβ 0

0 ϕE2
αβ

)
. (9.11)
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Since the determinant of a block diagonal matrix is the product of the determinants
of the blocks, we have that

Λk1+k2(E1 ⊕ E2) ∼= Λk1(E1)⊗ Λk2(E2). (9.12)

Consequently,

w1(E1 ⊕ E2) = w1

(
Λk1+k2(E1 ⊕ E2)

)
= w1

(
Λk1(E1)⊗ Λk2(E2)

)
= w1

(
Λk1(E1)

)
+ w1

(
Λk2(E2)

)
= w1(E1) + w1(E2),

(9.13)

where in the middle line we used Proposition 9.1.

Note that the formulas in Propositions 9.1 and 9.2 look very similar. But Propo-
sition 9.1 only hold for line bundles. To see they must be different in general, we
state the following.

Proposition 9.3. Let π1 : E →M be a real vector bundle of rank k, and π2 : L→M
be a real line bundle. Then

w1(E ⊗ L) = w1(E) + kw1(L). (9.14)

Proof. We first show that

Λk(E ⊗ L) ∼= Λk(E)⊗ Lk. (9.15)

To see this, note that the transition functions for E ⊗ L are given by

ϕE⊗Lαβ = ϕEαβ · ϕLαβ, (9.16)

and therefore

ϕ
Λk(E⊗L)
αβ = det

(
ϕEαβ) · ϕLαβ

)
= det

(
ϕEαβ
)
· (ϕLαβ)k

= ϕ
Λk(E)
αβ · ϕLkαβ

(9.17)

So we have

w1(E ⊗ L) = w1

(
Λk(E ⊗ L)

)
= w1

(
Λk(E)⊗ Lk

)
= w1

(
Λk(E)

)
+ w1

(
Lk
)

= w1(E) + kw1(L).

(9.18)
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10.1 Pull-back bundles

If π : E → M is a vector bundle, and f : N → M is a smooth mapping, then we
define

f ∗E = {(p, v) ∈ N × E | f(p) = π(v)}. (10.1)

Proposition 10.1. We have π1 : f ∗E → N is a vector bundle over N such that
π−1

1 (p) = π−1f(p).

Proof. Given an open covering Uα of M with local trivializations Φα : Uα×Rk → EUα ,
and transition function ϕαβ of E, then Vα = f−1(Uα) is an open covering of M , and

f ∗Φα : Vα × Rk → (f ∗E)Vα (10.2)

defined by

f ∗Φα(p, v) = (p,Φα(f(p), v)) (10.3)

gives a system of local trivializations for f ∗E. The transition functions for f ∗E with
respect to the covering Vα are

ϕf
∗E
αβ = ϕαβ ◦ f. (10.4)

Above, we defined bundles to be equivalent if F : E1 → E2 is a mapping which
is an isomorphism on fibers and covers the identity mapping, that is, the following
diagram commutes

E1 E2

M M.

F

πE1
πE2

id

(10.5)

Let us consider the more general situation where F is a mapping which is an isomor-
phism on fibers and covers a diffeomorphism f : M →M ,

E1 E2

M M.

F

πE1
πE2

f

(10.6)

Proposition 10.2. In this setting, the bundle π1 : E1 →M is isomorphic to f ∗E2.

Proof. We need to find a mapping H, which is an isomorphism on fibers, such that
the following diagram commutes

E1 f ∗E2

M M.

H

πE1 πE2

id

(10.7)
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Define H : E1 → f ∗E2 by

H(e1) = (πE1(e1), F (e1)). (10.8)

Then H covers the identity map, and is an isomorphism on fibers.

So if we had defined bundle equivalence using the coarser notion of covering a
diffeomorphism, then we also need to mod out the first notion of equivalence by the
pull-back operation.

Proposition 10.3 (Naturality). If f : N →M is a smooth mapping, and π : E →M
is a real vector bundle, then

w1(f ∗E) = f ∗(w1(E)). (10.9)

Proof. If E is rank k, then since Λk(f ∗E) ∼= f ∗(Λk(E)), we just need to assume that
E is a line bundle.

To get w1(f ∗E), we view this as an element of Hom(π1(N),Z2). Then

w1(f ∗E)(γ) = w1(γ∗f ∗E) (10.10)

which is 0 if the pull-back bundle is trivial on S1, and 1 if it is the nontrivial bundle.
To get f ∗(w1(E)), we have

f ∗(w1(E))(γ) = w1(E)(f ◦ γ) = w1((f ◦ γ)∗E). (10.11)

It is clear that

(f ◦ γ)∗E ∼= γ∗(f ∗E), (10.12)

so these must be the same.

Example 10.4. (Line bundles over T 2). Recall that since H1(T 2,Z2) ∼= Z4, there
are 4 line bundles on T 2 up to equivalence. We can describe them more easily using
the pullback operation. Let πi : S1 × S1 → S1 → S1 be the ith projection. Let E
denote the Mobius bundle over S1. Let E1 denote the trivial line bundle over T 2,

E2 = π∗1E, E3 = π∗2E, E4 = π∗1E ⊗ π∗2E. (10.13)

Then these represent the 4 bundles up to equivalence. To see this, identify the
cohomology group H1(T 2,Z2) with Z2⊕Z2, by letting the element (1, 0) be Poincaré
dual to S1 × {pt} and the element (0, 1) be Poincarè dual to {pt} × S1. Then using
Propositions 10.3 and 9.1, we have

w1(E2) = w1(π∗1E) = π∗1w1(E) = (1, 0), (10.14)

w1(E3) = w1(π∗2E) = π∗2w1(E) = (0, 1), (10.15)

w1(E4) = w1(π∗1E ⊗ π∗1E) = π∗1w1(E) + π∗2w1(E) = (1, 1). (10.16)
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Example 10.5. (A manifold M , and a diffeomorphism f : M → M , and a bundle
π : E → M such that f ∗E is not isomorphic to E. ) Let f : S1 × S1 → S1 × S1 be
the mapping f(θ1, θ2) = f(θ2, θ1). Then f ∗E2 = E3, but E2 is not equivalent to E3.
This is because

w1(f ∗E2) = f ∗w1(E2) = f ∗(1, 0) = (0, 1) = w1(E3). (10.17)

Therefore f ∗E2 is equivalent to E3, which is not equivalent to E2.
There are only 3 line bundles over T 2 if we consider pull-back bundles to be

equivalent allowing diffeomorphisms of the base.

11 Lecture 11

Example 11.1. (Tautological bundle on RPn) Recall that RPn is the space of lines
through the origin in Rn+1. Equivalently, RPn is the space of vectors in Rn+1 modulo
the equivalence relation

(v1, . . . vn+1) ∼ (cv1, . . . , cvn+1), c 6= 0. (11.1)

Define

γ1
n = {([x], v) ∈ RPn × Rn+1 | v ∈ [x]} (11.2)

Since H1(RPn,Z2) = Z2, there are only 2 line bundles over RPn. We claim that γ1
n

is the nontrivial one. Assume by contradiction that it were the trivial bundle. Then
there would exists a nowhere vanishing section σ : RPn → γ1

n. This is a mapping

σ : RPn → RPn × Rn+1 (11.3)

of the form for x ∈ Sn,

σ([x]) = ([x], c(x) · x) (11.4)

For this to be well-defined, we require that c(x) : Sn → R is a function satisfying
c(−x) = −c(x). Since c must take negative and positive values, by the intermediate
value theorem, c(x0) = 0 for some x0, which is a contradiction.

Consequently, we have shown that w1(γ1
n) = 1 ∈ Z2 = H1(RPn,Z2).

Example 11.2. (Universal bundle on G(k, n)) Recall that the Grassmannian G(k, n)
is the space of k-planes through the origin in Rn+1. Define

γkn = {([x], v) ∈ G(k, n)× Rn+1 | v ∈ [x]} (11.5)

Proposition 11.3. For any real rank k vector bundle π : E →M over a compact n-
manifold M , there exists a mapping f : M → G(k,N) for some N so that E ∼= f ∗γkN .
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Proof. Cover M by charts Uα, 1 ≤ α ≤ N , for which there are local trivializations of
E over Uα,

Φα : Uα × Rk → E
∣∣
Uα
, (11.6)

for which the mapping hα = π2Φ−1
α : E

∣∣
Uα
→ Rk is linear on fibers.

Let χα be a partition of unity subordinate to the covering {Uα}. Define a mapping
h′α : E → Rk by

h′α(e) =

{
0 e /∈ Uα
χα(π(e))hα e ∈ Uα.

(11.7)

Then hα is smooth, and is linear on fibers.
Define f : E → RNk by

f(e) = (h′1(e), . . . , h′N(e)). (11.8)

Then f is a mapping which is linear and injective on fibers.
Define F : E → γkkN by

F (e) = (f(π−1π(e)), f(e)). (11.9)

Then F is a mapping which makes the following diagram commute

E γkN

M G(k, kN),

F

π πN

f ′

(11.10)

where F is linear and injective on fibers.
Define H : E → (f ′)∗γkN by

H(e) = (π(e), F (e)) (11.11)

Then H makes the following diagram commute

E (f ′)∗γkkN

M M,

H

π πN

id

(11.12)

and H is an isomorphism on fibers, so E ∼= (f ′)∗γkkN .

Definition 11.4. Let π : E →M be a real line bundle over M . If f : M → G(k,N)
is any map such that E ∼= f ∗γkN then f is called a classifying map for E.
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We review some homology and cohomology theory. Define the standard n-simplex to
be

∆n = {(t0, . . . , tn) ∈ Rn+1,
n∑
i=0

ti = 1, ti ≥ 0}. (12.1)

The ith face of ∆n is the (n− 1)-simplex ∆n
i defined by

(t0, . . . , t̂i, . . . tp). (12.2)

For a topological space X and an abelian group G, define the pth singular chain group
Cp(X,G) to be the free abelian group over G generated by a singular p-simplices,
which is a continuous mapping,

T : ∆p → X. (12.3)

Define the boundary operator ∂ : Cp(X,G) → Cp−1(X,G) by the following given a
singular p-simplex T : ∆p → X, let

∂T =

p∑
i=0

(−1)iT ◦∆p
i , (12.4)

and extend to all chains by linearity. It is not hard to see that ∂2 = 0 thus we have
a chain complex

· · · Cp+1(X,G) Cp(X,G) Cp−1(X,G) · · · .∂ ∂ ∂ ∂ (12.5)

Define the pth singular homology group by

Hp(X,G) =
Ker{∂ : Cp(X,G)→ Cp−1(X,G)}
Im{∂ : Cp+1(X,G)→ Cp(X,G)}

(12.6)

To define singular cohomology groups, let Cp(X,G) denote the singular cochains,
which are dual elements to singular chain, i.e.,

Cp(X,G) = Hom(Cp(X,G), G), (12.7)

and let δ : Cp(X,G)→ Cp+1(X,G) denote the dual to the boundary operator. This
satisfies δ2 = 0, so we have a cochain complex

· · · Cp−1(X,G) Cp(X,G) Cp+1(X,G) · · · .δ δ δ δ (12.8)

Define the pth singular cohomology group by

Hp(X,G) =
Ker{δ : Cp(X,G)→ Cp+1(X,G)}
Im{δ : Cp−1(X,G)→ Cp(X,G)}

. (12.9)
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Cochains have some extra ring structure: we next define the cup product

∪ : Cp(X,G)⊗ Cq(X,G)→ Cp+q(X,G), (12.10)

by the following. If T is a singular (p+q)-simplex, and cp and cq are singular cohains,
then define

(cp ∪ cq)(T ) = cp(T ◦ (t0, · · · , tp, 0, . . . , 0)) · cq(T ◦ (0, . . . , 0, tp, . . . , tp+q)). (12.11)

It can be shown that

cp ∪ cq = (−1)pqcq ∪ cq, (12.12)

thus the cup product is anti-commutative, and that

δ(cp ∪ cq) = (δcp) ∪ cq + (−1)pcp ∪ (δcq). (12.13)

(Note the similarity with the wedge product of forms). The latter relation shows that
the the cup product descends to cohomology, i.e.,

∪ : Hp(X,G)⊗Hq(X,G)→ Hp+q(X,G). (12.14)

12.1 De Rham’s Theorem

In the special case of real coefficients, we have the following

· · · Ωp−1(X) Ωp(X) Ωp+1(X) · · ·

· · · Cp−1(X,R) Cp(X,R) Cp+1(X,R) · · · ,

d

∫
d

∫
d

∫
d

δ δ δ δ

(12.15)

where the vertical maps are defined as follows. If ω ∈ ΩP (X), and cp is a p-chain,
then let

(fω)(cp) =

∫
cp

ω =

∫
∆p

c∗pω. (12.16)

Stokes’ Theorem can be stated in the form∫
cp+1

dω =

∫
∂cp+1

ω, (12.17)

so the above diagram commutes. So have mappings

Hp
DR(X)

∫
→ Hp

sing(X,R), (12.18)

and De Rham’s Theorem says that this mapping is an isomorphism if X is a smooth
manifold.
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13.1 Exact sequences of chain complexes

Let Ci be a complex of G-modules for i = 1, 2, 3.

· · · Ci
p+1 Ci

p Ci
p−1 · · · .

∂ip+2 ∂ip+1 ∂ip ∂ip−1
(13.1)

with ∂2 = 0. A morphism from Ci to Cj are mappings αk : Ci
k → Cj

k such that the
following diagram commutes for every p

Ci
p+1 Ci

p

Cj
p+1 Cj

p

αp+1

∂ip+1

αp

∂jp+1

(13.2)

For complexes C1, C2, C3, and morphisms α : C1 → C2 and β : C2 → C3. We say
that a sequence of complexes is exact if

0 C1 C2 C3 0α β
(13.3)

if the sequence

0 C1
p C2

p C3
p 0

αp βp
(13.4)

is exact for every p.

Lemma 13.1 (The zig-zag lemma). If

0 C1 C2 C3 0α β
(13.5)

is a short exact sequence of complexes, then there exists mappings

∂p : C3
p → C1

p−1 (13.6)

for every p such that the sequence

· · · Hp(C1) Hp(C2) Hp(C3) Hp−1(C1) · · ·∂p+1 αp βp ∂p

(13.7)
is exact.
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Proof. We look at the huge commutative diagram

0 C1
p+1 C2

p+1 C3
p+1 0

0 C1
p C2

p C3
p 0

0 C1
p−1 C2

p−1 C3
p−1 0

∂1p+1

αp+1

∂2p+1

βp+1

∂3p+1

∂1p

αp

∂2p

βp

∂3p

αp−1 βp−1

(13.8)

which has all horizontal rows exact.
To define the boundary operator, take c3

p ∈ C3
p with ∂3

pc
3
p = 0. By exactness of the

middle row, βp is surjective, so c3
p = βp(c

2
p) for some c2

p ∈ C2
p . Then since the diagram

commutes, we have

βp−1∂
2
pc

2
p = ∂3

pβpc
2
p = ∂3

pc
3
p = 0. (13.9)

By exactness of the bottow row, we have ∂2
pc

2
p = αp−1c

1
p−1 for some c1

p−1 ∈ C1
p−1.

0 = ∂2
p−1∂

2
pc

2
p = ∂2

p−1αp−1c
1
p−1 = αp−1∂

1
p−1c

1
p−1, (13.10)

which implies that ∂1
p−1c

1
p−1 = 0. Consequently, c1

p−1 ∈ Hp−1(C1).
To prove this mapping is well-defined, assume that we started with c3

p ∈ C3
p which

was of the form c3
p = ∂3

p+1c
3
p+1. Then we can write c3

p+1 = βp+1c
2
p+1, and the element

c̃2
p = ∂2

p+1c
2
p+1 satisfies βp(c̃

2
p) = c3

p. But this this element is exact, the next step clearly
gives zero. Independence of the choice of c2

p is similarly established.
Exactness of the resulting sequence is left as an exercise in diagram chasing.

14 Lecture 14

14.1 Exact sequences of cochain complexes

Let Ci be a co-complex of G-modules for i = 1, 2, 3.

· · · Cp−1
i Cp

i Cp+1
i · · · .

dp−2
i dp−1

i dpi dp+1
i (14.1)
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with d2 = 0. A morphism from Ci to Cj are mappings αk : Ck
i → Ck

j such that the
following diagram commutes for every p

Cp
i Cp+1

i

Cp
j Cp+1

j

αp

dpi

αp+1

dpj

(14.2)

For co-complexes C1, C2, C3, and morphisms α : C1 → C2 and β : C2 → C3. We say
that a sequence of co-complexes is exact if

0 C1 C2 C3 0α β
(14.3)

if the sequence

0 Cp
1 Cp

2 Cp
3 0

αp βp
(14.4)

is exact for every p.

Lemma 14.1 (The zig-zag lemma). If

0 C1 C2 C3 0α β
(14.5)

is a short exact sequence of co-complexes, then there exists mappings

δp : Cp
3 → Cp+1

1 (14.6)

for every p such that the sequence

· · · Hp(C1) Hp(C2) Hp(C3) Hp+1(C1) · · ·δp−1 αp βp δp

(14.7)
is exact.

Proof. Same as before, with arrows reversed.

14.2 Mayer-Vietoris for singular chains

Write M = U ∪ V as the union of two open sets in M . Then the following sequence
is exact:

0 Cp(U ∩ V ) Cp(U)⊕ Cp(V ) Cp(U) + Cp(V ) 0
αp βp

(14.8)

where

α(cp) =
(
(iU∩V ↪→U)∗cp, (iU∩V ↪→V )∗cp

)
(14.9)
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and

β(ap, bp) = (iU↪→M)∗ap − (iV ↪→M)∗bp. (14.10)

It is not hard to see this sequence is exact. Furthermore, by a barycentric subdivision
argument, the homology H∗(Cp(U) + Cp(V )) is ismorphic to H∗(U ∪ V ). (Roughly,
keep subdividing simplices until their images are contained in U or V .) Consequently,
we obtain a long exact sequence

· · · Hp(U ∩ V ) Hp(U)⊕Hp(V ) Hp(U ∪ V ) · · ·∂p+1 αp βp ∂p
(14.11)

14.3 Mayer-Vietoris for singular co-chains

Write M = U ∪ V as the union of two open sets in M . Then the following sequence
is exact:

0 (Cp(U) + Cp(V ))∗ Cp(U)⊕ Cp(V ) Cp(U ∩ V ) 0
βp αp

(14.12)
where βp = (βp)

∗ and αp = (αp)
∗. This sequence is exact because the original sequence

consisted of free abelian groups, so the tensored sequence is also exact.
Consequently, we obtain a long exact sequence

· · · Hp(U ∪ V ) Hp(U)⊕Hp(V ) Hp(U ∩ V ) · · ·δp−1 βp αp δp

(14.13)

14.4 Mayer-Vietoris for de Rham cohomology

Write M = U ∪ V as the union of two open sets in M . Then the following sequence
is exact:

0 Ωp(U ∪ V ) Ωp(U)⊕ Ωp(V ) Ωp(U ∩ V ) 0
βp αp (14.14)

where

βp(ω) =
(
(iU↪→M)∗ω, (iV ↪→M)∗ω

)
. (14.15)

and

αp(ωU , ωV ) = (iU∩V ↪→U)∗ωU − (iU∩V ↪→V )∗ωV (14.16)

To see this, βp is obviously injective. For exactness at the middle step, obviously
αpβpω = 0. If βp(ωU , ωV ) = 0, then ωU = ωV on U ∩ V , so then (ωU , ωV ) is a
well-defined global form on M .

To show that α is onto, let ω ∈ Ωp(U ∩ V ). Let φU , φV be a partition of unity
subordinate to the covering {U, V }. Then ω = α(φV ω,−φUω).
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Consequently, we obtain a long exact sequence

· · · Hp
DR(U ∪ V ) Hp

DR(U)⊕Hp
DR(V ) Hp

DR(U ∩ V ) · · ·δp−1 βp αp δp

(14.17)
Let us review the definition of the mapping δp. Given a cohomology class [ω] ∈

Hp
c,dR(U ∩ V ), represented by ω ∈ Ωp

c(U ∩ V ) with dω = 0, we first write ω =
αp(φV ω,−φUω), then we apply the exterior derivative to get

(d(φV ω),−d(φUω)) = (dφV ∧ ω,−dφU ∧ ω) ∈ Ωp(U)⊕ Ωp(V ). (14.18)

Note that on U ∩ V , we have (φU + φV )ω = ω, so applying d to this equation, we
have that dφU ∧ ω + dφV ∧ ω = 0 on U ∩ V , so together these define a global form

δpω =

{
dφV ∧ ω in U

−dφU ∧ ω in V
(14.19)

and we take the cohomology class of this form.

Remark 14.2. This mapping appears to depend upon the choice of partition of unity,
but recall that when viewed as a cohomology class, it is actually independent of such
choice.

15 Lecture 15

15.1 The Poincaré Lemma

Let M be a differentiable n-manifold, and consider N = M × [0, 1]. Define the
inclusion maps ι0, ι1 : M ↪→ N by ι0(p) = (p, 0), ι1(p) = (p, 1).

Lemma 15.1 (The Poincaré Lemma). There exist mappings Ik : Ωk(N)→ Ωk−1(M)
such that if ω ∈ Ωk(N), then

ι∗1ω − ι∗0ω = dM(Ikω) + Ik+1(dNω). (15.1)

Proof. Let π : N → M be the projection π(p, t) = p. Then any k-form on N can be
written as

ω = h(p, t)π∗φk + f(p, t)dt ∧ π∗φk−1, (15.2)

where φk ∈ Ωk(M) and φk−1 ∈ Ωk−1(M). Define

Ik(ω) =
(∫ 1

0

f(p, t)dt
)
φk−1, (15.3)

proof of (15.1) was outlined in lecture.

Definition 15.2. Mappings f, g : X → Y are said to be smoothly homotopic if
there exists a smooth mapping F : X × [0, 1] → Y such that F (x, 0) = f(x) and
F (x, 1) = g(x).
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Proposition 15.3. If f, g : X → Y are smoothly homotopic then

f ∗ = g∗ : Hk
dR(Y )→ Hk

dR(X) (15.4)

Proof. Let F : X× [0, 1]→ Y be a smooth homotopy between f and g. The Poincaré
Lemma implies that

ι∗0 = ι∗1 : H∗dR(M × [0, 1])→ H∗dR(M). (15.5)

Since f = F ◦ ι0 and g = F ◦ ι1, we have

f ∗ = ι∗0 ◦ F ∗, g∗ = ι∗1 ◦ F ∗, (15.6)

therefore f ∗ = g∗ as mappings between de Rham cohomology.

