防衛技術シンポジウム2009 ポスターセッション発表テーマ

レーダ用固体化増幅器向けGaN HEMTシリーズ GaN HEMT Line-up Suitable for Radar Applications

高木 一考, 菅藤 和博, 荒井 重光 (株式会社 東芝 社会システム社 小向工場 マイクロ波技術部)

Kazutaka Takagi, Kazuhiro Kanto and Shigemitsu Arai Microwave Solid-State Engineering Department, Komukai Operations, Social Infrastructure Systems Company, Toshiba Corp., 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8581, Japan

Summary;

Gallium nitride (GaN) power HEMT line-up suitable for solid-state amplifiers used in radar applications has been developed. The line-up will contribute to realize smaller size, lighter-weight and higher performance radar systems.

材料	GaN	4H-SiC	6H-SiC	GaAs	Si
格子定数()	a 3.189	a 3.073	a 3.08	5.6533	5.4301
	c 5.185	c 10.053	c 15.12		
禁制帯幅(eV)	3.39	3.26	3	1.43	1.12
電子移動度 µ	900	850	400	8500	1400
	2DEG 2000	// 1020	// 80		
正孔移動度	150	115	90	400	600
破壊電界E _c	3.3E+06	2.2E+06	2.5E+06	4.E+05	3.E+05
熱伝導度 (W/cmK)	1.3 ~ 2	4.9	4.9	0.5	1.5
飽和速度v _{sat}	2~2.7E+07	2.2E+07	1.9E+07	1.3E+07	1.0E+07
誘電率	9	9.7	10	12.8	11.8
パルク成長	×				
Iピ成長					
	SAP,SiC,Si				
BM(対Si)	653	340	191	16	1
BHFM(対Si)	78	50	25	11	1
デバイスターゲット	青色光素子 高周波素子 パワー素子	パワー素子	パワー素子	高周波素子	半導体産業 の中心
BM:バリガー性能指数(低周波) = μE ³					=0.42

各種半導体の物性定数と性能指標

BHFM: バリガー性能指数(高周波) = μE_c^2

a=4.76, c=12.99

何故GaNなのか(2/2)

GaN素子構造(HEMT)とDC特性例

電流コラプス対策

ダメージ低減プロセスによりFPがなくても、電流コラプスは現れていない。

寄生インダクタンスの影響 - simulation -

- Ls was swept from 25pH to 225pH.
- Reduction of the inductance less than 25pH.

高周波化への課題(6/6)

接地インダクタンス対策 - Via-hole -

各社開発状況(抜粋) (2/2)

P3-6

X帯送信機用250W級GaNモジュールの試作例

GaNモジュールの試作例

GaNモジュールの諸元表

周波数	X帯(帯域500MHz)		
出力電力	250Wピーク		
利得	25dB		
電源電圧	+35V / -5V		
寸法(製品時)	150mm ×150mm ×45mm		

X帯フェーズドアレイの試作例

GaNの適用例:Ku帯SSPA

H Sumi, et al, "Ku-Band, 120-W Power Amplifier Using Gallium Nitride FETs", 2009 IEEE MTT-S Int. Microwave Symp., Dig., pp. 1389-1392, June 2009.

P3-6

TOSHIBA Leading Innovation >>>