Skip to main content

Probing Supercritical Fields with Real and with Artificial Nuclei

  • Chapter
  • First Online:
Nuclear Physics: Present and Future

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

Abstract

In the presence of strong electric fields the vacuum state of Quantum Electrodynamics (QED) becomes unstable and decays through the spontaneous production of electron-positron pairs. This is expected to occur, e.g., in constant electric fields exceeding a critical strength of \(E_\mathrm{cr} \simeq 1.3\cdot 10^{18}\) V/m and also in hypothetical atoms with a nuclear charge exceeding the critical value \(Z_\mathrm{cr} \simeq 172\). We discuss how supercritical quasiatoms can be created transiently in collisions of two heavy ions and discuss experimental signatures. We also report on an analogue of supercritical QED which has been found in solid-state physics. The electron states in the material graphene obey an effective Dirac-like equation. Depositing charged impurity atoms on the surface of a graphene sheet one can construct artificial supercritical atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985)

    Book  Google Scholar 

  2. I. Pomeranchuk, Y. Smorodinsky, J. Phys. USSR 9, 97 (1945)

    Google Scholar 

  3. B. Müller, J. Rafelski, W. Greiner, Z. Phys. 257, 62,183 (1972)

    Google Scholar 

  4. Y. Zel’dovich, V.S. Popov, Sov. Phys. Usp. 14, 673 (1972)

    Google Scholar 

  5. B. Müller, J. Rafelski, W. Greiner, Phys. Lett. B 47, 5 (1973); B. Müller, W. Greiner, Z. Naturforsch. 31a, 1 (1976)

    Google Scholar 

  6. V.S. Popov, Phys. Atom. Nuclei 64, 367 (2001)

    Article  ADS  Google Scholar 

  7. U. Müller, G. Soff, Phys. Rep. 246, 101 (1994)

    Article  ADS  Google Scholar 

  8. J. Reinhardt, B. Müller, W. Greiner, Phys. Rev. A 24, 103 (1981)

    Article  ADS  Google Scholar 

  9. H. Backe et al., Phys. Rev. Lett. 40, 1443 (1978); C. Kozhuharov et al. ibid. 42, 376 (1979); J. Schweppe et al., ibid. 51, 2261 (1983); T. Cowan et al., ibid. 54, 1761 (1985); M. Clemente et al., Phys. Lett. B 137, 41 (1984); H. Tsertos et al., ibid. 162, 273 (1985)

    Google Scholar 

  10. A. Balkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Phys. Rev. Lett. 71, 1514 (1993)

    Article  ADS  Google Scholar 

  11. GSI, SPARC Technical Design Report (2006)

    Google Scholar 

  12. Y. Oganessian, G. Ter-Akopian, Private communication (2013)

    Google Scholar 

  13. U. Müller, T. de Reus, J. Reinhardt, B. Müller, W. Greiner, G. Soff, Phys. Rev. A 37, 1449 (1988)

    Article  ADS  Google Scholar 

  14. J. Reinhardt, U. Müller, B. Müller, W. Greiner, Z. Physik, A 303, 173 (1981); U. Müller, G. Soff, T. de Reus, J. Reinhardt, B. Müller, W. Greiner. Z. Physik A 313, 263 (1983)

    Google Scholar 

  15. J. Rafelski, B. Müller, W. Greiner, Z. Physik A 285, 49 (1978)

    Article  ADS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  17. Y. Wang, D. Wong, A.V. Shytov, V.W. Brar, S. Choi, Q. Wu, H. Tsai, W. Regan, A. Zettl, R.K. Kawakami, S.G. Louie, S.S. Levitov, M.F. Crommie, Science 340, 734 (2013)

    Article  ADS  Google Scholar 

  18. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Google Scholar 

  19. M.I. Katsnelson, K.S. Novoselov, Solid State Commun. 143, 3 (2007); A.K. Geim, Science 324, 1530 (2009)

    Google Scholar 

  20. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  21. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 236801(2007); ibid. 99, 246802 (2007)

    Google Scholar 

  23. V.M. Pereira, J. Nilsson, A.H Castro Neto. Phys. Rev. Lett. 99, 166802 (2007)

    Google Scholar 

  24. O.O. Sobol, E.V. Gorbar, V.P. Gusynin, Phys. Rev. B88, 205116 (2013)

    Article  ADS  Google Scholar 

  25. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006); A.F. Young, P. Kim. Nat. Phys. 5, 222 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reinhardt, J., Greiner, W. (2015). Probing Supercritical Fields with Real and with Artificial Nuclei. In: Greiner, W. (eds) Nuclear Physics: Present and Future. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10199-6_19

Download citation

Publish with us

Policies and ethics