Corollary 15.4. The de Rham cohomology groups of Rn are given by

Hk
dR(Rn) =

{
R k = 0

0 0 < k ≤ n
. (15.7)

Proof. For k = 0, the result is obvious, since df = 0 implies that f is constant. The
mapping F : Rn × [0, 1]→ Rn defined by

F (x, t) = tx. (15.8)

is a homotopy from the zero mapping O to the identity map Id : Rn → Rn. The
corollary says that

O∗ = Id∗ : Hk
dR(Rn)→ Hk

dR(Rn). (15.9)

But for k > 0, the mapping O∗ is the zero mapping on cohomology, and Id∗ is the
identity mapping, and these are only equal if the vector space is 0-dimensional.

Proposition 15.5. We have the cohomology groups

Hk
sing(Rn,R) =

{
R k = 0

0 0 < k ≤ n
(15.10)

Proof. The analog of the Poincaré lemma is the following. There is a mapping

Ik : Ck(M)→ Ck+1(M × [0, 1]) (15.11)

such that if ck ∈ Ck(M) then

(ι1)∗ck − (ι0)∗ck = ∂N(Ikck) + Ik−1(∂Mck). (15.12)

This mapping is defined by the following. If ck ∈ Ck(M) then ck : ∆k →M . Then

ck × id : ∆k × [0, 1]→M × [0, 1]. (15.13)
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The left hand side of this is a “prism”, and can be subdivided into k + 1 copies of
a (k + 1)-simplex. Roughly if k = 0, then ∆0 × [0, 1] = [0, 1],which is a 1-simplex.
If k = 1, then ∆1 × [0, 1] = [0, 1] × [0, 1] is a square, and cutting along the diagonal
gives 2 2-simplices. The precise definition of this mapping and verification of (15.12)
will be left as an exercise.

Similarly to above, this implies that homotopic maps induce the same mapping
on singular homology. Dualizing, this yields that homotopic maps also induce the
same mapping on singular cohomology, and the proof is the same as above since the
identity map of Rn is homotopic to the zero mapping.

15.2 Proof of de Rham’s Theorem

The following lemma is crucual for the proof.

Lemma 15.6 (The Five Lemma). Assume the diagram

V1 V2 V3 V4 V5

W1 W2 W3 W4 W5

φ1

α1

φ2

α2

φ3

α3

φ4

α4

φ5

β1 β2 β3 β4

(15.14)

commutes, and has exact rows. If φ1, φ2, φ4, φ5 are isomorphisms, then φ3 is also an
isomorphism.

Proof. Injectivity of φ3: If φ3(v3) = 0, then β3(φ3(v3) = 0 = φ4α3(v3). Since φ4 is
injective, α3(v3) = 0. By exactness, v3 = α2(v2). Then φ3α2(v2) = 0 = β2φ2(v2). By
exactness, φ2(v2) = β1(w1). By surjectivity of φ1, w1 = φ1(v1). Then

φ2(v2) = β1φ1(v1) = φ2α1(v1), (15.15)

but since φ2 is injective, this implies that v2 = α1(v1). Finally, v2 = α2(v2) =
α2α1(v1) = 0, by exactness.

The proof of surjectivity is similar, and left to the reader.

Theorem 15.7 (de Rham). If X has a finite good cover, i.e., a finite covering so
that all intersections are diffeomorphic to Rn, then the mappings

Hp
DR(X)

∫
→ Hp

sing(X,R), (15.16)

are isomorphisms.

Proof. If there is only 1 element in the covering, then we are done by the above
results. Next, consider the following diagram

Hk−1
dR (U)⊕Hk−1

dR (V ) Hk−1
dR (U ∩ V ) Hk

dR(U ∪ V ) Hk
dR(U)⊕Hk

dR(V ) Hk
dR(U ∩ V )

Hk−1
s (U)⊕Hk−1

s (V ) Hk−1
s (U ∩ V ) Hk

s (U ∪ V ) Hk
s (U)⊕Hk

s (V ) Hk
s (U ∩ V )

∫
⊕

∫
αk−1

∫
δk

∫
βk

∫
⊕

∫
αk

∫
αk−1 δk βk αk

(15.17)
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By the Five Lemma, if the result is true for U , V and U ∩ V , then it is also true for
U ∪V . By induction, the theorem is then true for any manifold which admits a finite
good cover.

One can show also the following:

[α ∧ β] = ∫ [α] ∪ ∫ [β], (15.18)

so the mapping between cohomology rings

H∗DR(X)
∫
→ H∗sing(X,R), (15.19)

is moreover a ring isomorphism.

Remark 15.8. Using a Riemannian metric, there exists a covering by geodesically
convex neighborhoods, so it follows that every compact manifold admits a finite good
cover. Furthermore, the Mayer-Vietoris sequence shows that the de Rham cohomology
of any compact manifold is finite-dimensional.

16 Lecture 16

16.1 Cohomology with compact supports

Let M be a manifold, possibly noncompact. Let Ωp
c(M) denote the smooth p-forms

with compact support. We have a complex

· · · Ωp−1
c (M) Ωp

c(M) Ωp+1
c (M) · · · ,d d d d (16.1)

and Hp
c,dR(M) is defined to be the cohomology of this complex.

Let M be a differentiable n-manifold, and consider N = M × R. Let π : N →M
be the projection π(p, t) = p. We next define a mapping

π∗ : Ωk
c (M × R)→ Ωk−1

c (M) (16.2)

by the following. Any k-form on N can be written as

ω = h(p, t)π∗φk + f(p, t)(π∗φk−1) ∧ dt, (16.3)

where φk ∈ Ωk(M) and φk−1 ∈ Ωk−1(M), but h, f ∈ Ω0
c(M × R). Define

π∗(ω) =
(∫ ∞
−∞

f(p, t)dt
)
φk−1, (16.4)

noting that the integral is defined because ω is assumed to have compact support,
and this form has compact support since f has compact support.

We claim that

dM ◦ π∗ = π∗ ◦ dN . (16.5)
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To see this, the left hand side of (16.5) is

dM ◦ π∗ω = dM

((∫ ∞
−∞

f(p, t)dt
)
φk−1

)
=
(∫ ∞
−∞

∂f

∂x
dt
)
dx ∧ φk−1 +

(∫ ∞
−∞

f(p, t)dt)
)
dMφk−1.

(16.6)

The right hand side of (16.5) is

π∗ ◦ dNω = π∗

(∂h
∂t
dt ∧ π∗φk +

∂f

∂x
dx ∧ π∗φk−1 ∧ dt+ f(p, t)π∗(dMφk−1) ∧ dt

)
= π∗

(∂f
∂x
dx ∧ π∗φk−1 ∧ dt+ f(p, t)π∗(dMφk−1) ∧ dt

)
=
(∫ ∞
−∞

∂f

∂x
dt
)
dx ∧ φk−1 +

(∫ ∞
−∞

f(p, t)dt)
)
dMφk−1,

(16.7)

since the term involving h is zero because h has compact support, and using the
fundamental theorem of calculus. Therefore π∗ induces a mapping

π∗ : Hk
c,dR(M × R)→ Hk−1

c,dR(M). (16.8)

Next, we choose e ∈ Ω1
c(R) with

∫
R
e = 1, and define

e∗ : Ωk
c (M)→ Ωk+1

c (M × R) (16.9)

by

e∗(ω) = (π∗ω) ∧ e. (16.10)

We claim that

dN ◦ e∗ = e∗ ◦ dM . (16.11)

To see this,

dN ◦ e∗(ω) = dNπ
∗ω ∧ e = (dNπ

∗ω) ∧ e = π∗(dMω) ∧ e = e∗ ◦ dM(ω). (16.12)

Therefore e∗ induces a mapping

e∗ : Hk
c,dR(M)→ Hk+1

c,dR(M × R). (16.13)

Let us write e = χdt, then

π∗ ◦ e∗(ω) = π∗

(
χ(t)(π∗ω) ∧ dt

)
=
(∫ ∞
−∞

χ(t)dt
)
ω = ω (16.14)

Therefore, we have π∗ ◦ e∗ = 1 on Ωk
c (M), so π∗ ◦ e∗ = 1 on Hk

c,dR(M).
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Proposition 16.1. We have e∗ ◦ π∗ = 1 on Hk
c,dR(M × R). Consequently, π∗ and e∗

are isomorphisms on compactly supported cohomology.

Proof. Again writing

ω = h(p, t)π∗φk + f(p, t)(π∗φk−1) ∧ dt, (16.15)

define a mapping

K : Ωk
c (M × R)→ Ωk−1

c (M × R) (16.16)

by

K(ω) = π∗φk−1

(∫ t

−∞
f(x, s)ds−

(∫ t

−∞
e
)∫ ∞
−∞

f(x, s)ds
)
. (16.17)

Note that the right hand side is indeed a (k−1)-form on M×R with compact support,
the dt-s are not 1-forms in this formula. We claim that if ω ∈ Ωk

c (M × R) then

(1− e∗π∗)ω = (−1)k−1(dK −Kd)ω, (16.18)

which can be separately verified for ω = h(p, t)π∗φk, and for forms of type ω =
f(p, t)dt ∧ π∗φk−1.

For forms of the first type, we obviously have

(1− e∗π∗)h(p, t)π∗φk = h(p, t)π∗φk. (16.19)

On the other hand, since K is zero on forms of this type,

(dK −Kd)(h(p, t)π∗φk) = −K
((∂h

∂x

)
dx ∧ π∗φk +

(∂h
∂t

)
dt ∧ π∗φk + h(p, t)π∗dφk

)
= −K

((∂h
∂t

)
dt ∧ π∗φk

)
= (−1)k−1K

((∂h
∂t

)
(π∗φk) ∧ dt

)
= (−1)k−1π∗φk

(∫ t

−∞

∂h

∂t
ds−

(∫ t

−∞
e
)∫ ∞
−∞

∂h

∂t
ds
)

= (−1)k−1(π∗φk)h(p, t).

(16.20)

For forms of the second type, we have

(1− e∗π∗)f(p, t)π∗φk−1 ∧ dt = f(p, t)π∗φk−1 ∧ dt−
(∫ ∞
−∞

f(p, t)dt
)

(π∗φk−1) ∧ e

= π∗φk−1 ∧
(
f(p, t)dt−

(∫ ∞
−∞

f(p, t)dt
)
e
)

= (−1)k−1
(
f(p, t)−

(∫ ∞
−∞

f(p, t)dt
)
χ(t)

)
π∗φk−1 ∧ dt

(16.21)

The verification that this is equal to (−1)k−1(dK −Kd) is left as an exercise.
This formula then implies that e∗ ◦ π∗ = 1 as a mapping on Hk

c,dR(M × R), and
the proposition follows.
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Corollary 16.2. We have

Hk
c,dR(Rn) =

{
R k = n

0 k 6= n
(16.22)

and a generator for Hn
c,dR(Rn) is given by any compactly supported n-form µ with∫

Rn µ = 1.

Notice that Hk
c,dR(Rn) ∼= Hn−k

dR (Rn). Furthermore, we have an isomorphism

PD : Hk
dR(Rn)→ (Hn−k

c,dR(Rn))∗ (16.23)

given by by PD(α)(β) =
∫
Rn α ∧ β.

17 Lecture 17

17.1 Mayer-Vietoris for cohomology with compact supports

Write M = U ∪ V as the union of two open sets in M . Note that if U1 ⊂ U2

and ω ∈ Ωk
c (U1) then ω extends to be a compactly supported form in U2. Letting

ι : U1 ↪→ U2 denote the inclusion mapping, we denote by i∗ω this extension map on
forms. We claim that the following sequence is exact:

0 Ωp
c(U ∩ V ) Ωp

c(U)⊕ Ωp
c(V ) Ωp

c(U ∪ V ) 0α̃p β̃p

(17.1)

where

α̃p(ωU∩V ) =
(
(iU∩V ↪→U)∗ωU∩V ,−(iU∩V ↪→V )∗ωU∩V

)
(17.2)

and

β̃p(ωU , ωV ) = (iU↪→M)∗ωU + (iV ↪→M)∗ωV . (17.3)

To see this, α̃p is obviously injective. For exactness at the middle step, obviously
β̃pα̃pω = 0. If β̃p(ωU , ωV ) = 0, then ωU = −ωV . This implies that the support of
both forms is contained in U ∩ V , and since they are equal there, take ωU∩V = ωU ,
and then (ωU , ωV ) = α̃p(ωU).

To show that β̃ is onto, let ω ∈ Ωp
c(M). Let φU , φV be a partition of unity

subordinate to the covering {U, V }. Then ω = β̃p(φUω, φV ω).
Consequently, from the ziz-zag Lemma, we obtain a long exact sequence

· · · Hp
c,dR(U ∩ V ) Hp

c,dR(U)⊕Hp
c,dR(V ) Hp

c,dR(U ∪ V ) · · ·δ̃p−1 α̃p β̃p δ̃p

(17.4)
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Let us review the definition of the mapping δ̃p. Given a cohomology class [ω] ∈
Hp
c,dR(U ∪ V ), represented by ω ∈ Ωp

c(U ∪ V ) with dω = 0, we first write ω =

β̃p(φUω, φV ω), then we apply the exterior derivative to get

(d(φUω), d(φV ω)) = (dφU ∧ ω, dφV ∧ ω) ∈ Ωp
c(U)⊕ Ωp

c(V ) (17.5)

Either of these elements is supported in U ∩V and then since dφU ∧ω+dφV ∧ω = 0,

δ̃pω = [dφU ∧ ω] = [−dφV ∧ ω] ∈ Hp+1
c,dR(U ∩ V ). (17.6)

Remark 17.1. This mapping appears to depend upon the choice of partition of unity,
but recall that when viewed as a cohomology class, it is actually independent of such
choice.

17.2 Poincaré Duality

Lemma 17.2. If the sequence

W1 W2 W3
α β

(17.7)

is exact at W2, then the dual sequence

W ∗
3 W ∗

2 W ∗
1

β∗ α∗ (17.8)

is exact at W ∗
2 .

Proof. First, if w∗3 ∈ W ∗
3 , and w1 ∈ W1, then

α∗(β∗w∗3)(w1) = (β∗w∗3)(α(w1)) = w∗3(βα(w1)) = 0, (17.9)

since β ◦ α = 1 by assumption. This proves that Im(β∗) ⊂ Ker(α∗). For the other
direction, if w∗2 ∈ Ker(α∗), then for all w1 ∈ W1, α∗(w∗2)(w1) = w∗2(α(w1)). So the
element 0 = w∗2 ◦ α ∈ W ∗

1 . We want to find w∗3 ∈ W ∗
3 such that w∗2 = β∗w∗3. For all

w2 ∈ W2, this is w∗2(w2) = w∗3βw2, which is just w∗2 = w∗3 ◦ β. So if w3 ∈ W3 is of the
form β(w2) then define

w∗3(w3) ≡ w∗2(w2). (17.10)

If w3 = β(w′2), then β(w2 − w′2) = 0, so w2 − w′2 = α(w1). Then

w∗2(w2 − w′2) = w∗2(α(w1)) = (w∗2α)(w1) = 0. (17.11)

So we have defined w∗3 on the subspace Im(β) ⊂ W3. To extend to a linear mapping
on all of W3, just take any subspace so that W3 = Im(β) ⊕ W , and define w∗3 to
vanish on W . Then the condition w∗2 = w∗3 ◦ β is obviously satisifed.

Theorem 17.3. If Mn is orientable and has a finite good cover, then

PD : Hk
dR(M)→ (Hn−k

c,dR)∗ (17.12)

is an isomorphism for all 0 ≤ k ≤ n.
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Proof. Let m = n− k, and consider the diagram

Hk−1
dR (U)⊕Hk−1

dR (V ) Hk−1
dR (U ∩ V ) Hk

dR(U ∪ V ) Hk
dR(U)⊕Hk

dR(V ) Hk
dR(U ∩ V )

(
Hm+1
c,dR (U)⊕Hm+1

d,dR (V )
)∗

Hm+1
c,dR (U ∩ V )∗ Hm

c,dR(U ∪ V )∗
(
Hm
c,dR(U)⊕Hm

c,dR(V )
)∗

Hm
c,dR(U ∩ V )∗

PD⊕PD

αk−1

PD

δk

PD

βk

PD⊕PD

αk

PD

(α̃m+1)∗ (δ̃m)∗ (β̃m)∗ (α̃m)∗

(17.13)

The top horizontal row is exact since it is the usual Mayer-Vietoris sequence. The
bottom horizontal row is exact since is the dual exact sequence of the Mayer-Vietoris
sequence with compact support. We next claim that this diagram commutes up to
sign, so by changing some of the vertical maps to their negatives if necessary, we
obtain a commutative diagram. (Proof done in lecture).

By the five lemma, if the outer 4 vertical maps are isomorphisms, then so is the
central vertical map. The proof is completed by induction on the number of open
sets in the good cover, since we know it is true for Rn from the previous lecture.

Corollary 17.4. If Mn is a connected and orientable n-manifold with a finite good
cover, then Hn

c,dR(M) ∼= R. If M is moreover compact, then Hn
dR(M) ∼= R.

Corollary 17.5. If Mn is a connected and orientable n-manifold with a finite good
cover then Hk

dR(M) and Hn−k
c,dR(M) have the same dimension. If M is moreover com-

pact, then Hk
dR(M) and Hn−k

dR (M) have the same dimension.

Corollary 17.6. If Mn is a compact oriented odd-dimensional manifold, then the
Euler characteristic χ(M) = 0.

Remark 17.7. Poincaré duality is also true for singular homology with Z coeffi-
cients on a orienable manifold. If M is not orientable, then it is still true for Z/2Z
coefficients.

18 Lecture 18

Theorem 18.1 (Künneth formula). We have

Hk(M ×N) =
⊕
p+q=k

Hp(M)⊗Hq(N). (18.1)

Proof. Proof done in lecture, using the Mayer-Vietoris argument, the Poincaré Lemma,
and the five lemma.

Corollary 18.2. Let

T n =

n︷ ︸︸ ︷
S1 × · · · × S1, (18.2)

then

dim(Hk(T n)) =

(
n

k

)
(18.3)
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19 Lecture 19

Definition 19.1. If Σk ⊂Mn is a closed submanifold then the closed Poincaré dual
is denoted ηΣ and the compact Poincaré dual is η′Σ, to be completed.

From Poincaré duality, we have that if M is orientable and connected, then

Hn(M) =

{
R M compact

0 M non-compact
, (19.1)

and

Hn
c (M) =

{
R M compact

R M non-compact
, (19.2)

Examples of computations of homology and cohomology using Mayer-Vietoris.

Example 19.2. Sn: Cover with 2 open sets U, V , with U ∼= Rn ∼= V a and U ∩ V ∼=
Sn−1, use induction to get

Hk(Sn) =

{
R k = 0, n

0 0 < k < n
(19.3)

Example 19.3. T 2: cover with 2 open sets U, V , with U ∼= V ∼= S1 × R ∼= S1 and
U ∩ V ∼= S1

∐
S1, to get

Hk(T 2) =

{
R k = 0, 2

R⊕ R k = 1
(19.4)

20 Lecture 20

Recall definition of orientation bundle L = Λn(T ∗M), integration of densities. Only
use bundle transition functions arising from coordinate systems.

Definition 20.1. Define Hk(M,L) de Rham cohomology with coefficients in L.

Theorem 20.2 (Poincaré duality for densities). We have

Hk(M) ∼= Hn−k
c (M,L), (20.1)

and

Hk
c (M) ∼= Hn−k(M,L). (20.2)

Proof. Proof by Mayer-Vietoris sequence, integration of densities to get duality, five
lemma, and induction on the cardinality of a good cover.
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Corollary 20.3. If M is non-orientable, then

Hn(M) = Hn
c (M) = 0, (20.3)

Example 20.4. RPn: Orientable if and only if n is odd. Cover with 2 open sets
U, V , with U ∼= Rn, V ∼= RPn−1 and U ∩ V ∼= Sn−1, use induction to get

Hk(RPn) =

{
R k = 0, or k = n is odd

0 otherwise,
(20.4)

Example 20.5. CPn

21 Lecture 21

Proposition 21.1. For any N , Hk(RPN ,Z2) = Z2 for k ≤ N . Denote the nontrivial
element of H1(RPN ,Z2) by a. Then a generator of Hk(RPN ,Z2) is given by ak,
where the operation is the cup product. The cohomology algebra H∗(RP∞,Z2) is a
polynomial algebra generated by 1, a.

Proof. We use the fact that singular homology is isomorphic to cellular homology
for a CW-complex. The space RPN is a CW-complex with a single cell in each
dimension less than or equal to N . To see this: the top dimensional cell is RN =
[1, x1, . . . , xN ] ⊂ RPN . The missing set is RPN−1 = [0, x1, . . . , xN ] ⊂ RPN , then use
induction. Therefore, the CW chain complex with Z2 coefficients

0→ CN
∂→ CN−1

∂→ · · · → C0 → 0. (21.1)

is just

0→ Z2
∂→ Z2

∂→ · · · → Z2 → 0. (21.2)

The boundary of any n-cell is always twice the (n − 1)-cell or 0, so the boundary
maps are all zero since the coefficients are ZZ2. This shows that Hk(RPN ,Z2) ∼= Z2.
By the universal coefficient theorem, the cohomology groups are the same.

