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Abstract: This paper considers three conceptions of musical distance (or 
inverse “similarity”) that produce three different musico-geometrical spaces: 
the first, based on voice leading, yields a collection of continuous quotient 
spaces or orbifolds; the second, based on acoustics, gives rise to the Tonnetz 
and related “tuning lattices”; while the third, based on the total interval content 
of a group of notes, generates a six-dimensional “quality space” first described 
by Ian Quinn.  I will show that although these three measures are in principle 
quite distinct, they are in practice surprisingly interrelated.  This poses the 
challenge of determining which model is appropriate to a given music-
theoretical circumstance.  Since the different models can produce comparable 
results, unwary theorists could potentially find themselves using one type of 
structure (such as a tuning lattice) to investigate properties more perspicuously 
represented by another (for instance, voice-leading relationships). 
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1   Introduction 

We begin with voice-leading spaces that make use of the log-frequency metric.1  
Pitches here are represented by the logarithms of their fundamental frequencies, with 
distance measured according to the usual metric on R; pitches are therefore “close” if 
they are near each other on the piano keyboard.  A point in Rn represents an ordered 
series of pitch classes.  Distance in this higher-dimensional space can be interpreted 
as the aggregate distance moved by a collection of musical “voices” in passing from 
one chord to another.  (We can think of this, roughly, as the aggregate physical 
distance traveled by the fingers on the piano keyboard.)  By disregarding 
information—such as the octave or order of a group of notes—we “fold” Rn into an 
non-Euclidean quotient space or orbifold.  (For example, imposing octave 
equivalence transforms Rn into the n-torus Tn, while transpositional equivalence 
transforms Rn into Rn–1, orthogonally projecting points onto the hyperplane whose 
coordinates sum to zero.)  Points in the resulting orbifolds represent equivalence 
classes of musical objects—such as chords or set classes—while “generalized line 

                                                             
1 For more on these spaces, see Callender 2004, Tymoczko 2006, and Callender, Quinn, and 

Tymoczko 2008. 



segments” represent equivalence classes of voice leadings.2  For example, Figure 1, 
from Tymoczko 2006, represents the space of two-note chords, while Figure 2, from 
Callender, Quinn, and Tymoczko 2008, represents the space of three-note 
transpositional set classes.  In both spaces, the distance between two points represents 
the size of the smallest voice leading between the objects they represent. 
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Fig. 1. The Möbius strip representing voice-leading relations among two-note chords. 
 

Let’s now turn to a very different sort of model, the Tonnetz and related structures, 
which I will describe generically as “tuning lattices.”  These models are typically 
discrete, with adjacent points on a particular axis being separated by the same 
interval.  The leftmost lattice in Figure 3 shows the most familiar of these, where the 
two axes represent acoustically pure perfect fifths and major thirds.  (One can imagine 
a third axis, representing either the octave or the acoustical seventh, projecting 
outward from the paper.)  The model asserts that the pitch G4 has an acoustic affinity 
to both C4 (its “underfifth”) and D5 (its “overfifth”), as well as to Ef4 and B4 (its 
“underthird” and “overthird,” respectively).  The lattice thus encodes a fundamentally 
different notion of musical distance than the earlier voice leading models: whereas A3 
and Af3 are very close in log-frequency space, they are four steps apart our tuning 
lattice.  Furthermore, where chords (or more generally “musical objects”) are 
represented by points in the voice leadings spaces, they are represented by polytopes 
in the lattices.3 

Finally, there are measures of musical distance that rely on chords’ shared interval 
content.  From this point of view, the chords {C, Cs, E, Fs} and {C, Df, Ef, G} 
resemble one another, since they are “nontrivially homometric” or “Z-related”: that is, 
they share the same collection of pairwise distances between their notes.  (For 
instance, both contain exactly one pair that is one semitone apart, exactly one pair that 
is two semitones apart, and so on.)  However, these chords are not particularly close 

                                                             
2 The adjective “generalized” indicates that these “line segments” may pass through one of the 

space’s singular points, giving rise to mathematical complications. 
3 For a modern introduction to the Tonnetz, see Cohn 1997, 1998, and 1999. 



in either of the two models considered previously.  It is not intuitively obvious that 
this notion of “similarity” produces any particular geometrical space.  But Ian Quinn  
has shown that one can use the discrete Fourier transform to generate (in the familiar 
equal-tempered case) a six-dimensional “quality space” in which chords that share the 
same interval content are represented by the same point.4  We will explore the details 
shortly.  