To determine the ring structure, we need some more information, because cellular
cohomology loses the ring structure. The proof proceeds by induction. For n = 2,
Poincaré duality (which still works for Z2 coefficients on a non-orientable manifold),
says that for [a] ∈ H1(RP2,Z2), there is a dual element [a′] ∈ H1(RP2,Z2) such that
[a]∪ [a′] is the generator of H2(RP2,Z2). Clearly, the only possbility is that [a′] = [a],
so we have that a2 = [a] ∪ [a] is the generator of H2(RP2,Z2). Next, use that fact
that the inclusion RPn−1 ⊂ RPn induces isomorphisms in homology and cohomology
in dimensions strictly less than n. So then a, a2, . . . , an−1 are all non-zero. To show
that an is a generator, again use Poincaré duality. This says that there is an element
[a′] ∈ H1(RPn,Z2) such that [an−1]∪ [a′] is a generator of Hn(RPn,Z2). Again, clearly
[a′] = [a] so [an] is a generator of Hn(RPn,Z2).
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Definition 21.2. Let π : L→M be a real line bundle over M . Define w′1(L) = f ∗a,
where f is any classifying map for L.

We need to prove that this is well-defined. For this, we will prove a much more
general fact.

Proposition 21.3. If f1 : M → N is homotopic to f2 : M → N then for any vector
bundle π : E → N , we have f ∗1E

∼= f ∗2E.
Conversely, if vector bundles E1, E2 over M are equivalent, then the classifying

maps f1 : M → G(k,N1) and f2 : M → G(k,N2) are homotopic in G(k,∞) (the
infinite Grassmannian).

Proof. (Outline) For the first part, a homotopy is a smooth mapping H : [0, 1]×M →
N such that H(0, p) = f1(p), and H(1, p) = f2(p).

One proves that if H∗E can be trivialized by a covering of the form (εi, εi+1)× Vα
where Vα = f−1(Uα), and where E is trivial on Uα.

Next, one shows that if a bundle in trivial on (a, b) × U and also on (c, d) × U ,
where a < c < b < d, then the bundle is trivial on (a, d)× U .

From this it follows that H∗E is trivial on (0, 1) × Vα. This then implies that
H∗E

∣∣
{0}×M is isomorphic that H∗E

∣∣
{1}×M , which implies that f ∗1E

∼= f ∗2E.

For the second part, we saw that a classifying map f : M → RPN gives a mapping
f̂ : L → RN , which is linear and injective on fibers, and conversely, such a map
determines f . So if we have another such map ĝ : L → RN , then just take the
homotopy Ĥ(t, p) = (1 − t)f̂ + tĝ, which gives a homotopy between f and g. The
problem with this is that f̂(e) might be equal to −ĝ(e) for some vector e. To get
around this, let d1 : R∞ → R∞ be the mapping

(x0, x1, x2 . . . ) 7→ (x0, 0, x1, 0, x2, . . . ), (21.3)

and d2 : R∞ → R∞ be the mapping

(x0, x1, x2 . . . ) 7→ (0, x0, 0, x1, 0, x2, . . . ). (21.4)

Note that we must have the following homotopies

f̂ ∼= d1 ◦ f̂ ∼= d2 ◦ ĝ ∼= ĝ, (21.5)

so that f is homotopic to g.

Corollary 21.4. The vector bundles of rank k over M up to equivalence are in
bijection with the homotopy classes [M,G(k,∞)].

We claim this new definition w′1, is well-defined, and is equivalent to the first
definition of w1. To see this, note that for any mapping, we have

w′1(f ∗L) = f ∗(w′1(L)), (21.6)

and

w′1(γ1
N) = a. (21.7)

Apply this to a classifying map f : M → RPN , we have

w1(L) = w1(f ∗γ1
N) = f ∗w1(γ1

N) = f ∗[a] = w′1(L). (21.8)
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21.1 Lorentzian metrics

If we instead specify that g is non-degenerate, but with a 1-dimensional maximally
negative definite subspace at each point, then g is called a Lorentzian metric.

Proposition 21.5. If M is compact, then M admits a Lorentzian metric if and only
χ(M) = 0. If M is non-compact, then M admits a Lorentzian metric.

Proof. If M is non-compact, then M admits a nowhere vanishing vector field. This
means that

TM = A⊕B, (21.9)

where dim(Ap) = 1 for every p ∈M , and A is a trivial bundle. The bundle A admits
a Riemannian metric gA, and B admits a Riemannian metric gB. Then g = −gA+gB
is a Lorentzian metric.

If M is compact then M admits a nowhere vanishing vector field if and only if
χ(M) = 0. So if χ(M) = 0, M admits a Lorentzian metric by the same argument.
Conversely, if M admit a Lorenztian metric g, then the negative definite subspace
defines a 1-dimensional sub-bundle of the tangent bundle, i.e.,

TM = A⊕B, (21.10)

where dim(Ap) = 1 for every p ∈ M . There is a double cover π : M̃ → M such that
π∗A is a trivial bundle. So then

TM̃ = π∗TM = π∗A⊕ π∗B. (21.11)

Since π∗A is trivial, M̃ admits a non-zero vector field, which implies that χ(M̃) = 0.
But the Euler number is multiplicative under coverings, so χ(M) = χ(M̃)/2 = 0.

Corollary 21.6. Sn admits a Lorenztian metric if and only if n ≤ 3 and n is odd.
The only compact surfaces which admit a Lorenztian metric are T 2 and the Klein

bottle.

22 Lecture 22

22.1 Realification of complex bundles

If we view C as a 2-dimensional vector space over R, then we can view any com-
plex rank k vector bundle as a real rank 2k vector bundle. This corresponds to an
embedding

GL(k,C) ↪→ GL(2k,R) (22.1)

given by

A+ iB 7→
(
A −B
B A

)
(22.2)
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Proposition 22.1. Any complex vector bundle, when viewed as a real vector bundle,
is orientable.

Proof. The matrix (
A+ iB 0

0 A− iB

)
(22.3)

is related to the matrix on the right hand side of (22.2) by a change of basis. Therefore,

det

(
A −B
B A

)
= det(A+ iB) det(A− iB) = | det(A+ iB)|2 > 0, (22.4)

which shows that above imbedding maps

GL(k,C) ↪→ GL+(2k,R). (22.5)

Alternatively, by choosing a Hermitian metric, we can reduce the structure group to
U(k). Then we have

(A+ iB)(A+ iB)T = Idk, (22.6)

which yields

AAT +BBT = Idk (22.7)

BAT − ABT = 0. (22.8)

It follows that(
A −B
B A

)
·
(
A −B
B A

)T
=

(
A −B
B A

)
·
(
AT BT

−B AT

)
=

(
Idk 0
0 Idk

)
, (22.9)

which shows that U(n) ↪→ SO(2n) under the above imbedding.

23 Lecture 23

23.1 Connections on vector bundles

A connection is a mapping Γ(TM)× Γ(E)→ Γ(E), with the properties

• ∇Xs ∈ Γ(E),

• ∇f1X1+f2X2s = f1∇X1s+ f2∇X2s,

• ∇X(fs) = (Xf)s+ f∇Xs.
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In coordinates, letting si, i = 1 . . . p, be a local basis of sections of E,

∇∂isj = Γkijsk. (23.1)

If E carries an inner product, then ∇ is compatible if

X〈s1, s2〉 = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉. (23.2)

For a connection in TM , ∇ is called symmetric if

∇XY −∇YX = [X, Y ], ∀X, Y ∈ Γ(TM). (23.3)

Theorem 23.1. (Fundamental Theorem of Riemannian Geometry) There exists a
unique symmetric, compatible connection in TM .

Invariantly, the connection is defined by

〈∇XY, Z〉 =
1

2

(
X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

−〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉
)
.

(23.4)

Letting X = ∂i, Y = ∂j, Z = ∂k, we obtain

Γlijglk = 〈Γlij∂l, ∂k〉 = 〈∇∂i∂j, ∂k〉

=
1

2

(
∂igjk + ∂jgik − ∂kgij

)
,

(23.5)

which yields the formula

Γkij =
1

2
gkl
(
∂igjl + ∂jgil − ∂lgij

)
(23.6)

for the Riemannian Christoffel symbols.

23.2 Pull-back bundles

Let π : E → M be a real vector bundle of rank k over M , and f : N → M be a
smooth mapping. Recall that

f ∗E = {(p, v) ∈ N × E | f(p) = π(v)} (23.7)

is a vector bundle overN , called the pull-back bundle of E along f . Note the following:

• If X is a vector field on N , then in general f∗X is not a vector field on M .
However, f∗X is a well-defined section of f ∗TM .

• For a vector v ∈ Ef(p), we define f ∗v ∈ (f ∗E)p by f ∗v = (p, v).

• Given a section s : M → E, we define the pull-back f ∗s ∈ Γ(f ∗E) by f ∗s(p) =
(p, s ◦ f).
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Proposition 23.2 (Pull-back connection). If f : N →M , and ∇ is a connection in
π : E →M , then there is a unique connection f ∗∇ in the pull-back bundle f ∗E over
N such that for any section s : M → E, and X ∈ TN ,

(f ∗∇)X(f ∗s) = f ∗(∇f∗Xs). (23.8)

Proof. To define the pullback connection, fix a p ∈ N , and choose a local frame
s1, . . . sk near f(p) for the bundle E. Then locally, write a section s ∈ Γ(f ∗E) as

s =
k∑
i=1

si(f ∗si), (23.9)

where si is a smooth function defined in a neighborhood of p. Then for X ∈ TpN ,
define

(f ∗∇)Xs = X(si)f ∗si + sif ∗(∇f∗Xsi). (23.10)

Observe that the connection, if it exists, is locally unique. This formula then yields
a well-defined global connection on f ∗E over N , which is the unique one satisfying
(23.8)

Note that if E admits a Riemannian metric g, then f ∗E admits a Riemmannian
metric f ∗g defined by

(f ∗g)(v, w) ≡ g(π2v, π2w). (23.11)

Note that this is really a “restriction” of the metric to the pull-back bundle, it is not
the same as the pull-back of a tensor field. For the restriction, we have the following

Proposition 23.3. If ∇ is compatible with g then f ∗∇ is compatible with f ∗g.

Proof. Let f ∗s1, f
∗s2 ∈ Γ(f ∗E) for sections s1 and s2 in Γ(E) and X ∈ TpN . Then

Xp

(
f ∗g(f ∗s1, f

∗s2)
)

= Xp

((
g(s1, s2)

)
◦ f
)

= (f∗X)(g(s1, s2))

= g(∇f∗Xs1, s2) + g(s1,∇f∗Xs2)

= g(π2((f ∗∇)Xf
∗s1), π2f

∗s2) + g(π2f
∗s1, π2((f ∗∇)Xf

∗s2))

= f ∗g((f ∗∇)Xf
∗s1, f

∗s2) + f ∗g(f ∗s1, (f
∗∇)Xf

∗s2).

(23.12)

The general case follows since any section may locally be written in the form (23.9).
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24 Lecture 24

We will show some properties of pullback connection which will be useful later.

Proposition 24.1. Let f : N → M be smooth. If ∇ is a symmetric connection in
E = TM , then the pull-back connection f ∗∇ on f ∗TM satifies for any X, Y ∈ Γ(TN),

(f ∗∇)X(f∗Y )− (f ∗∇)Y (f∗X) = f∗([X, Y ]). (24.1)

Proof. Choose a local coordinate xi : U → Rm near p and yi : V → Rn near f(p).
Write X = X i ∂

∂xi
and Y = Y i ∂

∂xi
, and y ◦ f = (f 1, . . . , fn), where f i : U → R. Note

that

f∗X =
m∑
j=1

n∑
α=1

Xj
( ∂

∂xj
fα
)
f ∗
( ∂

∂yα

)
. (24.2)

Then

(f ∗∇)X(f∗Y )− (f ∗∇)Y (f∗X) = (f ∗∇)X

(
Y j
( ∂

∂xj
fα
)
f ∗
( ∂

∂yα

))
− (X ↔ Y )

= (f ∗∇)Xi ∂

∂xi

(
Y j
( ∂

∂xj
fα
)
f ∗
( ∂

∂yα

))
− (X ↔ Y )

= X i(f ∗∇) ∂

∂xi

(
Y j
( ∂

∂xj
fα
)
f ∗
( ∂

∂yα

))
− (X ↔ Y )

= X i ∂

∂xi

(
Y j
( ∂

∂xj
fα
))
f ∗
( ∂

∂yα

)
+X iY j

( ∂

∂xj
fα
)

(f ∗∇) ∂

∂xi

(
f ∗

∂

∂yα

)
− (X ↔ Y )

= X i ∂

∂xi

(
Y j ∂

∂xj
fα
)
f ∗
( ∂

∂yα

)
+X iY j

( ∂

∂xj
fα
)
f ∗
(
∇f∗

∂

∂xi

∂

∂yα

)
− (X ↔ Y )

= f∗([X, Y ]).

(24.3)

This is because the covariant derivative terms vanish. To see this,

X iY j
(∂fα
∂xj

)
f ∗
(
∇f∗

∂

∂xi

∂

∂yα

)
− (X ↔ Y )

= X iY j
(∂fα
∂xj

)
f ∗
(
∇ ∂fβ

∂xi
· ∂
∂yβ

∂

∂yα

)
− (X ↔ Y )

= X iY j
(∂fα
∂xj

)(∂fβ
∂xi

)
f ∗
(
∇ ∂

∂yβ

∂

∂yα

)
− (X ↔ Y )

= X iY j
(∂fα
∂xj

)(∂fβ
∂xi

)
f ∗
(
∇ ∂

∂yβ

∂

∂yα
−∇ ∂

∂yα

∂

∂yβ

)
= 0,

(24.4)

because ∇ is symmetric.

Definition 24.2. The curvature of a connection ∇ on a vector bundle E over M is
R∇ ∈ Γ(T ∗M ⊗ T ∗M ⊗ E∗ ⊗ E) defined by

R∇(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s. (24.5)
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Exercise 24.3. Show that R∇ is tensorial in all variables.

Proposition 24.4. If f : N → M and ∇ is a connection on E over M and X, Y ∈
Γ(TN), s ∈ Γ(E) then

Rf∗∇(X, Y )f ∗s = f ∗
(
R∇(f∗X, f∗Y )s

)
. (24.6)

Proof. Choose a local coordinate xi : U → Rm near p and yi : V → Rn near f(p).
Write y ◦ f = (f 1, . . . , fn), where f i : U → R. Let s be a section of Γ(E), then we
compute

Rf∗∇

( ∂

∂xi
,
∂

∂xj

)
f ∗s = (f ∗∇) ∂

∂xi
(f ∗∇) ∂

∂xj
f ∗s− (i↔ j)

= (f ∗∇) ∂

∂xi
f ∗(∇f∗

∂

∂xj
s)− (i↔ j)

= (f ∗∇) ∂

∂xi

( ∂

∂xj
fα
)
f ∗
(
∇ ∂

∂yα
s
)
− (i↔ j)

=
( ∂

∂xi
∂

∂xj
fα
)
f ∗
(
∇ ∂

∂yα
s
)

+
( ∂

∂xj
fα
)

(f ∗∇) ∂

∂xi
f ∗
(
∇ ∂

∂yα
s
)
− (i↔ j).

(24.7)

Since the Hessian is symmetric in i and j, we have

Rf∗∇

( ∂

∂xi
,
∂

∂xj

)
f ∗s =

( ∂

∂xj
fα
)

(f ∗∇) ∂

∂xi
f ∗
(
∇ ∂

∂yα
s
)
− (i↔ j)

=
( ∂

∂xj
fα
)
f ∗
(
∇f∗

∂

∂xi
∇ ∂

∂yα
s
)
− (i↔ j)

=
( ∂

∂xj
fα
)( ∂

∂xi
fβ
)
f ∗
(
∇ ∂

∂yβ
∇ ∂

∂yα
s
)
− (i↔ j)

=
( ∂

∂xj
fα
)( ∂

∂xi
fβ
)
f ∗
(
∇ ∂

∂yβ
∇ ∂

∂yα
s
)
− (α↔ β)

=
( ∂

∂xj
fα
)( ∂

∂xi
fβ
)
f ∗R∇

( ∂

∂yβ
,
∂

∂yα

)
s

= f ∗
(
R∇(f∗X, f∗Y )s

)
.

(24.8)

25 Lecture 25

25.1 Parallel Transport

As above, let ∇ be a connection in the bundle π : E →M .

Definition 25.1. A section s ∈ Γ(E) is parallel if∇s ∈ Γ(T ∗M⊗E) satisfies∇s ≡ 0.

Choose a local basis of section si, i = 1 . . . k of E, and local coordinates xi on M ,
then by definition

∇ ∂

∂xi
sj = Γkijsk, (25.1)
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so then for a section s = sjsj, we have

∇ ∂

∂xi
s =

( ∂

∂xi
sj
)
sj + sjΓkijsk

=
( ∂

∂xi
sj + Γjiks

k
)
sj,

(25.2)

so s being parallel implies the system of first order linear differental equations

∂

∂xi
sj + Γjiks

k = 0. (25.3)

A parallel section does not necessarily exist, even locally. In general, existence of
a parallel section is an extremely restrictive condition. Note that if the Christoffel
symbols vanish, the functions sj must be constant.

Example 25.2. The space of parallel vector fields for a flat metric on a torus is 2-
dimensional. If Σ is any compact orientable surface of genus g 6= 1, then there are no
nontrivial parallel vector fields on Σ with respect to any metric. If there were, then
this would be a nonzero vector field which implies the Euler characteristic vanishes.

Let γ : I → M be a smooth curve, where I is an interval. Then the pull-back
bundle γ∗E is a bundle over I and carries the connection γ∗∇.

Definition 25.3. A section s ∈ γ∗E is parallel along γ if (γ∗∇) d
dt
s = 0 for every

t ∈ I. Given a vector Vt0 ∈ Eγ(t0), there exists a unique parallel section V ∈ γ∗E such
that V (t0) = (t0, Vt0). The section V is called the parallel translate of Vt0 along γ.

Proposition 25.4. Let γ : I → M , and choose a coordinate system x : U → Rn

and a coordinate neighborhood of γ(t0), t0 ∈ I. Assume also that E|U is trivial, and
let s1, . . . , sk be a local basis of E over U Write x ◦ γ(t) = (γ1(t), . . . , γn(t)). Write
s ∈ Γ(γ∗E) as s =

∑k
l=1 s

iγ∗si, where si : U → R. Then then equation for s ∈ Γ(γ∗E)
to be parallel along γ is locally

d

dt
sl + Γlij(γ(t))sj

(dγi
dt

)
= 0. (25.4)

Proof. First, using the chain rule, we write

γ∗

( d
dt

)
=
dγi

dt
· ∂
∂xi

. (25.5)

Next, we calculate

(γ∗∇) d
dt
s = (γ∗∇) d

dt

(
sj(γ∗sj)

)
=
dsj

dt
(γ∗sj) + sj(γ∗∇) d

dt
(γ∗sj).

(25.6)
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Note that by the definition of the pullback connection

(γ∗∇) d
dt

(γ∗sj) = γ∗
(
∇γ∗

d
dt
sj

)
= γ∗

(
∇ dγi

dt
· ∂
∂xi

sj

)
=
dγi

dt
γ∗
(
∇ ∂

∂xi
sj

)
=
dγi

dt
Γlij(γ(t))(γ∗sl).

(25.7)

Substituting this into the above, we obtain

(γ∗∇) d
dt
s =

dsl

dt
(γ∗sl) + sj

dγi

dt
Γlij(γ(t))(γ∗sl)

=
(dsl
dt

+
dγi

dt
Γlij(γ(t))sj

)
(γ∗sl),

(25.8)

and since the γ∗sl are a local basis of sections of γ∗E, the proposition follows.

Since this is a first order linear ODE, the parallel translate of a vector at any point
is a globally defined section along γ, there is no obstruction. This is closely related
to the fact that the curvature tensor of γ∗∇ is identically zero, which follows from
skew-symmetry of the curvature tensor in the first two indices.

Exercise 25.5. Prove that if γ : [a, b]→M , then Pa,b : Eγ(a) → Eγ(b) is an invertible
linear mapping.

Lemma 25.6. If M is connected, and s ∈ Γ(E) is parallel, then s(p) = 0 at a single
point p ∈ M implies that s ≡ 0. Equivalently, if s is non-zero at a point p, then s is
non-zero everywhere.

Proof. Take q ∈ M , and let γ : I → M be a path between p and q. Consider

γ∗s ∈ Γ(γ∗E). Define γ′ ∈ Γ(γ∗E) by γ′ ≡ γ∗

(
∂
∂t

)
. Then by the definition of the

pull-back connection

(γ∗∇) d
dt

(γ∗s) = γ∗(∇γ′s) = 0. (25.9)

Therefore γ∗s is parallel along γ. Since s(p) = 0, by the uniqueness theorem for
ODEs, γ∗s ≡ 0, so s(q) = 0.

Proposition 25.7. If a connection ∇ on π : E → M is compatible with a metric g,
then parallel translation along any curve is an isometry.

Proof. Given a curve γ : I →M , and a, b ∈ I, and Va,Wa ∈ Eγ(a) then Va,Wa extend
uniquely to parallel vector fields along γ, V,W ∈ Γ(γ∗E). Recall that γ∗g is a metric
on the bundle γ∗E → I, so γ∗g(V,W ) : I → R is a function on I. By Proposition 23.3,

56



the connection γ∗∇ is compatible with γ∗g. In the definition of compatibility, let X
be the vector field d/dt ∈ Γ(TI), then

d

dt

(
(γ∗g)(V,W )

)
= γ∗g

(
(γ∗∇) d

dt
V,W

)
+ γ∗g

(
V, (γ∗∇) d

dt
W
)

= 0, (25.10)

since both V and W are parallel. Since inner product is constant, the proposition
follows.

26 Lecture 26

We begin with the following lemma.

Lemma 26.1 (Independence of parametrization). Let γ : [a, b] → M be a smooth
curve, and let Pa,b : Eγ(a) → Eγ(b) be parallel translation along γ from a to b. Let
α : [c, d] → [a, b] be a diffeomorphism with α(c) = a and α(d) = b. Consider γ̃ :
[c, d]→M defined by γ̃ = γ ◦ α. Let P̃c,d : Eγ(a) → Eγ(b) be parallel translation along

γ̃ from c to d. Then Pa,b = P̃c,d.

Proof. Take Va ∈ Eγ(a) and extend Va to a section V ∈ Γ(γ∗E) such that V is parallel

along γ. Also, we can extend Va to a section Ṽ ∈ Γ(γ̃∗E) such that V is parallel
along γ̃. Noting that γ̃∗E ∼= α∗γ∗E, we have the diagram

γ̃∗E γ∗E E

[c, d] [a, b] M,

π

α γ

(26.1)

Note that V is a section of the middle bundle, and Ṽ is a section of the leftmost
bundle. Consider the section V̂ = α∗V ∈ Γ(α∗γ∗E) ∼= Γ(γ̃∗E). Then(

α∗(γ∗∇)
)
d
dt

(V̂ ) = α∗
(
(γ∗∇)α∗ ddt

V
)

= α∗
(
(γ∗∇)α′· d

dt
V
)

= α∗
(
α′(γ∗∇) d

dt
V
)

= 0,

(26.2)

since V is parallel along γ. So V̂ is parallel along γ̃, and V̂ (c) = α∗(V (a)) = Va.
But Ṽ is by definition a parallel section along γ̃ with the same initial value. By the
uniqueness theorem for ODEs, we conclude that Ṽ = V̂ = α∗V . Finally, we have
that Ṽ (d) = α∗(V (b)) = Vb, so the parallel translations are the same.

26.1 Holonomy

Notice that we can obviously extend parallel translation to piecewise smooth curves,
and this will also be independent of parametrization. Given piecewise smooth curves

57



γ1 : [a, b] → M and γ2 : [b, c] → M , with γ1(b) = γ2(b), define the composition
γ1 ∗ γ2 : [a, b]→M to be the curve

γ1 ∗ γ2(t) =

{
γ1(t) t ∈ [a, b]

γ2(t) t ∈ [b, c]
(26.3)

Given γ : [a, b]→M , define the reverse curve γ−1 : [a, b]→M by γ−1(t) = γ(a+b−t).
By independence of parametrization, we can always reparametrize all curves to be
defined on [0, 1], and for the composition, make the first one from [0, 1/2] and the
second one from [1/2, 1]. Given p1, p2 ∈M , parallel translation from Ep1 to Ep2 along
piecewise smooth paths is associative, that is, parallel transport along α ∗ (β ∗ γ)
equals parallel transport along (α ∗ β) ∗ γ.

Definition 26.2. Given p ∈ M , the holonomy group of a connection ∇ : E → M
at p is the subgroup Holp(∇) ⊂ GL(Ep) consisting of all the parallel transport maps
Ep → Ep along all piecewise smooth loops based at p, with group operation induced
from the composition of paths.

If we take a path γ : [a, b]→M with γ(a) = p1 and γ(b) = p2, then sending a loop
α based at p1 to β = γ ∗α ∗ γ−1 gives an isomorphism Holp1(∇) ∼= Holp2(∇), so if M
is connected then we can talk about the holonomy group Hol(∇) ⊂ GL(n,R). Note
that if ∇ is compatible with a Riemannian metric g on E, then by Proposition 25.7,
we can view Hol(∇) ⊂ O(n,R).

27 Lecture 27

We begin with the following.

Proposition 27.1. The holonomy group Hol(∇) = {e} if and only if E → M is a
trivial bundle, and there is a global basis of parallel sections of E, in other words ∇
is the trivial connection. In this case, we have R∇ ≡ 0.

Proof. If Hol(∇) is trivial, then fix any point p0 ∈ M . For any other point p ∈ M ,
choose a path γ from p to p0, and let P : E → Ep0 be the mapping given by parallel
transport of Vp ∈ Ep along γ. Since Hol(∇) is trivial, this mapping is independent of
the choice of γ, and gives a global trivialization of E, with a basis of parallel sections.
The converse is obvious. To see the last statement, choose a basis of parallel sections
si, i = 1 . . . k, then

R∇(X, Y )si = ∇X∇Y si −∇Y∇Xsi −∇[X.Y ]si ≡ 0, (27.1)

since the si are parallel. Since R∇ is a tensor, this implies that R∇ ≡ 0.

Remark 27.2. In general, vanishing of curvature R∇ = 0 does not imply the con-
nection is trivial, we will say more about this below.
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Proposition 27.3. For ` ≤ k, if there is a trivial subbundle Ẽ ⊂ E of rank ` which
is spanned by parallel sections s1, . . . s` (in which case we say that Ẽ is a parallel
subbundle) then the holonomy group Hol(∇) ⊂ GL(k−`,R) ⊂ GL(k,R). Conversely,
if there is an `-dimensional subspace of Vp ⊂ Ep which is invariant under the holonomy
group action, then there is a parallel subbundle Ẽ ⊂ E such that Ẽp = Vp. In this
case, we have R∇(X, Y )s = 0 if s(p) ∈ Ẽp at p ∈M .

Proof. Clearly, Ẽ = span{s1, . . . , sl} defines a trivial rank ` subbundle of E, which is
preserved under parallel translation. Conversely, Ẽ is obatined by parallel translating
Vp to any other point along a curve, with the resulting subspace being independent
of choice of curve. The curvature statement is similar to above.

Definition 27.4. A homotopy between piecewise smooth curves γ0 : [0, 1]→M and
γ1 : [0, 1] → M is a continuous mapping H : [0, 1] × [0, 1] → M such that H(0, t) =
γ0(t), H(1, t) = γ1(t) and there exists a partition 0 = t0 < t1 < · · · < tn−1 < tn = 1 so
that H : [0, 1]× (ti, ti+1)→M is smooth. If γ0(0) = γ1(0) = p and γ0(1) = γ1(1) = q,
then we say the homotopy fixes endpoints if H(s, 0) = p and H(s, 1) = q for all
s ∈ [0, 1].

Definition 27.5. The restricted holonomy group of ∇ at p is the subgroup of
Holo,p(∇) ⊂ Holp(∇) given by parallel translates along all contractible curves (curves
which are homotopic to a constant path {p}).

Again if M is connected, there is a well-defined group Holo(∇) up to isomorphism.

Proposition 27.6. The group Hol(∇) is a Lie group and Holo(∇) is the identity
component (which is a normal subgroup), and there exists a homomorphism from
π1(M) onto the quotient group Hol(∇)/Holo(∇).

Proof. First, fixing a basepoint, we have the embedding Holo(∇) ⊂ GL(Ep), so
Holo(∇) is a subgroup of a Lie group. We claim that Hol0(∇) is path connected.
To see this, let H be a homotopy between γ and a constant path {p}, and let γs(t)
be the curve H(s, t). Let Pγs : Ep → Ep be parallel translation along γs. Then Pγs
is a path between the restricted holonomy group element determined by γ and the
identity map Id : Ep → Ep, since parallel translation along a constant curve is trivial.
By a Theorem of Yamabe [?], Holo(∇) is a Lie group. It is a normal subgroup of
Hol(∇) because for all h ∈ Hol(∇), h−1 ◦ Pγs ◦ h is a path from h−1 ◦ Pγ ◦ h to Id.
Then Hol(∇) is a Lie group, with Hol(∇)/Hol0(∇) in one-one correspondence with
the connected components. This is countable because there is clearly a well-defined
homomorphism from π1(M) → Hol(∇)/Hol0(∇) which is surjective, and because
π1(M) is countable.
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28 Lecture 28

28.1 Group actions

First, we recall some definitions. A left action of a Lie group G on a manifold M is
a smooth mapping F : G×M →M satisfying

F (g1g2, p) = F (g1, F (g2, p)), F (e, p) = p (28.1)

We will also sometimes denote the action as p 7→ g · p. Given a group action of G on
M the orbit of p ∈M is

F (G, p) = {g · p |g ∈ G}. (28.2)

Being in the same orbit defines an equivalence relation, and the space of orbits M/G
carries the quotient topology such that

π : M →M/G (28.3)

is open.

• The action is effective is F (g, p) = p for all p ∈M implies that g = e.

• The action is transitive if for all p, q ∈M , there exists g ∈ G such that F (g, p) =
q.

• The action is free if the only diffeomorphism p 7→ F (g, p) with a fixed point is
with g = e.

• The action is properly discontinuous if for p ∈ M , there exists a neighborhood
Up of p such that F (g, Up) ∩ Up 6= ∅ if and only if g = e.

Note that

properly discontinuous⇒ free⇒ effective. (28.4)

The first basic theorem we will need is the following.

Theorem 28.1 ([?]). If G acts properly discontinuously on M then M/G is a man-
ifold, and π : M →M/G is a covering space of M/G.

For p ∈M the isotropy group at p is

H = {g ∈ G | F (g, p) = p} (28.5)

The second basic theorem we will need is the following.

Theorem 28.2 ([War83]). Assume that G acts transitively on M . For p0 ∈ M , let
H denote the isotropy group at p0, and let G/H be the space of left cosets of H with
the quotient topology. Then the mapping β : G/H →M defined by

β(gH) = F (g, p0) (28.6)

is a diffeomorphism.
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28.2 Examples

Take a basis v1, . . . , vn of Rn, and consider the lattice

L = {a1v1 + · · ·+ anvn|(a1, . . . , an) ∈ Zn} (28.7)

Let Zn acts on Rn by integers translations in the lattice directions. This is properly
discontinuous, so by Theorem 28.1 then quotient Rn/Zn is a manifold, and it is not
hard to see that

Rn/Zn ∼=
n︷ ︸︸ ︷

S1 × · · · × S1 = T n (28.8)

is an n-dimensional torus. Note the Euclidean metric descends to a metric on T n

called the flat metric.
The next example is the unit n-sphere Sn ⊂ Rn+1, with the Riemannian metric

induced from Euclidean space. It is not hard to see that SO(n+1) acts transitively on
Sn, with stabilizer subgroup of any point isomorphic to SO(n), so by Theorem 28.2
we have

Sn = SO(n+ 1)/SO(n) (28.9)

• For an n-torus T n with a flat metric g, the holonomy of the Riemannian con-
nection is trivial, and there are n linearly independent parallel sections.

• For Sn with the round metric and Riemannian connection, Hol(∇) = SO(n)
(details given in lecture). To see this, prove for S2 first. Parallel translation
along great circles is the identity map after rotating to identity tangent spaces.
From the north pole, take a path down a longitude to the equator, then travel
along the equator, and then go back up to the north pole along another longi-
tude. This shows that the holonomy group at the north pole is S1 = SO(2).
For higher dimensions, assume that the isotropy group is

H =

(
1 0
0 SO(n)

)
(28.10)

Using the canonical form for orthogonal matrices, we can assume that the SO(n)
piece is block diagonal with 2 × 2 rotation matrices, and possibly an identity
block. For each 2 × 2 block, we can obtain this map by the above parallel
translation argument on S2, and this completes the proof. Note that by Propo-
sition 27.3, there are no parallel vector fields, even locally.

• For RPn with the round metric and Riemannian connection, Hol(∇) = O(n),
Holo(∇) = SO(n), and π1(RPn) = Hol(∇)/Holo(∇) = Z2.
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29 Lecture 29

Today, we will show the following.

Proposition 29.1. If R∇ ≡ 0, and p, q ∈M , and γ0, γ1 are paths from p to q which
are homotopic with fixed endpoints, then parallel tranport along γ0 and γ1 from p to
q is the same.

Proof. Let H : [0, 1] × [0, 1] → M be a homotopy between γ0 : [0, 1] → M and
γ1 : [0, 1] → M H(0, t) = γ0(t), H(1, t) = γ1(t) which fixed endpoints, that is,
H(s, 0) = p and H(s, 1) = q for all s ∈ [0, 1]. Let Ps(t) be parallel transport along
γs(t) = H(s, t) from Ep to Eγs(t), and let

Ps ≡ Ps(1) : Ep → Eq. (29.1)

Take V0 ∈ Ep and define V (s, t) = Ps(t)V0. This is a piecewise smooth section
along H, that is, V ∈ Γ(H∗E). Consider the pull-back connection H∗∇ which is a
connection on H∗E → [0, 1]× [0, 1]. Since V is by definition parallel along the curve
γs(t), we have

(H∗∇) ∂
∂t
V (s, t) = 0 (29.2)

(29.3)

with initial conditions V (s, 0) = V0, which makes sense since the fiber of H∗E over
I × {0} is the fixed fiber Ep.

Next, define

W (s, t) = (H∗∇) ∂
∂s
V (s, t) (29.4)

Since the homotopy fixes endpoints, it is not hard to see that

W (s, 0) =
∂

∂s
V (s, t)|t=0 = 0 (29.5)

W (s, 1) =
∂

∂s
V (s, t)|t=1 =

∂

∂s
(PsV0). (29.6)

By definition of the curvature tensor, we have

(H∗∇) ∂
∂s

(H∗∇) ∂
∂t
V − (H∗∇) ∂

∂t
(H∗∇) ∂

∂s
V = RH∗∇

( ∂
∂s
,
∂

∂t

)
V (29.7)

By the assumption that R∇ = 0, and Proposition 24.4, the right hand side is zero.
Also, from (29.2), the first term on the left hand side is zero, so we have

(H∗∇) ∂
∂t

(H∗∇) ∂
∂s
V = (H∗∇) ∂

∂t
W = 0. (29.8)

Since W (s, 0) = 0 and W is also parallel along the γs(t)-curves, we conclude that

W (s, 1) =
∂

∂s
(PsV0), (29.9)

which shows that PsV0 is independent of s.
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This implies the following.

Corollary 29.2. If R∇ = 0, then the restricted holonomy group at any p ∈ M is
trivial, and there is a surjective homomorphism from π1(M) onto Hol(∇). Conse-
quently, if R∇ = 0 and π1(M) = {e}, then E is a trivial bundle and ∇ is the trivial
connection on E.

Proof. The first part follows from Propositions 27.6 and 29.1. The second part then
follows from Proposition 27.1.

Remark 29.3. As an example that this is sharp, the flat metric on T 2 descends to
a flat metric on the Klein bottle K2 = T 2/Z2. The Riemannian connection is a flat
connection on TK2, but this is not a trivial bundle (since K2 is non-orientable). We
have Holo(∇) = {e}, and Hol(∇) = Z2.

30 Lecture 30

Today we will prove a few more items about holonomy. The first is the following.

Proposition 30.1. If ∇ is a connection on π : E → M then the structure group of
E can be reduced to Hol(∇).

Proof. A local trivialization Φα : Uα × Rk → E|Uα is equivalent to choosing a local
basis of sections si ∈ Γ(E|Uα) for i = 1 . . . k. Choose a coordinate system x : Uα → Rn,
and assume that x(p) = 0 and that x(Uα) is a ball centered at the origin, and choose
any frame e1, . . . , ek at p. Choose radial coordinate on Rn, and parallel translate
along radial rays to extend the frame at p to a frame s1, . . . , sk in Uα. It is not hard
to see that this is a smooth frame field over Uα, and thus gives a local trivialization
of E over Uα. The overlap maps must lie in

ϕαβ : Uα ∩ Uβ → Holp(∇) ⊂ GL(k,R). (30.1)

However, since the holonomy groups at different points are conjugate, we can choose
functions fα : Uα → GL(k,R) and fβ : Uβ → GL(k,R) so that

f−1
α · ϕαβ · fβ ∈ Holp(∇), (30.2)

which is a reduction of the structure group.

Another proposition which will be useful later.

Proposition 30.2. Given any p ∈ M , there exists a local frame field s1, . . . , sk in a
neighborhood of p such that ∇si(p) = 0, and Γlij(p) = 0.

Proof. As in the previous proposition, parallel translate a fixed frame along radial
curves. Then clearly ∇sj = 0 at p. Next, choosing a local coordinate system x near
p, we have

0 = ∇ ∂

∂xi
sj(p) = Γkij(p)sk. (30.3)

The right hand side is a linear combination of the sk which form a basis, so by linear
independence, Γkij(p) = 0.
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We return to flat connections.

Proposition 30.3. The space of flat connections on π : E → M modulo pullback
under bundle equivalence can be identified with the k-dimensional representations of
π1(M) modulo equivalence of representations.

Proof. By the corollary above, if ∇ is a flat connection, then one obtains a homomor-
phism

ρ : π1(M)→ Hol(∇) ⊂ GL(k,R) (30.4)

which is a representation of π1(M).
Conversely, given such a representation, one can build a flat connection by taking

flat connection on the the trivial bundle M̃ × Rk, where M̃ is the universal cover of
M , and quotienting by the action of π1(M)

γ · (p̃, v) = (γp̃, ρ(γ)v), (30.5)

where γ ∈ π1(M), which acts on p̃ ∈ M̃ , and v ∈ Rk, to get a bundle Ẽ → M . Note
the following. If α : M̃ → M denotes the universal cover, then α∗Ẽ is the trivial
bundle.

Note that if ∇ is a flat connection, then by Proposition ?, Hol(∇) is a discrete
group. By Proposition ?, the transition functions of the bundle can be taken to be
constant.

In this case, we have the complex

· · · Ωl−1(M,E) Ωl(M,E) Ωl+1(M,E) · · · ,d∇ d∇ d∇ d∇ (30.6)

where Ωl(M,E) = Γ(Λl(T ∗M)⊗ E), and

d∇(α⊗ s) = dα⊗ s+ α ∧∇s. (30.7)

Note that this is a complex by flatness of the bundle.
So for a flat connection on a bundle, one can define a cohomology theory

Hp
∇(M,E) =

Ker{δ : Ωp(M,E)→ Ωp+1(M,E)}
Im{δ : Ωp−1(M,E)→ Ωp(M,E)}

. (30.8)

By the Proposition above, this can really be thought of as a fancy invariant de-
pending upon representation theory of π1(M).

31 Lecture 31

Today we will show that the curvature tensor can be obtained directly from parallel
transport. Take two linearly independent vectors Xp, Yp ∈ TpM . Choose a coordinate
system around p ∈ M , so that Xp = ∂

∂x1
, Yp = ∂

∂x2
. Let Dε1,ε2 be the coordinate

rectangle with side length εi in the variable xi, for i = 1, 2. Let Pε1,ε2 : Ep → Ep
denote parallel translation along the boundary of Dε1,ε2 .
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Theorem 31.1. We have

Pε1,ε2sp = sp − ε1ε2R∇(X, Y )sp + o(ε21 + ε22)sp, (31.1)

as ε1, ε2 → 0.

Proof. Label everything as follows:

x2

x1

A γAB B

γBC

C
γCD

D

γDA

Choose a local basis of sections s1, . . . , sk so that ∇sj(A) = 0, and write a section

as s =
∑k

j=1 s
jsj for functions sj. Parametrize γAB by t 7→ (t, 0, · · · , 0) with t ∈ [0, ε1].

The ODE for parallel transport along γAB is

d

dt
sj(t, 0, . . . , 0) + Γj1l(t, 0, . . . , 0)sl(t, 0, . . . , 0) = 0. (31.2)

Using a Taylor exapansion,

sj(t, 0, . . . , 0) = sjA +
d

dt
sj(t, 0, . . . , 0)

∣∣∣
t=0

+
1

2

d2

dt2
sj(t, 0, . . . , 0)

∣∣∣
t=0

+O(t3), (31.3)

as t→ 0.
The ODE (31.2) yields

d

dt
sj(t, 0, . . . , 0)

∣∣∣
t=0

= −Γj1l(0, . . . , 0)slA (31.4)

and differentiating (31.2) yields

d2

dt2
sj(t, 0, . . . , 0)

∣∣∣
t=0

= − d

dt
Γj1l(t, 0, . . . , 0)

∣∣∣
t=0
slA − Γj1l(0, . . . , 0)

d

dt
sl(t, 0, . . . , 0)

∣∣∣
t=0

= − d

dt
Γj1l(t, 0, . . . , 0)

∣∣∣
t=0
slA = −∂Γj1l

∂x1
(0)slA,

(31.5)

because the second terms vanishes since we are using an adapted frame.
Putting all this together, we obtain

sjB = sj(ε1, 0, . . . , 0) = sjA −
1

2
ε21
∂Γj1l
∂x1

(0)slA +O(ε31), (31.6)

as ε1 → 0.
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In a similar fashion, we can compute the following parallel transports. Along the
curve γBC : t 7→ (ε1, t, 0 . . . , 0),

sjC = sj(ε1, ε2, . . . , 0) = sjB − ε1ε2
∂Γj2l
∂x1

(0)slB −
1

2
ε22
∂Γj2l
∂x2

(0)slB + l.o.t., (31.7)

along the curve γCD : t 7→ (ε1 − t, ε2, 0, . . . , 0),

sjD = sj(0, ε2, . . . , 0) = sjC + ε1ε2
∂Γj1l
∂x2

(0)slC +
1

2
ε21
∂Γj1l
∂x1

(0)slC + l.o.t., (31.8)

and along the curve γDA : t 7→ (0, ε2 − t, 0, . . . , 0),

sjA = sj(0, 0, . . . , 0) = sjD +
1

2
ε22
∂Γj2l
∂x2

(0)slD +O(ε32), (31.9)

Adding these four parallel transport equations together yields

Pε1,ε2sA = sA + ε1ε2

(∂Γj1l
∂x2

(0)− ∂Γj2l
∂x1

(0)
)
slAsj(0) + l.o.t.

= sA − ε1ε2R∇
( ∂

∂x1
,
∂

∂x2

)
sA + l.o.t.,

(31.10)

using the definition of the curvature tensor, and since the frame is adapted at A.

32 Lecture 32

32.1 Geodesics

Now let use restrict attention to connections in TM ; such a connection is called a
linear connection on M .

Definition 32.1. For a linear connection on M , a curve γ : I → M is a geodesic if

γ′ ≡ γ∗

(
∂
∂t

)
is parallel along γ, that is

(γ∗∇) ∂
∂t
γ′ = 0. (32.1)

Choose local coordinate xi on M and write x◦γ = (γ1, . . . , γn). From Proposition
25.4, the condition for a geodesic is locally the second order nonlinear ODE

d2γk

dt2
+ Γkij(γ(t))

dγi

dt

dγj

dt
= 0. (32.2)

The local existence and uniqueness theorem for ODEs says that given p ∈ M and
Xp ∈ TpM , there is a unique geodesic γ : (−ε, ε)→M satisfying γ(0) = p, γ′(0) = Xp.