 
Fig. 2. The cone representing voice-leading relations among three-note transpositional set 
classes. 
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Fig. 3. Two discrete tuning lattices.  On the left, the chromatic Tonnetz, where horizontally 
adjacent notes are linked by acoustically pure fifths, while vertically adjacent notes are linked 
by acoustically pure major thirds.  On the right, a version of the structure that uses diatonic 
intervals. 

 
Clearly, these three musical models are very different, and it would be somewhat 

surprising if there were to be close connections between them.  But we will soon see 
that this is in fact this case. 

                                                             
4 See Lewin 1959, 2001, Quinn 2006, 2007, Callender 2007. 
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Fig. 4. (left) most efficient voice-leadings between diatonic fifths form a chain that runs 
through the center of the Möbius strip from Figure 1.  (right) These voice leadings form an 
abstract circle, in which adjacent dyads are related by three-step diatonic transposition, and are 
linked by single-step voice leading. 
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Fig. 5. (left) most efficient voice-leadings between diatonic triads form a chain that runs 
through the center of the orbifold representing three-note chords. (right) These voice leadings 
form an abstract circle, in which adjacent triads are linked by single-step voice leading.  Note 
that here, adjacent triads are related by transposition by two diatonic steps. 

2   Voice-leading lattices and acoustic affinity 

Voice-leading and acoustics seem to privilege fundamentally different conceptions of 
pitch distance: from a voice leading perspective, the semitone is smaller than the 
perfect fifth, whereas from the acoustical perspective the perfect fifth is smaller than 
the semitone.  Intuitively, this would seem to be a fundamental gap that cannot be 
bridged.   



 
Fig. 6. Major, minor, and augmented triads as they appear in the orbifold representing three-
note chords.  Here, triads are particularly close to their major-third transpositions. 
 

Things become somewhat more complicated, however, when we consider the 
discrete lattices that represent voice-leading relationships among familiar diatonic or 
chromatic chords.  For example, Figure 4 records the most efficient voice leadings 
among diatonic fifths—which can be represented using an irregular, one-dimensional 
zig-zag near the center of the Möbius strip T2/S2.  (The zig-zag seems to be irregular 
because the figure is drawn using the chromatic semitone as a unit; were we to use the 
diatonic step, it would be regular.)  Abstractly, these voice leadings form the circle 
shown on the right of Figure 4.  The figure demonstrates that there are purely 
contrapuntal reasons to associate fifth-related diatonic fifths: from this perspective 
{C, G} is close to {G, D}, not because of acoustics, but because the first dyad can be 
transformed into the second by moving the note C up by one diatonic step.  One 
fascinating possibility—which we unfortunately cannot pursue here—is that acoustic 
affinities actually derive from voice-leading facts: it is possible that the ear associates 
the third harmonic of a complex tone with the second harmonic of another tone a fifth 
above it, and the fourth harmonic of the lower note with the third of the upper, in 
effect tracking voice-leading relationships among the partials. 

Figures 5-7 present three analogous structures: Figure 5 connects triads in the C 
diatonic scale by efficient voice leading, and depicts third-related triads as being 
particularly close; Figure 6 shows the position of major, minor, and augmented triads 
in three-note chromatic chord space, where major-third-related triads are close5; 
Figure 7 shows (symbolically) that fifth-related diatonic scales are close in chromatic 
space.  Once again, we see that there are purely contrapuntal reasons to associate 
fifth-related diatonic scales and third-related triads.   

                                                             
5 This graph was first discovered by Douthett and Steinbach (1998).   
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Fig. 7. Fifth-related diatonic scales form a chain that runs through the center of the seven-
dimensional orbifold representing seven-note chords.  It is structurally analogous to the circles 
in Figures 4 and 5. 
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Fig. 8.  Correlations between modulation frequency and voice-leading distances among scales, 
in Bach’s Well-Tempered Clavier, and the piano sonatas of Haydn, Mozart, and Beethoven.  
The very high correlations suggest that composers typically modulate between keys whose 
associated scales can be linked by efficient voice leading. 

 
This observation, in turn, raises a number of theoretical questions.  For instance: 

should we attribute the prevalence of modulations between fifth-related keys to the 
acoustic affinity between fifth-related pitches, or to the voice-leading relationships 
between fifth-related diatonic scales? One way to study this question would be to 
compare the frequency of modulations in classical pieces to the voice-leading 
distances among their associated scales.  Preliminary investigations, summarized in 
Figure 8, suggest that voice-leading distances are in fact very closely correlated to 
modulation frequencies.  Surprising as it may seem, the acoustic affinity of perfect 



fifth-related notes may be superfluous when it comes to explaining classical 
modulatory practice.6 

C
F

E

Bf

Gf

Af

Ef

G

 
Fig. 9.  On this three-dimensional Tonnetz, the C7 chord is represented by the tetrahedron 
whose vertices are C, E, G, and Bf.  The Cø7 chord is represented by the nearby tetrahedron C, 
Ef, Gf, Bf, which shares the C-Bf edge. 

3   Tuning lattices as approximate models of voice leading 

We will now investigate the way tuning lattices like the Tonnetz represent voice-
leading relationships among familiar sonorities.  Here my argumentative strategy will 
by somewhat different, since it is widely recognized that the Tonnetz has something to 
do with voice leading.  (This is largely due to the important work of Richard Cohn, 
who has used the Tonnetz to study what he calls “parsimonious” voice leading.7)  My 
goal will therefore be to explain why tuning lattices are only an approximate model of 
contrapuntal relationships, and only for certain chords. 

The first point to note is that inversionally related chords on a tuning lattice are 
near each other when they share common tones.8  For example, the Tonnetz represents 
perfect fifths by line segments; fifth-related perfect fifths, such as {C, G} and {G, D} 
are related by inversion around their common note, and are adjacent on the lattice 
(Figure 3).  Similarly, major and minor triads on the Tonnetz are represented by 
triangles; inversionally related triads that share an interval, such as {C, E, G} and {C, 
E, A}, are joined by a common edge.  (On the standard Tonnetz, the more common 
tones, the closer the chords will be: C major and A minor, which share two notes, are 
closer than C major and F minor, which share only one.)  In the three-dimensional 
Tonnetz shown in Figure 9, where the z axis represents the seventh, C7 is near its 
inversion Cø7.  The point is reasonably general, and does not depend on the particular 

                                                             
6 Similar points could potentially be made about the prevalence, in functionally tonal music, of 

root-progressions by perfect fifth.  It may be that the diatonic circle of thirds shown in Figure 
5 provides a more perspicuous model of functional harmony than do more traditional fifth-
based representations. 

7 See Cohn 1997. 
8 This is not true of the voice leading spaces considered earlier: for example, in three-note 

chord space {C, D, F} is not particularly close to {F, Af, Bf}. 



structure of the Tonnetz or on the chords involved: on tuning lattices, inversionally 
related chords are close when they share common tones.9 