Example 32.2. Flat metric on a torus T n, or a cylinder. In Euclidean coordinates
on the universal cover, we have Γkij ≡ 0. In these coordinates, the geodesics are just
straight lines.
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32.2 The exponential map

If v ∈ TpM , and there exists a geodesic γ : [0, 1] → M satisfying γ(p) = 0, and
γ′(0) = v, then define expp(v) = γ(1).

Proposition 32.3. For any v ∈ TpM , the curve γ(t) = expp(tv) is defined for t
sufficiently small, and is a geodesic satisfying γ(0) = p, and γ′(0) = v.

Proof. By the ODE existence theorem, there exists a geodesic γ̃ : (−ε, ε) → M such
that γ̃(0) = p, and γ̃′(0) = v. For any c > 0, consider γ̃c(t) = γ̃(ct). Clearly γ̃c is a
geodesic, and

γ̃′c(0) = c · γ̃′(0) = c · v. (32.3)

So then expp(c · v) = γ̃c(1) = γ̃(c) is defined for c sufficiently small.

From this proposition, and the ODE existence theorem, we see that the exponen-
tial map is defined in a neighborhood of the origin.

Proposition 32.4. If γ is a geodesic then the norm of γ′ is constant along γ.

Proof. Note that γ′ ∈ Γ(γ∗TM), and from Proposition 23.3, we have that

d

dt
(γ∗g)(γ′, γ′) = 2γ∗g

(
(γ∗∇) d

dt
γ′, γ′

)
= 0 (32.4)

For any curve γ : I →M , and t0 ∈ I, define the arclength (starting at t0) by

Ltt0γ =

∫ t

t0

{γ∗g(γ′, γ′)}
1
2dt. (32.5)

So for any geodesic, the arclenth is a linear function of t. If ‖γ′‖ = 1, then we say γ
is parametrized by arclength.

Next, if v ∈ TpM , we have

(expp)∗|v : Tv(TpM)→ Texpp(v)M. (32.6)

Since TpM is a linear space, we can view this as

(expp)∗|v : TpM → Texpp(v)M. (32.7)

Lemma 32.5. The mapping

(expp)∗|0 : TpM → TpM. (32.8)

is the identity map.

Proof. Given v ∈ TpM, c(t) = t · v is a curve with c′(0) = v. From Proposition 32.3,
expp(c(t)) = expp(t · v) is the unique geodesic γ(t) with tangent v at t = 0. Then

(expp)∗|0(v) =
d

dt
expp(c(t))

∣∣∣
t=0

=
d

dt
γ(t)

∣∣∣
t=0

= v. (32.9)

From the inverse function theorem, we have the following corollary.

Corollary 32.6. The mappping expp : TpM →M is a local diffeomorphism near p.
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32.3 Gauss Lemma

Assume that g is a Riemannian metric and that ∇ is the Riemannian connection in
TM →M .

Lemma 32.7. The radial geodesics from a point p are orthogonal to the hypersurfaces
Sp(r) = {expp(v) | ‖v‖ = r}.

Proof. Let v(s) be a curve in TpM with ‖v(s)‖ = r0, and define f(r, s) = exp(rv(s)).
Consider the connection f ∗∇ which is a connection on f ∗TM over [0, r0] × (−ε, ε).
Denote

∂f

∂r
= f∗

( ∂
∂r

)
,

∂f

∂s
= f∗

( ∂
∂s

)
, (32.10)

both of which are sections of f ∗TM . Using Proposition 23.3 (compatibility of the
pullback connection), we have

∂

∂r

{
(f ∗g)

(∂f
∂r
,
∂f

∂s

)}
= (f ∗g)

(
(f ∗∇) ∂

∂r

∂f

∂r
,
∂f

∂s

)
+ (f ∗g)

(∂f
∂r
, (f ∗∇) ∂

∂r

∂f

∂s

)
= (f ∗g)

(∂f
∂r
, (f ∗∇) ∂

∂r

∂f

∂s

)
,

(32.11)

since the radial curves are geodesics. Next, using Proposition 24.1 (“symmetry” of
the pullback connection), we have

∂

∂r

{
(f ∗g)

(∂f
∂r
,
∂f

∂s

)}
= (f ∗g)

(∂f
∂r
, (f ∗∇) ∂

∂s

∂f

∂r

)
=

1

2

∂

∂s

{
(f ∗g)

(∂f
∂r
,
∂f

∂r

)}
,

(32.12)

again using Proposition 23.3. Notice that ∂f/∂r at the point (r, s) is the tangent
vector to the geodesic γ(r) from p, with initial tangent vector v(s). Since the norm
of a tangent vector to a geodesic is constant in r, we have that

(f ∗g)
(∂f
∂r
,
∂f

∂r

)
= r0, (32.13)

and is therefore independent of s. Consequently, the function

(f ∗g)
(∂f
∂r
,
∂f

∂s

)
(32.14)

must be constant in r. But since f(0, s) = p, we have

∂f

∂s

∣∣∣
r=0

= 0, (32.15)

which finishes the proof.
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33 Lecture 33

33.1 Normal Coordinates I

We define Euclidean normal coordinates to be the coordinate system given by the
exponential map, together with a Euclidean coordinate system {xi} on TpM such the
the metric gij(p) = δij. We define radial normal coordinates to be

Φ : R+ × Sn−1 →M, (33.1)

given by

(r, ξ) 7→ exp(rξ). (33.2)

Proposition 33.1. In Euclidean normal coordinates,

g = gEuc +O(|x|2), as x→ 0, (33.3)

where gEuc is the standard Euclidean metric. In radial normal coordinates, we have

Φ∗g = dr2 + gn−1, (33.4)

where gn−1 is a metric on Sn−1 depending upon r, and satisfying

gn−1 = r2gSn−1 +O(r2), as r → 0, (33.5)

where gSn−1 is the standard metric on the unit sphere.

Proof. For the first statement, we know that exp∗(0) = Id, so the constant term in
the Taylor expansion of g is given by gEuc. Next, we recall that the geodesic equation
is

γ̈i + Γijkγ̇
j γ̇k = 0. (33.6)

Since the radial directions are geodesics, we can let γ = rv, where v is any vector.
Evaluating the geodesic equation at the origin, we have

Γijk(0)vjvk = 0, (33.7)

for arbitrary v, so Γijk(0) = 0 (using symmetry). It is then easy to see from the
definition of the Christoffel symbols that all first derivatives of the metric then vanish
at p.

In normal coordinates, the lines through the origin are geodesics, and therefore
have parallel tangent vector field. This implies that the radial component of the
metric is dr2. Then (33.4) follows from the Gauss Lemma. Finally, we see that
gEuc = dr2 + r2gSn−1 , so the second expansion follows from the first.
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Remark 33.2. Notice that the term r2gSn−1 is indeed O(1) as r → 0. Write h =
gSn−1 , and then fixing some coordinate system on Sn−1, we compute

|r2h|2 = r4gipgjqhijhpq = hiphjqhijhpq = (n− 1). (33.8)

If that is not convincing, then consider the case of n = 2. Let x = r cos(θ) and
y = r sin(θ). Then r2 = x2 + y2, and θ = arctan y/x. It is then easy to compute that

dx2 + dy2 = dr2 + r2dθ2. (33.9)

Note that, in a computation analogous to the above, that |dθ| = r−1. That is, dθ is
not of unit norm, but rather rdθ is.

33.2 Geodesics are locally minimizing

Lemma 33.3. Let c : [a, b] → M \ p be given by a piecewise smooth curve c(t) =
expp(u(t)v(t)), where 0 < u(t) < ε and ‖v(t)‖ = 1 Then the length of c

Lbac ≥ |u(b)− u(a)| (33.10)

with equality if and only if u is monotone and v is constant.

Proof. Let α(r, t) = expp(rv(t)), so that c(t) = α(u(t), t). Then

dc

dt
=
∂α

∂r
u′(t) +

∂α

∂t
. (33.11)

From the Gauss Lemma, the 2 terms on the right hand side are orthogonal. Note
also that ‖∂α

∂r
‖ = 1, by Proposition 32.4, so we have

‖dc
dt
‖2 = |u′(t)|2 + ‖∂α

∂t
‖2 ≥ |u′(t)|2 (33.12)

with equality if and only if ∂α
∂t

= 0 which is equivalent to v being constant. Finally,

Lbac =

∫ b

a

‖c′(t)‖dt ≥
∫ b

a

|u′(t)|dt ≥ |u(b)− u(a)|. (33.13)

Corollary 33.4. If p and q are sufficiently close, then there is a unique minimizing
geodesic joining p and q.

Proof. If the radial geodesic from p to q = expp(v0) does not minimize, then a shorter
path would have to go outside of the spherical shell ‖v‖ = ‖v0‖, but by the Lemma,
such a path would have longer length.

Example 33.5. A great circle of Sn is the intersection of Sn with a 2-plane in Rn+1.
We claim that great circles on Sn are geodesics. To see this, let p, q ∈ Sn be sufficiently
close so that they are joined by a minimizing geodesic γ between. There is a isometric
reflection I : Sn → Sn which fixes the great circle containing p and q. Then I(γ) is a
curve of the same minimizing length, so by uniqueness I(γ) = γ, which implies that
γ must be part of the great circle.
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34 Lecture 34

34.1 Distance function and Completeness

Let (M, g) be a connected Riemannian manifold. For p, q ∈M , define

d(p, q) = inf{L(γ) | γ is a piecwise smooth curve from p to q}. (34.1)

Proposition 34.1. The function d : M ×M → R is a metric, that is

d(p, q) ≥ 0, (34.2)

with equality if and only if p = q, and for p1, p2, p3 ∈M ,

d(p1, p3) ≤ d(p1, p2) + d(p2, p3). (34.3)

Furthermore, the topology induced by d is the same as the original topology on M .

Recall that (M,d) is complete in the metric space sense if every Cauchy sequence
has a convergent subsequence.

Definition 34.2. A Riemannian manifold (M, g) is geodesically complete if every
gedoesic γ : [a, b]→M can be extended to a geodesic defined on all of R.

Theorem 34.3 (Hopf-Rinow). A Riemannian manifold (M, g) is complete in the
metric space sense if and only if it is geodesically complete. In this case, there exists
a length minimizing geodesic between any 2 points in M .

In particular, if M is compact, there exists a length minimizing geodesic between
any two points.

34.2 The first variation formula

The length functional is invariant under reparametrizations, which causes problems
for variational arguments. To remedy this, consider instead the energy functional,
defined for γ : [a, b]→M

Eb
a(γ) =

∫ b

a

‖γ′‖2dt =

∫ b

a

(γ∗g)
(
γ∗

( d
dt

)
, γ∗

( d
dt

))
dt. (34.4)

Note that

Lba(γ) =

∫ b

a

‖γ′‖dt ≤
{∫ b

a

‖γ′‖2dt
} 1

2
(b− a)

1
2 , (34.5)

which squares to

(Lba(γ))2 ≤ (b− a)Eb
a(γ), (34.6)

and equality holds if and only if t is proportional to arclength.
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Lemma 34.4. If γ is a piecwise smooth curve that minimizes length between p and
q then γ is a smooth geodesic.

Proof. If γ minimizes length between p and q, it must also minimize length between
any 2 points on γ. Locally, use Lemma 33.3 to prove that γ is a smooth geodesic.

In particular, minimizing geodesics are critical points for the energy functional.
What other paths are critical?

Definition 34.5. A variation of a piecewise smooth curve γ : [a, b] → M is a con-
tinuous mapping α : (−ε, ε) × [a, b] → M such that α(0, t) = γ(t) and there exists
a partition a = t0 < t1 < · · · < tn−1 < tn = b so that α : (−ε, ε) × (ti, ti+1) → M
is smooth. If γ(a) = p and γ(b) = q, then we say the variation fixes endpoints if
α(u, a) = p and α(u, b) = q for all u ∈ (−ε, ε).

Denote

∂α

∂t
= α∗

( ∂
∂t

)
,

∂α

∂u
= α∗

( ∂
∂u

)
, (34.7)

both of which are sections of α∗TM . We call

Wt ≡
∂α

∂u

∣∣∣
u=0

(34.8)

the variation vector field. Define

∆tγ
′ ≡ γ′(t+)− γ′(t−) (34.9)

to be the jump in the velocity vector field at t, which is only possibly nonzero at the
points ti.

Theorem 34.6 (First variation formula). For any variation α of γ, we have

1

2

d(E(α(u, ·))
du

∣∣∣
u=0

= −
∑
t

(γ∗g)(Wt,∆tγ
′)−

∫ b

a

(γ∗g)
(
Wt, (γ

∗∇) d
dt
γ′
)
dt. (34.10)

Proof. Using Proposition 23.3 (compatibility of the pullback connection) and Propo-
sition 24.1 (“symmetry” of the pullback connection), we compute

d(E(α(u, ·))
du

=

∫ b

a

∂

∂u
(α∗g)

(∂α
∂t
,
∂α

∂t

)
dt

= 2

∫ b

a

(α∗g)
(

(α∗∇) ∂
∂u

∂α

∂t
,
∂α

∂t

)
dt

= 2

∫ b

a

(α∗g)
(

(α∗∇) ∂
∂t

∂α

∂u
,
∂α

∂t

)
dt.

(34.11)

Again using Proposition 23.3, we have

∂

∂t
(α∗g)

(∂α
∂u
,
∂α

∂t

)
= (α∗g)

(
(α∗∇) ∂

∂t

∂α

∂u
,
∂α

∂t

)
+ (α∗g)

(∂α
∂u
, (α∗∇) ∂

∂t

∂α

∂t

)
. (34.12)
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Substituting this into the above yields

d(E(α(u, ·))
du

= 2

∫ b

a

{ ∂
∂t

(α∗g)
(∂α
∂u
,
∂α

∂t

)
− (α∗g)

(∂α
∂u
, (α∗∇) ∂

∂t

∂α

∂t

)}
dt. (34.13)

Evaluating at u = 0, and using the fundamental theorem of calculus on the first term
yields the first variation formula.

Corollary 34.7. If γ is piecwise smooth and critical for E, then γ is smooth and is
a geodesic.

Proof. Let α be a variation which is supported away from the ti, of the form

W (t) = f(t)(γ∗∇) d
dt
γ′, (34.14)

with f(t) > 0 away from the ti. For such a variation, the first term in the first
variation formula vanishes, so we have

1

2

d(E(α(u, ·))
du

∣∣∣
u=0

= −
∫ b

a

(γ∗g)f(t)
(

(γ∗∇) d
dt
γ′, (γ∗∇) d

dt
γ′
)
dt. (34.15)

Since the integrand is non-negative, we conclude it vanishes, so γ satisfies the geodesic
equation away from the ti. Next, pick a variation such that W (ti) = ∆tiγ

′. Then the
first variation formula yields

1

2

d(E(α(u, ·))
du

∣∣∣
u=0

= −
∑
t

(γ∗g)(∆tiγ
′,∆tiγ

′), (34.16)

which implies that ∆tiγ
′ = 0. From the ODE existence and uniqueness theorem, γ is

smooth at the ti.

35 Lecture 35

35.1 The second variation formula

To be completed.

35.2 Jacobi fields

Definition 35.1. A vector field J ∈ Γ(γ∗TM) along a geodesic γ, is a Jacobi field if

D2J

dt2
+R(J, γ′)γ′ = 0 (35.1)

Definition 35.2. Points p and q are conjugate along a geodesic γ : [a, b] → M if
there exists a nonzero Jacobi field J along γ such that J(a) = 0 and J(b) = 0. The
multiplicity of p and q is the dimension of the space of such Jacobi fields.
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36 Lecture 36

We view the second variation as a symmetric bilinear form, i.e., forW1,W2 ∈ TγΩ(p, q),

E∗∗(W1,W2) = E∗∗(W2,W1) (36.1)

Definition 36.1. The index of E∗∗, Index(E∗∗) is the maximum dimension of a
negative definite subspace of E∗∗. The null space of E∗∗ is

Null(E∗∗) = {W ∈ TγΩ | E∗∗(W, W̃ ) = 0 ∀ W̃ ∈ TγΩ}. (36.2)

The nullity of E∗ is the dimension of the nullspace of E∗∗.

Theorem 36.2. W is in the null space of E∗∗ if and only if W is a Jacobi field. The
nullity of E∗∗ is therefore equal to the multiplicity of p and q.

Proof. To be completed.

Example 36.3. If R ≡ 0 then there are no conjugate points.

Proposition 36.4. If γ is a minimizing geodesic between p and q then E∗∗(W,W ) ≥ 0
for all W ∈ TγΩ. In other words, the index of E∗∗ is zero.

Proof. To be completed.

Our goal is to prove a converse of this: if E∗∗(W,W ) > 0 for all W ∈ TγΩ, then γ
is minimizing. Before that, we will investigate further the null space of E∗∗.

Lemma 36.5. If γ : [a, b] → M is a geodesic and if α(u, t) is a variation of γ
through geodesics, then W (t) = ∂α

∂u
|u=0 is a Jacobi field along γ. Therefore, if α fixes

endpoints, then p and q are conjugate.

Proof. To be completed.

Example 36.6. Jacobi fields in Rn.

37 Lecture 37

Example 37.1. The space of Jacobi fields on Sn on a great circle between antipodal
points vanishing at both endpoints has maximal dimension n− 1.

Proposition 37.2. Every Jacobi field along a geodesic γ : [a, b] → M arises from a
variation of γ through geodesics. If J(a) = 0, then there is a variation which fixes a
(but this is not necessarily true also at b if J(b) = 0. )

Proof. To be completed.

Theorem 37.3. Let γ : [a, b] → M be a geodesic. If there exists a conjugate point
γ(τ) for τ ∈ (a, b) then there exists W ∈ TγΩ such that E∗∗(W,W ) < 0. Consequently,
γ cannot be a local minimizer of the energy functional.

Proof. To be completed.
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38 Lecture 38

Theorem 38.1. The point expp(v) is conjugate to p along the geodesic γ(t) =
expp(tv) if and only if v is a critical point of expp.

Proof. To be completed.

Corollary 38.2. If p ∈M then for almost every q ∈M , p is not conjugate to q along
any geodesic.

Proof. Sard’s Theorem.

Remark 38.3. Denote by Conj(p) the set of points which are conjugate to q along
some geodesic. Then Hn−2(Conj(p)) <∞, [?].

Lemma 38.4. For v, w ∈ TpM , let γ(t) be the geodesic expp(tv). Let J(t) be the
Jacobi field along γ with J(0) = 0 and DJ

dt
|t=0 = w. Then (expp)∗,v(w) = J(1), where

we identify Tv(TpM) ∼= TpM .

Proof. To be completed.

Lemma 38.5. Suppose g(R(A,B)B,A) ≤ 0 for all A,B ∈ TpM and for all p ∈ M .
Then no 2 points in M are conjugate along any geodesic.

Let Π ⊂ TpM be a 2-plane, and let Xp, Yp ∈ TpM span Π. Then

K(Π) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
. (38.1)

is called the sectional curvature of the 2-plane Π.

Lemma 38.6. K(Π) is independent of the particular chosen basis for Π

Proof. To be completed.

39 Lecture 39

Theorem 39.1 (Cartan-Hadamard). Let M be complete and simply connected with
nonpositive sectional curvature. Then M is diffeomorphic to Rn. Furthermore, any
2 points in M are joined by a unique geodesic.

Proof. To be completed.

Corollary 39.2. If M is complete and nonpositive sectional curvature then πi(M) =
0 for i > 1.

Proof. Homotopy sequence of a fibration.

Example 39.3. Sn does not admit a metric with nonpositive sectional curvature.
Nor does Sp × Sq with p > 1. Nor does M1 ×M2 with M1 simply connected.

Corollary 39.4. If M is complete and nonpositive sectional curvature then π1(M)
contains no element of finite order other than the identity.

Proof. Needs some theory of cohomology of finite groups.
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40 Lecture 40

40.1 Curvature in the tangent bundle

The curvature tensor is defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (40.1)

for vector fields X, Y , and Z. We define

Rm(X, Y, Z,W ) ≡ −〈R(X, Y )Z,W 〉. (40.2)

We will refer to R as the curvature tensor of type (1, 3) and to Rm as the curvature
tensor of type (0, 4).

The algebraic symmetries are:

R(X, Y )Z = −R(Y,X)Z (40.3)

0 = R(X, Y )Z +R(Y, Z)X +R(Z,X)Y (40.4)

Rm(X, Y, Z,W ) = −Rm(X, Y,W,Z) (40.5)

Rm(X, Y,W,Z) = Rm(W,Z,X, Y ). (40.6)

In a coordinate system we define quantities R l
ijk by

R(∂i, ∂j)∂k = R l
ijk ∂l, (40.7)

or equivalently,

R = R l
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂l. (40.8)

Define quantities Rijkl by

Rijkl = Rm(∂i, ∂j, ∂k, ∂l), (40.9)

or equivalently,

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl. (40.10)

Then

Rijkl = −〈R(∂i, ∂j)∂k, ∂l〉 = −〈R m
ijk ∂m, ∂l〉 = −R m

ijk gml. (40.11)

Equivalently,

Rijlk = R m
ijk gml, (40.12)

that is, we lower the upper index to the third position.

Remark 40.1. Some authors choose to lower this index to a different position. One
has to be very careful with this, or you might end up proving that Sn has negative
curvature!
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In coordinates, the algebraic symmetries of the curvature tensor are

R l
ijk = −R l

jik (40.13)

0 = R l
ijk +R l

jki +R l
kij (40.14)

Rijkl = −Rijlk (40.15)

Rijkl = Rklij. (40.16)

Of course, we can write the first 2 symmetries as a (0, 4) tensor,

Rijkl = −Rjikl (40.17)

0 = Rijkl +Rjkil +Rkijl. (40.18)

Note that using (40.16), the algebraic Bianchi identity (40.18) may be written as

0 = Rijkl +Riklj +Riljk. (40.19)

We next compute the curvature tensor in coordinates.