The second point is that acoustically consonant chords often divide the octave 
relatively evenly; such chords can be linked by efficient voice leading to those 
inversions with which they share common notes.10  It follows that proximity on a 
tuning lattice will indicate the potential for efficient voice leading when the chords in 
question are nearly even and are related by inversion.  Thus {C, G} and {G, D} can 
be linked by the stepwise voice leading (C, G) (D, G), in which C moves up by two 
semitones.  Similarly, the C major and A minor triads can be linked by the single-step 
voice leading (C, E, G) (C, E, A), and C7 can be linked to Cø7 by the two semitone 
voice-leading (C, E, G, Bf) (C, Ef, Gf, Bf).  In each case the chords are also close 
on the relevant tuning lattice.  (Note that triadic distances on the diatonic Tonnetz in 
Figure 3 exactly reproduce the circle-of-thirds distances from Figure 5.)  This will not 
be true for uneven chords: {C, E} and {E, Gs} are close on the Tonnetz, but cannot be 
linked by particularly efficient voice leading; the same holds for {C, G, Af} and {G, 
Af, Df}.  Tuning lattices are approximate models of voice-leading only when one is 
concerned with the nearly-even sonorities that are fundamental to Western tonality. 
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Fig. 10.  On the Tonnetz, F major (triangle 3) is closer to C major (triangle 1) than F minor 
(triangle 4) is.  In actual music, however, F minor frequently appears as a passing chord 
between F major and C major.  Note that, unlike in Figure 3, I have here used a Tonnetz in 
which the axes are not orthogonal; this difference is merely orthographical, however. 

 
Furthermore, on closer inspection Tonnetz-distances diverge from voice-leading 

distances even for these chords.  Some counterexamples are obvious: for instance, {C, 
G} and {Cs, Fs} can be linked by semitonal voice leading, but are fairly far apart on 
the Tonnetz.  Slightly more subtle, but more musically pertinent, is the following 
example: on the Tonnetz, C major is two units away from F major but three units from 
F minor (Figure 10).  (Here I measure distance in accordance with “neo-Riemannian” 

                                                             
9 In general, the notion of “closeness” needs to be spelled out carefully, since chords can 

contain notes that are very far apart on the lattice.  In the cases we are concerned with, chords 
occupy a small region of the tuning lattice, and the notion of “closeness” is fairly 
straightforward. 

10 See Tymoczko 2006 and 2008.  The point is relatively obvious when one thinks 
geometrically: the two chords divide the pitch-class circle nearly evenly into the same 
number of pieces; hence, if any two of their notes are close, then each note of one chord is 
near some note of the other. 



theory, which considers triangles sharing an edge to be one unit apart and which 
decomposes larger distances into sequences of one-unit moves.)  Yet it takes only two 
semitones of total motion to move from C major to F minor, and three to move from 
C major to F major.  (This is precisely why F minor often appears as a passing chord 
between F major and C major.)  The Tonnetz thus depicts F major as being closer to C 
major than F minor is, even though contrapuntally the opposite is true.  This means 
we cannot use the figure to explain the ubiquitous nineteenth-century IV-iv-I 
progression, in which the two-semitone motion ^6 ^5 is broken into two single-
semitone motions ̂6 f ^6 ^5. 

One way to put the point is that while adjacencies on the Tonnetz reflect voice-
leading facts, other relationships do not.  As Cohn has emphasized, two major or 
minor triads share an edge if they can be linked by “parsimonious” voice-leading in 
which a single voice moves by one or two semitones.  Thus, if we are interested in 
this particular kind of voice leading then the Tonnetz provides an accurate and useful 
model.  However, there is no analogous characterization of larger distances in the 
space.  In other words, we do not get a recognizable notion of voice-leading distance 
by “decomposing” voice leadings into sequences of parsimonious moves: as we have 
seen, (F, A C) (E, G, C) can be decomposed into two parsimonious moves, while it 
takes three to represent (F, Af, C) (E, G, C); yet intuitively the first voice leading 
should be larger than the second.  The deep issue here is that it is problematic to assert 
that “parsimonious” voice leadings are always smaller than non-parsimonious voice-
leadings: for by asserting that (C, E, A) (C, E, G) is smaller than (C, F, Af) (C, E, 
G), the theorist runs afoul what Tymoczko calls “the distribution constraint,” known 
to mathematicians as the submajorization partial order.11 Tymoczko argues that 
violations of the distribution constraint invariably produce distance measures that 
violate our intuitions about voice leading; the problem with larger distances on the 
Tonnetz would seem to illustrate this more general claim. 

Nevertheless, the fact remains that the two kinds of distance are roughly consistent: 
for major and minor triads, the correlation between Tonnetz distance and voice-
leading distance is a reasonably high .79.12  Furthermore, since Tymoczko’s 
“distribution constraint” is not intuitively obvious, unwary theorists might well think 
that they could consistently declare the “parsimonious” voice leading (C, E, G) (C, 
E, A) to be smaller than the non-parsimonious (C, E, G) (Cs, E, Gs).  (Indeed, the 
very meaning of the term “parsimonious” suggests that some theorists have in fact 
done so.)  Consequently, Tonnetz-distances might well appear, at first or even second 
blush, to reflect some reasonable notion of “voice-leading distance”; and this in turn 
could lead the theorist to conclude that the Tonnetz provides a generally applicable 
tool for investigating triadic voice-leading.  I have argued that we should resist this 
conclusion: if we use the Tonnetz to model chromatic music, than Schubert’s major-

                                                             
11 See Tymoczko 2006, and Hall and Tymoczko 2007.  Metrics that violate the distribution 

constraint have counterintuitive consequences, such as preferring “crossed” voice leadings to 
their uncrossed alternatives.  Here, the claim that A minor is closer to C major than F minor 
leads to the F minor/F major problem discussed in Figure 10. 

12 Here I use the L1 or “taxicab” metric.  The correlation between Tonnetz distances and the 
number of shared common tones is an even-higher .9. 



third juxtapositions will seem very different from his habit of interposing F minor 
between F major and C major, since the first can be readily explained using the 
Tonnetz whereas the second cannot.13  The danger, therefore, is that we might find 
ourselves drawing unnecessary distinctions between these two cases—particularly if 
we mistakenly assume the Tonnetz is a fully faithful model of voice-leading 
relationships. 

4   Voice leading, “quality space,” and the Fourier transform 

We conclude by investigating the relation between voice leading and the Fourier-
based perspective.14  The mechanics of the Fourier transform are relatively simple: for 
any number n from 1 to 6, and every pitch-class p in a chord, the transform assigns a 
two-dimensional vector whose components are: 
 

Vp, n = (cos (2 pn/12), sin (2 pn/12)) 
 

Adding these vectors together, for one particular n and all the pitch-classes p in the 
chord, produces a composite vector representing the chord as a whole—its “nth 
Fourier component.”  The length (or “magnitude”) of this vector, Quinn observes, 
reveals something about the chord’s harmonic character: in particular, chords 
saturated with (12/n)-semitone intervals, or intervals approximately equal to 12/n, 
tend to score highly on this index of chord quality.15  The Fourier transform thus 
seems to quantify the intuitive sense that chords can be more-or-less diminished-
seventh-like, perfect-fifthy, or whole-toneish.  Interestingly, “Z-related” chords—or 
chords with the same interval content—always score identically on this measure of 
chord-quality.  In this sense, Fourier space (the six-dimensional hypercube whose 
coordinates are the Fourier magnitudes) seems to model a conception of similarity 
that emphasizes interval content, rather than voice leading or acoustic consonance. 

However, there is again a subtle connection to voice leading: it turns out that the 
magnitude of a chord’s nth Fourier component is approximately linearly related to the 
(Euclidean) size of the minimal voice leading to the nearest subset of any perfectly 
even n-note chord.16  For instance, a chord’s first Fourier component (FC1) is 
approximately related to the size of the minimal voice leading to any transposition of 
{0}; the second Fourier component is approximately related to the size of the minimal 
voice leading to any transposition of either {0} or {0, 6}; the third component is 
approximately related to the size of the minimal voice leading to any transposition of 

                                                             
13 See Cohn 1999. 
14 The ideas in the following section are influenced by Robinson (2006), Hoffman (2007), and 

Callender (2007). 
15 Here I use continuous pitch-class notation where the octave always has size 12, no matter 

how it is divided.  Thus the equal-tempered five-note scale is labeled {0, 2.4, 4.8, 7.2, 9.6}. 
16 Here I measure voice-leading using the Euclidean metric, following Callender 2004.  See 

Tymoczko 2006 and 2008 for more on measures of voice-leading size. 