R(∂i, ∂j)∂k = R l
ijk ∂l

= ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= ∇∂i(Γ
l
jk∂l)−∇∂j(Γ

l
ik∂l)

= ∂i(Γ
l
jk)∂l + ΓljkΓ

m
il ∂m − ∂j(Γlik)∂l − ΓlikΓ

m
jl∂m

=
(
∂i(Γ

l
jk) + ΓmjkΓ

l
im − ∂j(Γlik)− ΓmikΓ

l
jm

)
∂l,

(40.20)

which is the formula

R l
ijk = ∂i(Γ

l
jk)− ∂j(Γlik) + ΓlimΓmjk − ΓljmΓmik (40.21)

Fix a point p. Exponential coordinates around p form a normal coordinate system
at p. That is gij(p) = δij, and ∂kgij(p) = 0, which is equivalent to Γkij(p) = 0. The
Christoffel symbols are

Γljk =
1

2
glm
(
∂kgjm + ∂jgkm − ∂mgjk

)
. (40.22)

In normal coordinates at the point p,

∂iΓ
l
jk =

1

2
δlm
(
∂i∂kgjm + ∂i∂jgkm − ∂i∂mgjk

)
. (40.23)

We then have at p

R l
ijk =

1

2
δlm
(
∂i∂kgjm − ∂i∂mgjk − ∂j∂kgim + ∂j∂mgik

)
. (40.24)

Lowering an index, we have at p

Rijkl = −1

2

(
∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik

)
= −1

2

(
∂2
7 g
)
.

(40.25)
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The 7 symbol is the Kulkarni-Nomizu product, which takes 2 symmetric (0, 2) tensors
and gives a (0, 4) tensor with the same algebraic symmetries of the curvature tensor,
and is defined by

A7B(X, Y, Z,W ) =A(X,Z)B(Y,W )− A(Y, Z)B(X,W )

− A(X,W )B(Y, Z) + A(Y,W )B(X,Z).

To remember: the first term is A(X,Z)B(Y,W ), skew symmetrize in X and Y to get
the second term. Then skew-symmetrize both of these in Z and W .

40.2 Sectional curvature, Ricci tensor, and scalar curvature

Let Π ⊂ TpM be a 2-plane, and let Xp, Yp ∈ TpM span Π. Then

K(Π) =
Rm(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2
=

g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
, (40.26)

is independent of the particular chosen basis for Π, and is called the sectional curvature
of the 2-plane Π. The sectional curvatures in fact determine the full curvature tensor:

Proposition 40.2. Let Rm and Rm′ be two (0, 4)-curvature tensors which satisfy
K(Π) = K ′(Π) for all 2-planes Π, then Rm = Rm′.

Proof. To be completed.

From this proposition, if K(Π) = k0 is constant for all 2-planes Π, then we must
have

Rm(X, Y, Z,W ) = k0

(
g(X,Z)g(Y,W )− g(Y, Z)g(X,W )

)
, (40.27)

That is

Rm =
k0

2
g 7 g. (40.28)

In coordinates, this is

Rijkl = k0(gikgjl − gjkgil). (40.29)

We define the Ricci tensor as the (0, 2)-tensor

Ric(X, Y ) = tr(U → R(U,X)Y ). (40.30)

We clearly have

Ric(X, Y ) = R(Y,X), (40.31)

so Ric ∈ Γ(S2(T ∗M)). We let Rij denote the components of the Ricci tensor,

Ric = Rijdx
i ⊗ dxi, (40.32)
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where Rij = Rji. From the definition,

Rij = R l
lij = glmRlimj. (40.33)

Notice for a space of constant curvature, we have

Rjl = gikRijkl = k0g
ik(gikgjl − gjkgil) = (n− 1)k0gjl, (40.34)

or invariantly

Ric = (n− 1)k0g. (40.35)

The Ricci endomorphism is defined by

Rc(X) ≡ ]
(
Ric(X, ·)

)
. (40.36)

The scalar curvature is defined as the trace of the Ricci endomorphism

R ≡ tr(X → Rc(X)). (40.37)

In coordinates,

R = gpqRpq = gpqglmRlpmq. (40.38)

Note for a space of constant curvature k0,

R = n(n− 1)k0. (40.39)

41 Lecture 41

41.1 Spaces of constant curvature

Recall the Jacobi equation:

D2

dt2
J +R(J, γ̇)γ̇ = 0. (41.1)

Obviously, (at+ b)γ̇ is a Jacobi field for any constants a and b.

Proposition 41.1. Let (M, g) have constant curvature k0, and γ be a unit speed
geodesic. Then the Jacobi Fields along γ which vanish at t = 0 and which are or-
thogonal to γ̇ are given by f(t)E where E is a parallel normal field, and f is given
by

f =


Ct k0 = 0

C sin(
√
k0 · t) k0 > 0

C sinh(
√
−k0 · t) k0 < 0

. (41.2)
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Proof. Let E be a parallel normal vector field along γ, and consider f(t)E. Since g
has constant curvature k0, from (40.27) above, we have

R(E, γ̇)γ̇ = −k0(〈E, γ̇〉γ̇ − 〈γ̇, γ̇〉E) = k0E, (41.3)

since by assumption E is orthogonal to γ̇, and γ is a unit speed geodesic. Plugging
this into the Jacobi equation,

(f̈ + k0f)E = 0, (41.4)

which has the stated solutions.

Corollary 41.2. If g has constant curvature k0, then in radial normal coordinates
the metric has the form

g =


dr2 + r2gSn−1 k0 = 0

dr2 + 1
k0

sin2(
√
k0 · r)gSn−1 k0 > 0

dr2 + 1
|k0| sinh2(

√
|k0| · r)gSn−1 k0 < 0

. (41.5)

Proof. Pulling the metric back to TpM using the exponential map, we have a metric
on TpM for which lines through the origin are geodesics. Consider the map γ(s, t) =
tξ(s), where ξ(s) is any curve. For s fixed, this is a geodesic, so is a 1-parameter
variation of geodesics. Call ξ(0) = α and ξ′(0) = β. From above, we see that

∂

∂s
γ
∣∣∣
s=0

= tβ (41.6)

is a Jacobi field along the geodesic t 7→ tα. From Proposition 33.1, we already know
that the metric in radial normal coordinates has the form (33.4). So assume that β is
orthogonal to α in the Euclidean metric, and that |α| = 1. We claim that the Jacobi
Field tβ is orthogonal to α along this geodesic. To see this we compute

d2

dt2
(g(tβ, α)) = g

(D2

dt2
(tβ), α

)
(since α is parallel) (41.7)

= g(−R(tβ, α)α, α) = 0, (41.8)

from the skew-symmetry of the curvature tensor. This obviously implies that g(β, α)
is constant in t, and must vanish identically since it vanishes at the origin. From
Proposition 41.1 we conclude that

tβ =


CtE k0 = 0

C sin(
√
k0 · t)E k0 > 0

C sinh(
√
−k0 · t)E k0 < 0

, (41.9)

where E is parallel.
If k0 = 0, this says that β is a parallel normal field. In particular, |β| is indepen-

dent of the radius, and |β|(rα) = |β|(0). So the metric in normal cordinates is the
Euclidean metric everywhere, which has the stated form in radial coordinates.
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If k0 > 0, then

t

sin(
√
k0 · t)

β (41.10)

is parallel, which implies that

|β|(rα) =
sin(
√
k0 · r)√
k0 · r

|β|(0). (41.11)

In radial coordinates, the metric on the sphere of radius r pulls pack to r2gSn−1 , so
the r cancels out and we arrive at (41.5). A similar argument holds in the k0 < 0
case.

This implies that any two space forms of the same constant curvature are locally
isometric, but not necessarily globally! The above coordinate system can fail for two
reasons. First, one can hit the cut locus, in which case the coordinate system is not
injective. Second, the expression for the metric can become degenerate, this is called
a conjugate point. Discuss the cut locus in a few examples, such as tori, spheres,
projective spaces, lens spaces.

In general, we have the following:

Theorem 41.3. If (M, g) is simply-connected and constant sectional curvature K =
0, 1,−1 then (M, g) is isometric to Euclidean space, Sn with the round metric, or
hyperbolic space Hn.

42 Lecture 42

42.1 Theorem of Bonnet-Myers

Theorem 42.1. If (M, g) is complete and Ric ≥ n−1
a2
g for a constant a > 0, then the

diameter diamg ≤ πa and π1(M) is finite.

Proof. Let γ : [0, 1] → M be a geodesic of length L. Plug in sin(πt)Pi, where Pi is
parallel orthonormal frame field into the second variation formula, and then take a
sum. to see that the index will be positive if L > πa. Then γ could not be minimizing
by Theorem 37.3.

42.2 Taylor expansion of a metric in normal coordinates

Theorem 42.2. In normal coordinates, a metric g admits the expansion

gij = δij +
1

3
Rkijlx

kxl +O(|x|3) (42.1)

as x→ 0, where all coefficients are evaluated at 0.
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Proof. To compute this, we argue as in the proof of Corollary 41.2. Choose β orthog-
onal to α in the Euclidean metric, and assume that |α| = 1. Then J = tβ is a Jacobi
field along the geodesic t 7→ tα. We want to expand the function f(t) ≡ g(tβ, tβ)(tα)
as a function of t. Obviously, f(0) = 0, and

∂tf = ∂t(g(J, J)) = 2g(DtJ, J). (42.2)

Evaluating at 0, f ′(0) = 0, since J(0) = 0. Next,

∂2
t g(J, J) = 2g(D2

t J, J) + 2g(DtJ,DtJ). (42.3)

Evaluating (42.3) at 0, since J(0) = 0, and DtJ = β, we have

f ′′(0) = 2g0(β, β), (42.4)

where g0 denotes the Euclidean metric at the origin.
To simplify notation, we will let Rα denote the endomorphism J 7→ R(α, J)α, so

we can write

∂2
t g(J, J) = 2g(Rα(J), J) + 2g(DtJ,DtJ). (42.5)

Note that Rα is self-adjoint, i.e.,

g(Rα(X), Y ) = g(R(α,X)α, Y ) = g(R(α, Y )α,X) = g(X,RαY ), (42.6)

from the symmetry of the curvature tensor (40.6).
Differentiating (42.3),

∂3
t (g(J, J)) = 2g(D3

t J, J) + 6g(D2
t J,DtJ). (42.7)

Evaluating at 0, since J(0) = 0, and D2
t J = Rα(J), we have

f ′′′(0) = 0. (42.8)

Differentiating (42.7),

∂4
t (g(J, J)) = 2g(D4

t J, J) + 8g(D3
t J,DtJ) + 6g(D2

t J,D
2
t J). (42.9)

Note that

D3
t J = Dt(D

2
t J) = Dt(Rα(J)) = (DtRα)(J) +Rα(DtJ). (42.10)

Evaluating (42.9) at t = 0, we obtain

f (iv)(0) = 8g0(Rα(β), β). (42.11)

Performing a Taylor expansion around t = 0, we have shown that

g(β, β)(tα) = g0(β, β) +
t2

3
g0(Rα(β), β) +O(t3) (42.12)
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as t → 0. We let α = (xi/t)∂i, and β = βj∂j. The first term on the right hand side
of (42.12) is simply

g0(β, β) = δijβ
iβj. (42.13)

The second term on the right hand side of (42.12) is

t2

3
g0(Rα(β), β) =

t2

3
g0(R(α, β)α, β) (42.14)

=
1

3
g0(R(xk∂k, β

i∂i)x
l∂l, β

j∂j) (42.15)

=
1

3
xkxlR m

kil δmjβ
iβj (42.16)

=
1

3
Rkijlx

kxlβiβj. (42.17)

43 Lecture 43

43.1 Covariant derivatives of tensor fields

Let E and E ′ be vector bundles over M , with covariant derivative operators ∇, and
∇′, respectively. The covariant derivative operators in E ⊗ E ′ and Hom(E,E ′) are

∇X(s⊗ s′) = (∇Xs)⊗ s′ + s⊗ (∇′Xs′) (43.1)

(∇XL)(s) = ∇′X(L(s))− L(∇Xs), (43.2)

for s ∈ Γ(E), s′ ∈ Γ(E ′), and L ∈ Γ(Hom(E,E ′)). Note also that the covariant
derivative operator in Λ(E) is given by

∇X(s1 ∧ · · · ∧ sr) =
r∑
i=1

s1 ∧ · · · ∧ (∇Xsi) ∧ · · · ∧ sr, (43.3)

for si ∈ Γ(E).
These rules imply that if T is an (r, s) tensor, then the covariant derivative ∇T

is an (r, s+ 1) tensor given by

∇T (X, Y1, . . . , Ys) = ∇X(T (Y1, . . . Ys))−
s∑
i=1

T (Y1, . . . ,∇XYi, . . . , Ys). (43.4)

We next consider the above definitions in components for (r, s)-tensors. For the case
of a vector field X ∈ Γ(TM), ∇X is a (1, 1) tensor field. By the definition of a
connection, we have

∇mX ≡ ∇∂mX = ∇∂m(Xj∂j) = (∂mX
j)∂j +XjΓlmj∂l = (∇mX

i +X lΓiml)∂i. (43.5)
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In other words,

∇X = ∇mX
i(dxm ⊗ ∂i), (43.6)

where

∇mX
i = ∂mX

i +X lΓiml. (43.7)

However, for a 1-form ω, (43.2) implies that

∇ω = (∇mωi)dx
m ⊗ dxi, (43.8)

with

∇mωi = ∂mωi − ωlΓlim. (43.9)

The definition (43.1) then implies that for a general (r, s)-tensor field S,

∇mS
i1...ir
j1...js

≡ ∂mS
i1...ir
j1...js

+ Sli2...irj1...js
Γi1ml + · · ·+ S

i1...ir−1l
j1...js

Γirml

− Si1...irlj2...js
Γlmj1 − · · · − S

i1...ir
j1...js−1l

Γlmjs .
(43.10)

Remark 43.1. Some authors instead write covariant derivatives with a semi-colon

∇mS
i1...ir
j1...js

= Si1...irj1...js;m
. (43.11)

However, the ∇ notation fits nicer with our conventions, since the first index is the
direction of covariant differentiation.

Notice the following calculation,

(∇g)(X, Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) = 0, (43.12)

so the metric is parallel. Note that in coordinates, this says that

0 = ∇mgij = ∂mgij − Γpmigpj − Γpmjgip, (43.13)

which yield the formula

∂kgij = Γpkigpj + Γpkjgip. (43.14)

This is sometimes written as

∂kgij = [ki, j] + [kj, i], (43.15)

where [ij; k] are called the Christoffel symbols of the first kind defined by

[ij, k] ≡ 1

2

(
∂igjk + ∂jgik − ∂kgij

)
. (43.16)

Next, let I : TM → TM denote the identity map, which is naturally a (1, 1) tensor.
We have

(∇I)(X, Y ) = ∇X(I(Y ))− I(∇XY ) = ∇XY −∇XY = 0, (43.17)

so the identity map is also parallel.
Note that the following statements are equivalent
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• [ ∈ Hom(TM, T ∗M) is parallel

• [ commutes with covariant differentiation.

• ∇m(gijX
j) = gij∇mX

j.

Similarly, the induced metric on T ∗M is parallel, and the following are equivalent.

• ] ∈ Hom(T ∗M,TM) is parallel

• ] commutes with covariant differentiation.

• ∇m(gijωj) = gij∇mωj.

Finally, note that the following are equivalent

• Tr mapping from (p, q)-tensors to (p− 1, q − 1) tensors is parallel.

• Tr commutes with covariant differentiation.

• ∇m

(
δj1i1X

i1i2...
j1j2...

)
= δj1i1∇mX

i1i2...
j1j2...

.

43.2 Double covariant derivatives

For an (r, s) tensor field T , we will write the double covariant derivative as

∇2T = ∇∇T, (43.18)

which is an (r, s+ 2) tensor.

Proposition 43.2. If T is an (r, s)-tensor field, then the double covariant derivative
satisfies

∇2T (X, Y, Z1, . . . , Zs) = ∇X(∇Y T )(Z1, . . . , Zs)− (∇∇XY T )(Z1, . . . Zs). (43.19)

Proof. The left hand side of (43.19) is

∇2T (X, Y, Z1, . . . , Zs) = ∇(∇T )(X, Y, Z1, . . . , Zs)

= ∇X(∇T (Y, Z1, . . . , Zs))−∇T (∇XY, Z1, . . . , Zs)

−
s∑
i=1

∇T (Y, . . . ,∇XZi, . . . Zs).
(43.20)

The right hand side of (43.19) is

∇X(∇Y T )(Z1, . . . , Zs)− (∇∇XY T )(Z1, . . . Zs)

= ∇X(∇Y T (Z1, . . . , Zs))−
s∑
i=1

(∇Y T )(Z1, . . . ,∇XZi, . . . , Zs)

−∇T (∇XY, Z1, . . . , Zs).

(43.21)

The first term on the right hand side of (43.21) is the same as first term on the right
hand side of (43.20). The second term on the right hand side of (43.21) is the same as
third term on the right hand side of (43.20). Finally, the last term on the right hand
side of (43.21) is the same as the second term on the right hand side of (43.20).
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Remark 43.3. When we write

∇i∇jT
j1...jr
ii...is

(43.22)

we mean the components of the double covariant derivative of T as a (r, s+2) tensor.
This does NOT mean to take one covariant derivative ∇T , plug in ∂j to get an (r, s)
tensor, and then take a covariant derivative in the ∂i direction; this would yield only
the first term on the right hand side of (43.19).

For illustration, let’s compute an example in coordinates. If ω ∈ Ω1(M), then

∇i∇jωk = ∂i(∇jωk)− Γpij∇pωk − Γpik∇jωp

= ∂i(∂jωk − Γljkωl)− Γpij(∂pωk − Γlpkωl)− Γpik(∂jωp − Γljpωk).
(43.23)

Expanding everything out, we can write this formally as

∇2ω = ∂2ωk + Γ ∗ ∂ω + (∂Γ + Γ ∗ Γ) ∗ ω, (43.24)

where ∗ denotes various tensor contractions. Notice that the coefficient of ω on the
right looks similar to the curvature tensor in coordinates (40.21). This is closely
related to Weitzenböck formulas which we will discuss later.

44 Lecture 44

44.1 Commuting covariant derivatives

Let X, Y, Z ∈ Γ(TM), and compute using Proposition 43.2

∇2Z(X, Y )−∇2Z(Y,X) = ∇X(∇YZ)−∇∇XYZ −∇Y (∇XZ)−∇∇YXZ
= ∇X(∇YZ)−∇Y (∇XZ)−∇∇XY−∇YXZ
= ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z

= R(X, Y )Z,

(44.1)

which is just the definition of the curvature tensor. In coordinates,

∇i∇jZ
k = ∇j∇iZ

k +R k
ijm Z

m. (44.2)

We extend this to (p, 0)-tensor fields:

∇2(Z1 ⊗ · · · ⊗ Zp)(X, Y )−∇2(Z1 ⊗ · · · ⊗ Zp)(Y,X)

= ∇X(∇Y (Z1 ⊗ · · · ⊗ Zp))−∇∇XY (Z1 ⊗ · · · ⊗ Zp)
−∇Y (∇X(Z1 ⊗ · · · ⊗ Zp))−∇∇YX(Z1 ⊗ . . .⊗ Zp

= ∇X

( p∑
i=1

Z1 ⊗ · · ·∇YZi ⊗ · · · ⊗ Zp
)
−

p∑
i=1

Z1 ⊗ · · ·∇∇XYZi ⊗ · · · ⊗ Zp

−∇Y

( p∑
i=1

Z1 ⊗ · · ·∇XZi ⊗ · · · ⊗ Zp
)

+

p∑
i=1

Z1 ⊗ · · ·∇∇YXZi ⊗ · · · ⊗ Zp.

(44.3)
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With a slight abuse of notation, this may be rewritten as

∇2(Z1 ⊗ · · · ⊗ Zp)(X, Y )−∇2(Z1 ⊗ · · · ⊗ Zp)(Y,X)

=

p∑
j=1

p∑
i=1,i 6=j

Z1 ⊗∇XZj ⊗ · · ·∇YZi ⊗ · · · ⊗ Zp

−
p∑
j=1

p∑
i=1,i 6=j

Z1 ⊗∇YZj ⊗ · · ·∇XZi ⊗ · · · ⊗ Zp

+

p∑
i=1

Z1 ⊗ · · · ⊗ (∇X∇Y −∇Y∇X −∇[X,Y ])Zi ⊗ · · · ⊗ Zp

=

p∑
i=1

Z1 ⊗ · · · ⊗ R(X, Y )Zi ⊗ · · · ⊗ Zp.

(44.4)

In coordinates, this is

∇i∇jZ
i1...ip = ∇j∇iZ

ii...ip +

p∑
k=1

R ik
ijm Zi1...ik−1mik+1...ip . (44.5)

Proposition 44.1. For a 1-form ω, we have

∇2ω(X, Y, Z)−∇2ω(Y,X,Z) = ω(R(Y,X)Z). (44.6)

Proof. Using Proposition 43.2, we compute

∇2ω(X, Y, Z)−∇2ω(Y,X,Z)

= ∇X(∇Y ω)(Z)− (∇∇XY ω)(Z)−∇Y (∇Xω)(Z)− (∇∇YXω)(Z)

= X(∇Y ω(Z))−∇Y ω(∇XZ)−∇XY (ω(Z)) + ω(∇∇XYZ)

− Y (∇Xω(Z)) +∇Xω(∇YZ) +∇YX(ω(Z))− ω(∇∇YXZ)

= X(∇Y ω(Z))− Y (ω(∇XZ)) + ω(∇Y∇XZ)−∇XY (ω(Z)) + ω(∇∇XYZ)

− Y (∇Xω(Z)) +X(ω(∇YZ))− ω(∇X∇YZ) +∇YX(ω(Z))− ω(∇∇YXZ)

= ω
(
∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

)
+X(∇Y ω(Z))− Y (ω(∇XZ))−∇XY (ω(Z))

− Y (∇Xω(Z)) +X(ω(∇YZ)) +∇YX(ω(Z)).

(44.7)

The last six terms are

X(∇Y ω(Z))− Y (ω(∇XZ))−∇XY (ω(Z))

− Y (∇Xω(Z)) +X(ω(∇YZ)) +∇YX(ω(Z))

= X
(
Y (ω(Z))− ω(∇YZ)

)
− Y (ω(∇XZ))− [X, Y ](ω(Z))

− Y
(
X(ω(Z))− ω(∇XZ)

)
+X(ω(∇YZ))

= 0.