either {0}, {0, 4} or {0, 4, 8}, and so on.  Figure 11 shows the location of the subsets 
of the n-note perfectly even chord, as they appear in the orbifold representing three-
note set-classes, for values of n ranging from 1 to 6.17  Associated to each graph is one 
of the six Fourier components.  For any three-note set class, the magnitude of its nth 
Fourier component is a decreasing function of the distance to the nearest of these 
marked points: for instance, the magnitude of the third Fourier component (FC3) 
decreases, the farther one is from the nearest of {0}, {0, 4} and {0, 4, 8}.  Thus, 
chords in the shaded region of Figure 12 will tend to have a relatively large FC3, 
while those in the unshaded region will have a smaller FC3.  Figure 13 shows that this 
relationship is very-nearly linear for twelve-tone equal-tempered trichords. 

 

FC1, subsets of {0} FC2, subsets of {0, 6}

FC3, subsets of {0, 4, 8} FC4, subsets of {0, 3, 6, 9}

FC5, subsets of {0, 2.4, 4.8, 7.2, 9.6} FC6, subsets of {0, 2, 4, 6, 8, 10}
 

Fig. 11. The magnitude of a set class’s nth Fourier component is approximately linearly related 
to the size of the minimal voice leading to the nearest subset of the perfectly even n-note chord, 
shown here as dark spheres. 

 
 

                                                             
17 See Callender 2004, Tymoczko 2006, Callender, Quinn, and Tymoczko, 2008. 



 
Fig. 12. Chords in the shaded region will have a large FC3 component, since they are near 
subsets of {0, 4, 8}.  Those in the unshaded region will have a smaller FC3 component. 
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Figure 13. For trichords, the equation FC3 = –1.38VL + 3.16 relates the third Fourier 
component to the Euclidean size of the minimal voice leading to the nearest subset of {0, 4, 8}. 
 
Table 1. Correlations between voice-leading distances and Fourier magnitudes. 

 

 FC1 FC2 FC3 FC4 FC5 FC6 
Dyads -.97 -.96 -.97 -1 -.97 -1* 

Trichords -.98 -.97 -.97 -.98 -.98 -1* 

Tetrachords -.96 -.96 -.95 -.98 -.96 -1* 

Pentachords -.96 -.96 -.95 -.98 -.96 -1* 

Hexachords -.96 -.96 -.95 -.96 -.96 -1* 

Septachords -.96 -.96 -.96 -.97 -.96 -1* 

Octachords -.96 -.96 -.95 -.98 -.96 -1* 

Nonachords -.96 -.96 -.96 -.98 -.96 -1* 

Decachords -.96 -.96 -.96 -.98 -.96 -1* 

 
* Voice leading calculated using L1 (taxicab) distance rather than L2 (Euclidean). 

 
Table 1 uses the Pearson correlation coefficient to estimate the relationship 

between the voice-leading distances and Fourier components, for twelve-tone equal-
tempered multisets of various cardinalities.  The strong anti-correlations indicate that 
one variable predicts the other with a very high degree of accuracy.  Table 2 
calculates the correlation coefficients for three-to-six-note chords in 48-tone equal 
temperament.  These strong anticorrelations, very similar to those in Table 1, show 
that there continues to be a very close relation between Fourier magnitudes and voice-



leading size in very finely quantized pitch-class space.  Since 48-tone equal 
temperament is so finely quantized, these numbers are approximately valid for 
continuous, unquantized pitch-class space.18 

 
Table 2. Correlations between voice-leading distances and Fourier magnitudes in 48-tone equal 
temperament.   

 FC1 

Trichords -.99 

Tetrachords -.97 

Pentachords -.97 

Hexachords -.96 

 
Explaining these correlations, though not very difficult, is beyond the scope of this 

paper.  From our perspective, the important question is whether we should measure 
chord quality using the Fourier transform or voice leading.19  In particular, the issue is 
whether the Fourier components model the musical intuitions we want to model: as 
we have seen, the Fourier transform requires us to measure a chord’s “harmonic 
quality” in terms of its distance from all the subsets of the perfectly even n-note 
chord.  But we might sometimes wish to employ a different set of harmonic 
prototypes.  For instance, Figure 14 uses a chord’s distance from the augmented triad 
to measure the trichordal set classes’ “augmentedness.”  Unlike Fourier analysis, this 
purely voice-leading-based method does not consider the triple unison or doubled 
major third to be particularly “augmented-like”; hence, set classes like {0, 1, 4} do 
not score particularly highly on this index of “augmentedness.”  This example 
dramatizes the fact that, when using voice leading, we are free to choose any set of 
harmonic prototypes, rather than accepting those the Fourier transform imposes on us. 