(44.8)
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Remark 44.2. It would have been a lot easier to assume we were in normal coordi-
nates, and ignore terms involving first covariant derivatives of the vector fields, but
we did the above for illustration.

In coordinates, this formula becomes

∇i∇jωk = ∇j∇iωk −R p
ijk ωp. (44.9)

As above, we can extend this to (0, s) tensors using the tensor product, in an almost
identical calculation to the (r, 0) tensor case. Finally, putting everything together,
the analogous formula in coordinates for a general (r, s)-tensor T is

∇i∇jT
i1...ir
j1...js

= ∇j∇iT
i1...ir
j1...js

+
r∑

k=1

R ik
ijm T

i1...ik−1mik+1...ir
j1...js

−
s∑

k=1

R m
ijjk

T i1...irj1...jk−1mjk+1...js
.

(44.10)

44.2 Gradient, Hessian, and Laplacian

As an example of the above, we consider the Hessian of a function. For f ∈ C1(M,R),
the gradient is defined as

∇f = ](df), (44.11)

which is a vector field. This is standard notation, although in our notation above,
∇f = df , where this ∇ denotes the covariant derivative. The Hessian is the (0, 2)-
tensor defined by the double covariant derivative of a function, which by Proposi-
tion 43.2 is given by

∇2f(X, Y ) = ∇X(∇Y f)−∇∇XY f = X(Y f)− (∇XY )f. (44.12)

In components, this formula is

∇2f(∂i, ∂j) = ∇i∇jf = ∂i∂jf − Γkij(∂kf). (44.13)

The symmetry of the Hessian

∇2f(X, Y ) = ∇2f(Y,X), (44.14)

then follows easily from the symmetry of the Riemannian connection. Notice that no
curvature terms appear in this formula, which happens only in this special case.

The Laplacian of a function is the trace of the Hessian when considered as an
endomorphism,

∆f = tr
(
X 7→ ](∇2f(X, ·))

)
, (44.15)

so in coordinates is given by

∆f = gij∇i∇jf. (44.16)
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This turns out to be equal to

∆f =
1√

det(g)
∂i
(
gij∂jf

√
det(g)

)
. (44.17)

In a local orthonormal frame {ei}, i = 1 . . . n, the formula for the Hessian looks like

(∇2f)(ei, ej) = ∇ei(∇ejf)−∇∇eiejf
= ei(ejf)− (∇eiej)f,

(44.18)

and the Laplacian is given by the expression

∆f =
n∑
i=1

∇2f(ei, ei) =
n∑
i=1

ei(eif)−
n∑
i=1

(∇eiei)f. (44.19)

44.3 Differential Bianchi Identity

Higher covariant derivatives of the curvature tensor must satisfy certain identities,
the first of which is the following, which is known as the differential Bianchi identity.

Proposition 44.3. The covariant derivative of the curvature tensor ∇Rm satisfies
the relation

∇Rm(X, Y, Z, V,W ) +∇Rm(Y, Z,X, V,W ) +∇Rm(Z,X, Y, V,W ) = 0. (44.20)

Proof. Since the equation is tensorial, we can compute in a normal coordinate system
near a point p, letting the vector fields be the coordinate partials. This means we
can ignore terms involving only first covariant derivatives of the vector fields. Also,
Lie brackets can be ignored since they vanish identically in a neighborhood of p. We
compute

∇Rm(X, Y, Z, V,W ) +∇Rm(Y, Z,X, V,W ) +∇Rm(Z,X, Y, V,W )

= X(Rm(Y, Z, V,W )) + Y (Rm(Z,X, V,W )) + Z(Rm(X, Y, V,W ))

= −X〈R(Y, Z)V,W 〉 − Y 〈R(Z,X)V,W 〉 − Z〈R(X, Y )V,W 〉
= −〈∇XR(Y, Z)V,W 〉 − 〈∇YR(Z,X)V,W 〉 − 〈∇ZR(X, Y )V,W 〉
= −〈∇X∇Y∇ZV −∇X∇Z∇Y V,W 〉 − 〈∇Y∇Z∇XV −∇Y∇X∇ZV,W 〉

− 〈∇Z∇X∇Y V −∇Z∇Y∇XV,W 〉
= −〈∇X∇Y∇ZV −∇Y∇X∇ZV,W 〉 − 〈∇Y∇Z∇XV −∇Z∇Y∇XV,W 〉

− 〈∇Z∇X∇Y V −∇X∇Z∇Y V,W 〉
= Rm(X, Y,∇ZV,W ) +Rm(Y, Z,∇XV,W ) +Rm(Z,X,∇Y V,W ) ≡ 0.

(44.21)

In coordinates, this is equivalent to

∇iRjklm +∇jRkilm +∇kRijlm = 0. (44.22)
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Let us raise an index,

∇iR
l

jkm +∇jR
l

kim +∇kR
l

ijm = 0. (44.23)

Contract on the indices i and l,

0 = ∇lR
l

jkm +∇jR
l

klm +∇kR
l

ljm = ∇lR
l

jkm −∇jRkm +∇kRjm. (44.24)

This yields the Bianchi identity

∇lR
l

jkm = ∇jRkm −∇kRjm. (44.25)

In invariant notation, this is sometimes written as

δR = d∇Ric, (44.26)

where d∇ : S2(T ∗M)→ Λ2(T ∗M)⊗ T ∗M , is defined by

d∇h(X, Y, Z) = ∇h(X, Y, Z)−∇h(Y, Z,X), (44.27)

and δ is the divergence operator.
Next, trace (44.25) on the indices k and m,

gkm∇lR
l

jkm = gkm∇jRkm − gkm∇kRjm. (44.28)

Since the metric is parallel, we can move the gkm terms inside,

∇lg
kmR l

jkm = ∇jg
kmRkm −∇kg

kmRjm. (44.29)

The left hand side is

∇lg
kmR l

jkm = ∇lg
kmglpRjkpm

= ∇lg
lpgkmRjkpm

= ∇lg
lpRjp = ∇lR

l
j.

(44.30)

So we have the Bianchi identity

2∇lR
l
j = ∇jR. (44.31)

Invariantly, this can be written

δRc =
1

2
dR. (44.32)

Corollary 44.4. Let (M, g) be a connected Riemannian manifold. If n > 2, and
there exists a function f ∈ C∞(M) satisfying Ric = fg, then Ric = (n−1)k0g, where
k0 is a constant.

Proof. Taking a trace, we find that R = nf . Using (44.31), we have

2∇lR
l
j = 2∇l

(R
n
δlj

)
=

2

n
∇lR = ∇lR. (44.33)

Since n > 2, we must have dR = 0, which implies that R, and therefore f , is
constant.

A metric satisfying Ric = Λg for a constant Λ is called an Einstein metric.
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45 Lecture 45

45.1 The divergence of a tensor

If T is an (r, s)-tensor, we define the divergence of T , div T to be the (r, s− 1) tensor

(div T )(Y1, . . . , Ys−1) = tr
(
X → ](∇T )(X, ·, Y1, . . . , Ys−1)

)
, (45.1)

that is, we trace the covariant derivative on the first two covariant indices. In coor-
dinates, this is

(div T )i1...irj1...js−1
= gij∇iT

i1...ir
jj1...js−1

. (45.2)

Using an local orthonormal frame {ei}, i = 1 . . . n, the divergence can also be written
as

(div T )(Y1, . . . Ys−1) =
n∑
i=1

(∇eiT )(ei, Y1, . . . , Ys−1). (45.3)

If X is a vector field, define

(div X) = tr(∇X), (45.4)

which is in coordinates

div X = δij∇iX
j = ∇jX

j. (45.5)

For vector fields and 1-forms, these two are of course closely related:

Proposition 45.1. For a vector field X,

div X = div ([X). (45.6)

Proof. We compute

div X = δij∇iX
j = δij∇ig

jlXl = δijg
jl∇iXl = gil∇iXl = div ([X). (45.7)

In a local orthonormal frame {ei}, i = 1 . . . n, the divergence of a 1-form is given
by

div ω =
n∑
i=1

(∇eiω)(ei)

=
n∑
i=1

ei(ω(ei))− ω
( n∑
i=1

∇eiei

)
,

(45.8)

whereas the divergence of a vector field is given by

div X =
n∑
i=1

〈∇eiX, ei〉. (45.9)
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45.2 Volume element and Hodge star

If M is oriented, we define the Riemannian volume element dV to be the oriented
unit norm element of Λn(T ∗Mx). Equivalently, if ω1, . . . , ωn is a positively oriented
ONB of T ∗Mx, then

dV = ω1 ∧ · · · ∧ ωn. (45.10)

In coordinates,

dV =
√

det(gij)dx
1 ∧ · · · ∧ dxn. (45.11)

Recall the Hodge star operator ∗ : Λp → Λn−p defined by

α ∧ ∗β = 〈α, β〉dVx, (45.12)

where α, β ∈ Λp.

Remark 45.2. The inner product in (45.12) is the inner product on p-forms, not the
tensor inner product.

The folowing proposition summarizes the main properties of the Hodge star op-
erator that we will require.

Proposition 45.3. The Hodge star operator satisfies the following.

1. The Hodge star is an isometry from Λp to Λn−p.

2. ∗(ω1 ∧ · · · ∧ ωp) = ωp+1 ∧ · · · ∧ ωn if ω1, . . . , ωn is a positively oriented ONB of
T ∗Mx. In particular, ∗1 = dV , and ∗dV = 1.

3. On Λp, ∗2 = (−1)p(n−p).

4. For α, β ∈ Λp,

〈α, β〉 = ∗(α ∧ ∗β) = ∗(β ∧ ∗α). (45.13)

5. If {ei} and {ωi} are dual ONB of TxM , and T ∗xM , respectively, and α ∈ Λp,
then

∗(ωj ∧ α) = (−1)piej(∗α), (45.14)

where iX : Λp → Λp−1 is interior multiplication defined by

iXα(X1, . . . , Xp−1) = α(X,X1, . . . , Xp−1). (45.15)

6. For α ∈ Ωp(M), in a coordinate system,

(∗α)i1...in−p =
1

p!
αj1...jp

√
det(g)εj1...jpi1...in−p , (45.16)

where the ε symbol is equal to 1 if (j1, . . . , jp, i1, . . . , in−p) is an even permutation
of (1, . . . , n), equal to −1 if it is an odd permutation, and zero otherwise.
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Proof. The proof is left to the reader.

Remark 45.4. Note that interior multiplication is not canonically defined – it de-
pends upon our identification of p-forms with alternating tensors of type (0, p).

Remark 45.5. In general, locally there will be two different Hodge star operators,
depending upon the two different choices of local orientation. Each will extend to a
global Hodge star operator if and only if M is orientable. However, one can still con-
struct global operators using the Hodge star, even if M is non-orientable, an example
of which will be the Laplacian.

45.3 Exterior derivative and covariant differentiation

We next give a formula relating the exterior derivative and covariant differentiation.

Proposition 45.6. The exterior derivative d : Ωp → Ωp+1 is given by

dω(X0, . . . , Xp) =

p∑
j=0

(−1)j(∇Xjω)(X0, . . . , X̂j, . . . , Xp), (45.17)

(recall the notation means that the X̂j term is omitted). If {ei} and {ωi} are dual
ONB of TxM , and T ∗xM , then this may be written

dω =
n∑
i=1

ωi ∧∇eiω. (45.18)

In coordinates, this is

(dω)i0...ip =

p∑
j=0

(−1)j∇ijωi0...îj ...ip . (45.19)

Proof. Recall the formula for the exterior derivative [War83, Proposition 2.25],

dω(X0, . . . , Xp) =

p∑
j=0

(−1)jXj

(
ω(X0, . . . , X̂j, . . . , Xp)

)
+
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp).

(45.20)

Since both sides of the equation (45.17) are tensors, we may assume that [Xi, Xj]x = 0,
at a fixed point x. Since the connection is Riemannian, we also have ∇XiXj(x) = 0.
We then compute at the point x.

dω(X0, . . . , Xp)(x) =

p∑
j=0

(−1)jXj

(
ω(X0, . . . , X̂j, . . . , Xp)

)
(x)

=

p∑
j=0

(−1)j(∇Xjω)(X0, . . . , X̂j, . . . , Xp)(x),

(45.21)
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using the definition of the covariant derivative. This proves the first formula (45.17).
The formula (45.19) is just (45.17) in a coordinate system.

For (45.18), note that

∇Xjω = ∇(Xj)ieiω =
n∑
i=1

ωi(Xj) · (∇eiω), (45.22)

so we have

dω(X0, . . . , Xp) =

p∑
j=0

(−1)j
n∑
i=1

ωi(Xj) · (∇eiω)(X0, . . . , X̂j, . . . , Xp)

=
∑
i

(ωi ∧∇eiω)(X0, . . . , Xp),

(45.23)

where we used (1.21) to obtain the last equality.

46 Lecture 46

46.1 The divergence theorem for a Riemannian manifold

We begin with a useful formula for the divergence of a vector field.

Proposition 46.1. For a vector field X,

∗(div X) = (div X)dV = d(iXdV ) = LX(dV ). (46.1)

In a coordinate system, we have

div X =
1√

det(g)
∂i

(
X i
√

det(g)
)
. (46.2)

Proof. Fix a point x ∈ M , and let {ei} be an orthonormal basis of TxM . In a small
neighborhood of x, parallel translate this frame along radial geodesics. For such a
frame, we have ∇eiej(x) = 0. Such a frame is called an adapted moving frame field
at x. Let {ωi} denote the dual frame field. We have

LX(dV ) = (diX + iXd)dV = d(iXdV )

=
∑
i

ωi ∧∇ei

(
iX(ω1 ∧ · · · ∧ ωn)

)
=
∑
i

ωi ∧∇ei

(
(−1)j−1

n∑
j=1

ωj(X)ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn
)

=
∑
i,j

(−1)j−1ei
(
ωj(X)

)
ωi ∧ ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn

=
∑
i

ωi(∇eiX)dV

= (div X)dV = ∗(div X).

(46.3)
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Applying ∗ to this formula, we have

div X = ∗d(iXdV )

= ∗d(iX
√

det(g)dx1 ∧ · · · ∧ dxn)

= ∗d
( n∑
j=1

(−1)j−1Xj
√

det(g)dx1 ∧ . . . ˆdxj · · · ∧ dxn
)

= ∗
(
∂i(X

i
√

det(g))dx1 ∧ · · · ∧ dxn
)

= ∗
(
∂i(X

i
√

det(g))
1√

det(g)
dV
)

=
1√

det(g)
∂i

(
X i
√

det(g)
)
.

(46.4)

Corollary 46.2. Let (M, g) be compact, orientable and with boundary ∂M . If X is
a vector field of class C1, and f is a function of class C1, then∫

M

(div X)fdV = −
∫
M

df(X)dV +

∫
∂M

〈X, n̂〉fdS, (46.5)

where n̂ is the outer unit normal. If ω is a one-form of class C1, then∫
M

(div ω)fdV = −
∫
M

〈ω, df〉dV +

∫
∂M

ω(n̂)fdS. (46.6)

If u and v are functions of class C2, then∫
M

(∆u)vdV = −
∫
M

〈∇u,∇v〉dV +

∫
∂M

〈∇u, n̂〉vdS, (46.7)

and ∫
M

(∆u)vdV −
∫
M

u(∆v)dV =

∫
∂M

〈∇u, n̂〉vdS −
∫
∂M

v〈∇u, n̂〉dS. (46.8)

Consequently, if M is compact without boundary, then ∆ is a self-adjoint operator.

Proof. We compute

d(fiXdV ) = df ∧ (iXdV ) + fd(iXdV ). (46.9)

Using Stokes’ Theorem and Proposition 46.1,∫
M

f(div X)dV +

∫
M

df ∧ (iXdV ) =

∫
∂M

fiXdV. (46.10)

A computation like above shows that

df ∧ (iXdV ) = df(X)dV. (46.11)
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Next, on ∂M , decompose X = XT +XN into its tangential and normal components.
Then

iXdV = dV (XT +XN , . . . )

= dV (〈X, n̂〉n̂, . . . )
= 〈X, n̂〉dS,

(46.12)

since the volume element on the boundary is dS = in̂dV . The proof for 1-forms is the
dual argument. Green’s first formula (46.7) follows using ∆u = div(∇u), and Green’s
second formula (46.8) follows from (46.7).

We point out the following. The formula (46.5), gives a nice way to derive the
coordinate formula for the divergence as follows. Fix a coordinate system, and assume
that X and f have compact support in these coordinates. Then∫

M

f(div X)dV = −
∫
M

df(X)dV

= −
∫
M

∂ifdx
i(Xj∂j)

√
det(g)dx

= −
∫
Rn
∂ifX

i
√

det(g)dx

=

∫
Rn
f∂i

(
X i
√

det(g)
)
dx

=

∫
M

f
1√

det(g)
∂i

(
X i
√

det(g)
)
dV.

(46.13)

Since this is true for any f , we must have

div X =
1√

det(g)
∂i

(
X i
√

det(g)
)
. (46.14)

This formula yields a slightly non-obvious formula for the contraction of the Christoffel
symbols on the upper and one lower index.

Corollary 46.3. The Christoffel symbols satisfy

n∑
i=1

Γiij =
1

2
gpq∂jgpq =

1√
det(g)

∂j
√

det(g) =
1

2
∂j log det(g). (46.15)

Proof. The first equality follows easily from the coordinate formula for the Christoffel
symbols (23.6). Next, on one hand, we have the formula

div X = ∇iX
i = ∂iX

i + ΓiipX
p. (46.16)

On the other hand we have

div X = ∂iX
i +

1√
det(g)

(
∂p
√

det(g)
)
Xp. (46.17)

Since this is true for an arbitrary vector field X, the coefficient of Xp must be the
same.
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Exercise 46.4. Prove the middle equality in (46.15) directly. (Hint: use Jacobi’s
formula for the derivative of a determinant.)

This also yields a useful formula for the Laplacian of a function.

Corollary 46.5. In a coordinate system, the Laplacian of a function is given by

∆f =
1√

det(g)
∂i

(
gij∂jf

√
det(g)

)
. (46.18)

Proof. Since ∆f = div(∇f), just let X i = gij∂if in (46.14).

46.2 Integration and adjoints

We begin with an integration-by-parts formula for (r, s)-tensor fields.

Proposition 46.6. Let (M, g) be compact and without boundary, T be an (r, s)-tensor
field, and S be a (r, s+ 1) tensor field. Then∫

M

〈∇T, S〉dV = −
∫
M

〈T, div S〉dV. (46.19)

Proof. Let us view the inner product 〈T, S〉 as a 1-form ω. In coordinates

ω = 〈T, S〉 = T j1...jsi1...ir
Si1...irjj1...js

dxj. (46.20)

Note the indices on T are reversed, since we are taking an inner product. Taking the
divergence, since g is parallel we compute

div (〈T, S〉) = ∇j(T j1...jsi1...ir
Si1...irjj1...js

)

= ∇j(T j1...jsi1...ir
)Si1...irjj1...js

+ T j1...jsi1...ir
∇jSi1...irjj1...js

= 〈∇T, S〉+ 〈T, div S〉.
(46.21)

The result then follows from Proposition 45.1 and Corollary 46.2.

Remark 46.7. Some authors define ∇∗ = −div. Then∫
M

〈∇T, S〉dV =

∫
M

〈T,∇∗S〉dV, (46.22)

so that ∇∗ is the formal L2-adjoint of ∇, for example [Pet06].

Recall the adjoint of d, δ : Ωp → Ωp−1, is defined by

δω = (−1)n(p+1)+1 ∗ d ∗ ω. (46.23)

Proposition 46.8. For (M, g) compact without boundary, the operator δ is the L2

adjoint of d, ∫
M

〈δα, β〉dV =

∫
M

〈α, dβ〉dV, (46.24)

where α ∈ Ωp(M), and β ∈ Ωp−1(M).
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Proof. We compute∫
M

〈α, dβ〉dV =

∫
M

dβ ∧ ∗α

=

∫
M

(
d(β ∧ ∗α) + (−1)pβ ∧ d ∗ α

)
=

∫
M

(−1)p+(n−p+1)(p−1)β ∧ ∗ ∗ d ∗ α

=

∫
M

〈β, (−1)n(p+1)+1 ∗ d ∗ α〉dV

=

∫
M

〈β, δα〉dV.

(46.25)

We note the following. If α ∈ Ωp(T ∗M), then we can define the divergence
operator div : Ωp(M)→ Ωp−1(M) as follows.

div α =
n∑
j=1

iej∇ejα. (46.26)

This is a well-defined global operator div : Ωp(M) → Ωp−1(M), and agrees with our
previous definition of div under our identification of p-forms with alternating tensors.
To see this, fix a point x ∈M , and let {ei} and {ωi} denote an adapted orthonormal
frame field at x. Recall that p-form is written as

α =
1

p!

∑
1≤i1,i2,...,ip≤n

αi1...ipω
i1 ∧ · · · ∧ ωip . (46.27)

So then (46.26), evaluated at x, is

div α =
1

p!

∑
1≤i1,i2,...,ip≤n

n∑
j=1

ej(αi1...ip)iej(ω
i1 ∧ · · · ∧ ωip)

=
1

p!

∑
1≤i1,i2,...,ip≤n

n∑
j=1

ej(αi1...ip)

p∑
k=1

(−1)k−1δikj (ωi1 ∧ · · · ∧ ω̂ik ∧ · · · ∧ ωip)

=
1

p!

∑
1≤i1,i2,...,ip≤n

p∑
k=1

eik(αi1...ip)(−1)k−1(ωi1 ∧ · · · ∧ ω̂ik ∧ · · · ∧ ωip)

=
1

(p− 1)!

∑
1≤i1,i2,...,ip−1≤n

n∑
k=1

ek(αki1...ip−1)(ω
i1 ∧ · · · ∧ ωip−1).

(46.28)

So the components of div α at x are

(div α)i1...ip−1 =
n∑
k=1

ek(αki1...ip−1). (46.29)
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On the other hand, the alternating (0, p)-tensor corresponding to α is

α̃ =
∑

1≤i1,i2,...,ip≤n

αi1...ipω
i1 ⊗ · · · ⊗ ωip , (46.30)

and the definition of div α̃ from (45.2), evaluated at x, is

(div α̃)i1...ip−1 =
n∑
j=1

∇ejαji1...ip−1 =
n∑
j=1

ej(αji1...ip−1). (46.31)

Consequently, our definitions agree. The next proposition says that our divergence
operator agrees with the Hodge δ operator, up to a sign, a fact which is not at all
obvious.