 
Fig. 14.  The mathematics of the Fourier transform requires that we conceive of “chord quality” 
in terms of the distance to all subsets of the perfectly even n-note chord (left).  Purely voice-
leading-based conceptions instead allow us to choose our harmonic prototypes freely (right).  
Thus we can voice leading to model a chord’s “augmentedness” in terms of its distance from 
the augmented triad, but not the tripled unison {0, 0, 0} or the doubled major third {0, 0, 4}. 

                                                             
18 It would be possible, though beyond the scope of this paper, to calculate this correlation 

analytically.  It is also possible to use statistical methods for higher-cardinality chords.  A 
large collection of randomly generated 24- and 100-tone chords in continuous space 
produced correlations of .95 and .94, respectively. 

19 See Robinson 2006 and Straus 2007 for related discussion. 



5   Conclusion 

The approximate consistency between our three models is in one sense good news: 
since they are closely related, it may not matter much—at least in practical terms—
which we choose.  We can perhaps use a tuning lattice such as the Tonnetz to 
represent voice-leading relationships, as long as we are interested in gross contrasts 
(“near” vs. “far”) rather than fine quantitative differences (“3 steps away” vs. “2 steps 
away”).  Similarly, we can perhaps use voice-leading spaces to approximate the 
results of the Fourier analysis, as long as we are interested in modeling generic 
harmonic intuitions (“very fifthy” vs. “not very fifthy”) rather than exploring very 
fine differences among Fourier magnitudes.   

However, if we want to be more principled, then we need to be more careful.  The 
resemblances among our models mean that it might be possible to inadvertently use 
one sort of structure to discuss properties that are more directly modeled by another.  
And indeed, the recent history of music theory displays some fascinating (and very 
fruitful) imprecision about this issue.  It is striking that Douthett and Steinbach, who 
first described several of the lattices found in the center of the voice-leading 
orbifolds—including Figure 6—explicitly presented their work as generalizing the 
familiar Tonnetz.20  Their lattices, rather than depicting parsimonious voice leading 
among major and minor triads, displayed single-semitone voice leadings among a 
wide range of sonorities; and as a result of this seemingly small difference, they 
created models in which all distances can be interpreted as representing voice-leading 
size.  However, this difference only became apparent after it was understood how to 
embed their discrete structures in the continuous geometrical figures described at the 
beginning of this paper.  Thus the continuous voice-leading spaces evolved out of the 
Tonnetz, by way of Douthett and Steinbach’s discrete lattices, even though the 
structures now appear to be fundamentally different.  Related points could be made 
about Quinn’s “quality space,” whose connection to the voice-leading spaces took 
several years—and the work of several authors—to clarify. 

There is, of course, nothing wrong with this: knowledge progresses slowly and 
fitfully.  But the preceding investigation suggests that it we may need to be precise 
about which model is appropriate for which music-theoretical purpose.  I have tried to 
show that the issues here are complicated and subtle: the mere fact that tonal pieces 
modulate by fifth does not, for example, require us to use a tuning lattice in which 
fifths are smaller than semitones.   Likewise, there may be close connections between 
voice-leading spaces and the Fourier transform, even though the latter associates “Z-
related” chords while the former does not.  The present paper can thus be considered a 
down-payment toward a more extended inquiry, one that attempts to determine the 
relative strengths and weaknesses of our three similar-yet-different conceptions of 
musical distance. 

                                                             
20 The same is true of Tymoczko 2004, which uses the term “generalized Tonnetz” to describe 

another set of lattices appearing in the voice-leading spaces. 
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