Proposition 46.9. On Ωp, δ = −div.

Proof. Let ω ∈ Ωp. Choose locally defined dual ONB {ei} and {ωi}. We compute

(div ω) =
∑
j

iej∇ejω

=
∑
j

(−1)p(n−p)
(
iej
(
∗ ∗(∇ejω)

))
= (−1)p(n−p)

∑
j

(−1)n−p ∗ (ωj ∧ ∗∇ejω)

= (−1)(p+1)(n−p)
∑
j

∗
(
ωj ∧∇ej(∗ω)

)
= (−1)n(p+1)(∗d ∗ ω).

(46.32)

An alternative proof of the proposition is as follows. Assume that α ∈ Ωp−1(M)
and β ∈ Ωp(M) are supported in a coordinate system. Then using Proposition 46.8,
formula (45.19), and Proposition 46.6, we have∫

M

〈α, δβ〉dV =

∫
M

〈dα, β〉dV

=
1

p!

∫
M

(dα)i0...ip−1β
i0...ip−1dV

=
1

p!

∫
M

p−1∑
j=0

(−1)j∇ijαi0...îj ...ip−1
βi0...ip−1dV

=
1

(p− 1)!

∫
M

∇i0αi1...ip−1β
i0...ip−1dV

=
1

(p− 1)!

∫
M

〈∇α, β〉tendV

=
1

(p− 1)!

∫
M

〈α,−div β〉tendV

=

∫
M

〈α,−div β〉dV.

(46.33)
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where 〈·, ·〉ten denotes the tensor inner product. Thus both δ and −div are L2 adjoints
of d. The result then follows from uniqueness of the L2 adjoint.

Exercise 46.10. Try and prove Proposition 46.9 directly in coordinates, using the
coordinate formulas (45.2), (45.16), and (45.19).

47 Lecture 47

47.1 The Hodge Laplacian and the rough Laplacian

For T an (r, s)-tensor, the rough Laplacian is an (r, s) tensor given by

∆T = div ∇T , (47.1)

and is given in coordinates by

(∆T )i1...irj1...js
= gij∇i∇jT

i1...ir
j1...js

. (47.2)

If ω ∈ Ωp(M), the rough Laplacian is defined by

∆ω =
n∑
j=1

∇ej∇ejω, (47.3)

and this agrees with the rough Laplacian above under our identification of p-forms
with alternating tensors.

For ω ∈ Ωp we define the Hodge laplacian ∆H : Ωp → Ωp by

∆Hω = (dδ + δd)ω. (47.4)

We say a p-form is harmonic if it is in the kernel of ∆H .

Proposition 47.1. If M is compact without boundary, then for T and S both (r, s)-
tensors, ∫

M

〈∆T, S〉dV = −
∫
M

〈∇T,∇S〉dV =

∫
M

〈T,∆S〉dV. (47.5)

For α, β ∈ Ωp,∫
M

〈∆Hα, β〉dV =

∫
M

〈dα, dβ〉dV +

∫
M

〈δα, δβ〉dV =

∫
M

〈α,∆Hβ〉dV. (47.6)

Consequently, a p-form is harmonic (∆Hα = 0) if and only if it is both closed and
co-closed (dα = 0 and δα = 0).
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Proof. Formula (47.5) is an application of (47.1) and Proposition 46.6. For the second,
from Proposition 46.8,∫

M

〈∆Hα, β〉dV =

∫
M

〈(dδ + δd)α, β〉dV

=

∫
M

〈dδα, β〉dV +

∫
M

〈δdα, β〉dV

=

∫
M

〈δα, δβ〉dV +

∫
M

〈dα, dβ〉dV

=

∫
M

〈α, dδβ〉dV +

∫
M

〈α, δdβ〉dV

=

∫
M

〈α,∆Hβ〉dV.

(47.7)

The last statement follows easily by letting α = β in (47.6).

Note that ∆ maps alternating (0, p) tensors to alternating (0, p) tensors, therefore
it induces a map ∆ : Ωp → Ωp (note that on [Poo81, page 159] it is stated that
the rough Laplacian of an r-form is in general not an r-form, but this seems to be
incorrect). On p-forms, ∆ and ∆H are two self-adjoint linear second order differential
operators. How are they related? Next, we will look at the simplest case of 1-forms.

47.2 1-forms

Consider the case of 1-forms.

Proposition 47.2. Let ω ∈ Ω1(M).

∆ω = −∆H(ω) +Ric(]ω, ·), (47.8)

and

g(∆Hω, ω) =
1

2
∆H |ω|2 + |∇ω|2 +Ric(]ω, ]ω). (47.9)

Proof. We compute

(δdω)j = −gpq∇p(dω)qj

= −gpq∇p(∇qωj −∇jωq)

= −gpq∇p∇qωj + gpq∇p∇jωq

= −∆ωj + gpq∇p∇jωq.

(47.10)

Next,

(dδω)j = (d
(
− gpq∇pωq)

)
j

= −∇j(g
pq∇pωq)

= −gpq∇j∇pωq.

(47.11)
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Adding these together,

(∆Hω)j = −∆ωj + gpq(∇p∇j −∇j∇p)ωq

= −∆ωj + gpq(−R i
pjq ωi)

= −∆ωj − gpq(Rpjiqω
i)

= −∆ωj +Rijω
i,

(47.12)

recalling that our convention is to lower the upper index of the (1, 3) curvature tensor
to the third position. This proves (47.8).

Next, we claim that

−g(∆ω, ω) =
1

2
∆H |ω|2 + |∇ω|2. (47.13)

To see this, compute

∆H |ω|2 = −gkl∇k∇l(g
ijωiωj)

= −gklgij∇k

(
(∇lωi)ωj + ωi∇lωj

)
= −gklgij

(
(∇k∇lωi)ωj +∇lωi∇kωj +∇kωi∇lωj + ωi∇k∇lωj

)
= −2g(∆ω, ω)− 2|∇ω|2.

(47.14)

Pairing (47.8) with ω and using (47.13) proves (47.9).

Theorem 47.3 (Bochner). If (M, g) is compact and has positive semi-definite Ricci
curvature, then any harmonic 1-form is parallel. In this case b1(M) ≤ n. If, in
addition, Ric is positive definite at some point, then any harmonic 1-form is trivial.
In this case b1(M) = 0.

Proof. If ω satisfies ∆Hω = 0, then integrating (47.9) and using the divergence theo-
rem yields

0 =

∫
M

|∇ω|2dV +

∫
M

Ric(]ω, ]ω)dV. (47.15)

This clearly implies that ∇ω ≡ 0, thus ω is parallel, so is determined everywhere
by its value at any point. If in addition Ric is strictly positive somewhere, ω must
vanish identically. The conclusion on the first Betti number follows from the Hodge
Theorem.

47.3 Killing vector fields

Proposition 47.4. For a vector field X,

g(∇YX,Z) + g(Y,∇ZX) = LXg(Y, Z), (47.16)

and

tr(LXg) = 2 div(X). (47.17)

In coordinates (
LXg

)
ij

= gjk∇iX
k + gik∇jX

k. (47.18)
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Proof. Recalling the formula for the Lie derivative of a (0, 2) tensor,

LXg(Y, Z) = X(g(Y, Z))− g([X, Y ], Z)− g(Y, [X,Z])

= X(g(Y, Z))− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX)

= g(∇YX,Z) + g(Y,∇ZX) +X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ)

= g(∇YX,Z) + g(Y,∇ZX).

(47.19)

noting that the 3 latter terms vanish since g is parallel, which proves (47.16).

A vector field X is a Killing field if the 1-parameter group of local diffeomorphisms
generated by X consists of local isometries of g.

Proposition 47.5. A vector field is a Killing field if and only if LXg = 0.

Proof. Let φt denote the 1-parameter group of X,

d

ds
(φ∗sg)

∣∣∣
t

=
d

ds
(φ∗s+tg)

∣∣∣
0

= φ∗t
d

ds
(φ∗sg)

∣∣∣
0

= φ∗tLXg.

(47.20)

It follows that φ∗tg = g for every t if and only if LXg = 0.

Note that, in particular, a Killing field is divergence free. We next have a formula
due to Bochner

Proposition 47.6. Let ω ∈ Ω1(M).

div(LXg) = [(∆X) + d(div X) +Ric(X, ·), (47.21)

and

div(LXg)(X) =
1

2
∆|X|2 − |∇X|2 +X(div X) +Ric(X,X). (47.22)

Proof. We compute

(div(LXg))j = gpq∇p(LXg)qj

= gpq∇p

(
gjk∇qX

k + gqk∇jX
k
)

= gpqgjk∇p∇qX
k + gpqgqk∇p∇jX

k

= gjk(∆X)l + δpk(∇j∇pX
k +R k

pjl X
l)

= gjk(∆X)l +∇j(div X) +RjlX
l,

(47.23)

which proves (47.21).
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Next, we claim that

g(∆X,X) =
1

2
∆|X|2 − |∇X|2. (47.24)

To see this, compute

∆|X|2 = gkl∇k∇l(gijX
iXj)

= gklgij∇k

(
(∇lX

i)Xj +X i∇lX
j
)

= gklgij
(
(∇k∇lX

i)Xj +∇lX
i∇kX

j +∇kX
i∇lX

j +X i∇k∇lX
j
)

= 2g(∆X,X) + 2|∇X|2.

(47.25)

Pairing (47.21) with X and using (47.24) proves (47.22).

We next have

Corollary 47.7. Let (M, g) be compact, and X be a Killing field. If Ric is negative
semidefinite, then X is parallel and Ric(X,X) = 0. If, in addition, the Ricci tensor
is negative definite at some point, then X ≡ 0.

Proof. If X is Killing, then by (47.17), div X = 0. Integrating (47.22) over M yields∫
M

Ric(X,X)dV −
∫
M

|∇X|2dV = 0. (47.26)

If Ric is negative semidefinite, then clearly ∇X = 0, so X is parallel. It also folows
from this that if Ric is negative definite somewhere, then X ≡ 0.

Corollary 47.8. Let (M, g) be compact, and let Iso(M, g) denote the isometry group
of (M, g). If (M, g) has negative semi-definite Ricci tensor, then dim(Iso(M, g)) ≤ n.
If, in addition, the Ricci tensor is negative definite at some point, then Iso(M, g) is
finite.

Proof. We recall that the isometry group of a compact Riemannian manifold is a
compact Lie group with Lie algebra the space of Killing vector fields with the Lie
bracket. If the isometry group is not finite, then there exists a non-trivial 1-parameter
group {φt} of isometries. By Proposition 47.5, this generates a non-trivial Killing
vector field. From Corollary 47.7, X is parallel and Ric(X,X) = 0. Since X is
parallel, it is determined by its value at a single point, so the dimension of the space
of Killing vector fields is less than n, which implies that dim(Iso(M, g)) ≤ n. If Ric is
negative definite at some point x, then X ≡ 0 so there are no non-trivial Killing fields.
Consequently, there are no nontrival 1-parameter groups of isometries, so Iso(M, g)
must be finite since it is a compact Lie group.

Note that an n-dimensional flat torus S1 × · · · × S1 attains equality in the above
inequality. Note also that by Gauss-Bonnet, any metric on a surface of genus g ≥ 2
must have a point of negative curvature, so any non-positively curved metric on a
surface of genus g ≥ 2 must have finite isometry group.
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48 Lecture 48

We next generalize this to p-forms.

Definition 48.1. For ω ∈ Ωp, we define a (0, p)-tensor field ρω by

ρω(X1, . . . , Xp) =
n∑
i=1

p∑
j=1

(
RΛp(ei, Xj)ω

)
(X1, . . . , Xj−1, ei, Xj+1, . . . , Xp), (48.1)

where {ei} is an ONB at x ∈M .

Remark 48.2. Recall what this means. The Riemannian connection induces a met-
ric connection in the bundle Λp(T ∗M). The curvature of this connection therefore
satisfies

RΛp ∈ Γ
(

Λ2(T ∗M)⊗ so(Λp(T ∗M))
)
. (48.2)

We leave it to the reader to show that (48.1) is well-defined.

The relation between the Laplacians is given by

Theorem 48.3. Let ω ∈ Ωp. Then

∆Hω = −∆ω + ρω. (48.3)

We also have the formula

〈∆Hω, ω〉 =
1

2
∆H |ω|2 + |∇ω|2 + 〈ρω, ω〉. (48.4)

Proof. Take ω ∈ Ωp, and vector fields X, Y1, . . . , Yp. We compute

(∇ω − dω)(X, Y1, . . . , Yp) = (∇Xω)(Y1, . . . , Yp)− dω(X, Y1, . . . , Yp) (48.5)

=

p∑
j=1

(∇Yjω)(Y1, . . . , Yj−1, X, Yj+1, . . . , Yp), (48.6)

using Proposition 45.6. Fix a point x ∈ M . Assume that (∇Yj)x = 0, by parallel
translating the values of Yj at x. Also take ei to be an adapted moving frame at p.
Using Proposition 46.9, we compute at x

(div ∇ω + δdµ)(Y1, . . . , Yp) = div (∇ω − dω)(Y1, . . . , Yr)

=
n∑
i=1

(
∇ei(∇ω − dω)

)
(ei, Y1, . . . , Yp)

=
n∑
i=1

(
ei(∇ω − dω)

)
(ei, Y1, . . . , Yp)

=
n∑
i=1

p∑
j=1

ei

(
(∇Yjω)(Y1, . . . , Yj−1, ei, Yj+1, . . . , Yp)

=
n∑
i=1

p∑
j=1

(∇ei∇Yjω)(Y1, . . . , Yj−1, ei, Yj+1, . . . , Yp)

(48.7)
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We also have

dδω(Y1, . . . , Yp) =

p∑
j=1

(−1)j+1(∇Yjδω)(Y1, . . . , Ŷj, . . . , Yp)

=

p∑
j=1

(−1)jYj

(
n∑
i=1

(∇eiω)(ei, Y1, . . . , Ŷj, . . . , Yp)

)

= −
n∑
i=1

p∑
j=1

(∇Yj∇eiω)(Y1, . . . , Yj−1, ei, Yj+1, . . . , Yp).

(48.8)

The commutator [ei, Yj](x) = 0, since ∇eiYj(x) = 0, and ∇Yjei(x) = 0, by our choice.
Consequently,

(∆Hω + ∆ω)(Y1, . . . , Yp) = (∆Hω + div ∇ω)(Y1, . . . , Yp) = ρω(Y1, . . . , Yp). (48.9)

This proves (48.3). For (48.4), we compute at x

div ∇ω(Y1, . . . , Yp) =
∑
i

∇ei(∇ω)(e1, Y1, . . . , Yp)

=
∑
i

ei(∇eiω)(Y1, . . . , Yp)

=
∑
i

(∇ei∇eiω)(Y1, . . . , Yp).

(48.10)

Next, again at x,

〈−div∇ω, ω〉 = −
∑
i

〈∇ei∇eiω, ω〉

= −
∑
i

ei (〈∇eiω, ω〉 − 〈∇eiω,∇eiω〉)

= −1

2

∑
i

(eiei|ω|2) + |∇ω|2

=
1

2
∆H |ω|2 + |∇ω|2.

(48.11)

Remark 48.4. The rough Laplacian is therefore “roughly” the Hodge Laplacian, up
to curvature terms. Note also in (48.4), the norms are tensor norms, since the right
hand side has the term |∇ω|2 and ∇ω is not a differential form. We are using (1.17)
to identify forms and alternating tensors.

49 Lecture 49

49.1 Manifolds with positive curvature operator

We begin with a general property of curvature in exterior bundles.
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Proposition 49.1. Let ∇ be a connection in a vector bundle π : E →M . As before,
extend ∇ to a connection in Λp(E) by defining it on decomposable elements

∇X(s1 ∧ · · · ∧ sp) =

p∑
i=1

s1 ∧ · · · ∧ ∇Xsi ∧ · · · ∧ sp. (49.1)

For vector fields X, Y , RΛp(E)(X, Y ) ∈ End(Λp(E)) acts as a derivation

RΛp(E)(X, Y )(s1 ∧ · · · ∧ sp) =

p∑
i=1

s1 ∧ · · · ∧ R∇(X, Y )(si) ∧ · · · ∧ sp. (49.2)

Proof. We prove for p = 2, the case of general p is left to the reader. Since this is a
tensor equation, we may assume that [X, Y ] = 0. We compute

RΛ2(E)(X, Y )(s1 ∧ s2) = ∇X∇Y (s1 ∧ s2)−∇Y∇X(s1 ∧ s2)

= ∇X

(
(∇Y s1) ∧ s2 + s1 ∧ (∇Y s2)

)
−∇Y

(
(∇Xs1) ∧ s2 + s1 ∧ (∇Xs2)

)
= (∇X∇Y )s1 ∧ s2 +∇Y s1 ∧∇Xs2 +∇Xs1 ∧∇Y s2 + s1 ∧ (∇X∇Y )s2

− (∇Y∇X)s1 ∧ s2 −∇Xs1 ∧∇Y s2 −∇Y s1 ∧∇Xs2 − s1 ∧ (∇Y∇X)s2

=
(
R∇(X, Y )(s1)

)
∧ s2 + s1 ∧

(
R∇(X, Y )(s2)

)
.

(49.3)

We apply this to the bundle E = Λp(T ∗M). Recall for a 1-form ω,

∇i∇jωl = ∇j∇iωl −R k
ijl ωk. (49.4)

In other words,

(R(∂i, ∂j)ω)l = −R k
ijl ωk, (49.5)

where the left hand side means the curvature of the connection in T ∗M , but the right
hand side is the Riemannian curvature tensor. For a p-form ω ∈ Ωp, with components
ωi1...ip , Proposition 49.1 says that

(
RΛp(eα, eβ)ω

)
i1...ip

= −
p∑

k=1

R l
αβik

ωi1...ik−1lik+1...ip , (49.6)

where the left hand side now means the curvature of the connection in Λp(T ∗M).
Next, we look at ρω in coordinates. It is written

(ρω)ii...ip = gαl
p∑
j=1

(
RΛp(∂α, ∂ij)ω

)
i1...ij−1lij+1...ip

. (49.7)
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Using (49.6), we may write ρω as

(ρω)ii...ip = −gαl
p∑
j=1

p∑
k=1,k 6=j

R m
αijik

ωi1...ij−1lij+1...ik−1mik+1...ip

− gαl
p∑
j=1

R m
αij l

ωi1...ij−1mij+1...ip

(49.8)

Let us rewrite the above formula in an orthonormal basis,

(ρω)ii...ip = −
n∑

l,m=1

p∑
j=1

p∑
k=1,k 6=j

Rlijmikωi1...ij−1lij+1...ik−1mik+1...ip

+
n∑

m=1

p∑
j=1

Rijmωi1...ij−1mij+1...ip .

(49.9)

Using the algebraic Bianchi identity (40.18), this is

Rlijmik +Rlmikij +Rlikijm = 0, (49.10)

which yields

Rlijmik −Rmij lik = Rlmijik . (49.11)

Substituting into (49.9) and using skew-symmetry,

(ρω)ii...ip = −1

2

n∑
l,m=1

p∑
j=1

p∑
k=1,k 6=j

(Rlijmik −Rmij lik)ωi1...ij−1lij+1...ik−1mik+1...ip

+
m∑
m=1

p∑
j=1

Rijmωi1...ij−1mij+1...ip

= −1

2

n∑
l,m=1

p∑
j=1

p∑
k=1,k 6=j

Rlmijikωi1...ij−1lij+1...ik−1mik+1...ip

+
m∑
m=1

p∑
j=1

Rijmωi1...ij−1mij+1...ip .

(49.12)

Theorem 49.2. If (Mn, g) is closed and has non-negative curvature operator, then
any harmonic form is parallel. In this case, b1(M) ≤

(
n
k

)
. If in addition, the curvature

operator is positive definite at some point, then any harmonic p-form is trivial for
p = 1 . . . n− 1. In this case, bp(M) = 0 for p = 1 . . . n− 1.

Proof. Let ω be a harmonic p-form. Integrating the Weitzenböck formula (48.4), we
obtain

0 =

∫
M

|∇ω|2dV +

∫
M

〈ρω, ω〉dV. (49.13)
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It turns out the the second term is positive if the manifold has positive curvature
operator [Poo81, Chapter 4], [Pet06, Chapter 7]. Thus |∇ω| = 0 everywhere, so ω
is parallel. A parallel form is determined by its value at a single point, so using the
Hodge Theorem, we obtain the first Betti number estimate. If the curvature operator
is positive definite at some point, then we see that ω must vanish at that point, which
implies the second Betti number estimate. Note this only works for p = 1 . . . n − 1,
since ρω is zero in these cases.

This says that all of the real cohomology of a manifold with positive curvature
operator vanishes except for Hn and H0. We say that M is a rational homology
sphere (which necessarily has χ(M) = 2). If M is simply-connected and has positive
curvature operator, then is M diffeomorphic to a sphere? In dimension 3 this was
answered affirmatively by Hamilton in [?]. Hamilton also proved the answer is yes
in dimension 4 [?]. Very recently, Böhm and Wilking have shown that the answer is
yes in all dimensions [?]. The technique is using the Ricci flow, which we will discuss
shortly.

We also mention that recently, Brendle and Schoen have shown that manifolds
with 1/4-pinched curvature are diffeomorphic to space forms, again using the Ricci
flow. If time permits, we will also discuss this later [?].

Remark 49.3. On 2-forms, the Weitzenböck formula is

(∆Hω)ij = −(∆w)ij −
∑
l,m

Rlmijωlm +
∑
m

Rimωmj +
∑
m

Rjmωim. (49.14)

Through a careful analysis of the curvature terms, M. Berger was able to prove a
vanishing theorem for H2(M,R) provided that the sectional curvature is pinched
between 1 and 2(n− 1)/(8n− 5) [?].

50 Lecture 50
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