1cARUS 109, 221-240 (1994)

A Comparison of Lorentz, Planetary Gravitational, and Satellite
Gravitational Resonances

DoucLas P. HAMILTON!

Department of Astronomy, Cornell University, Ithaca NY 14853
E-mail:hamilton@eul.mpi-hd.mpg.de

Received October 7, 1993; revised March &, 1994

We consider a charged dust grain whose orbital motion is domi-
nated by a planet's point-source gravity, but perturbed by higher-
order terms in the planet’s gravity field as well as by the Lorentz
force arising from an asymmetric planetary magnetic field. Pertur-
bations to Keplerian orbits due to a nonspherical gravity ficld are
expressed in the traditional way: in terms of a disturbing function
which can be expanded in a series of spherical harmonics
(W. M. Kaula, 1966, Theory of Satellite Geodesy, Blaisdell,
Waltham, MA). In order to calculate the electromagnetic perturba-
tion, we first write the Lorentz force in terms of the orbital elements
and then substitute it into Gauss® perturbation equations. This
procedure is analogous to the derivation of gravitational disturbing
functions, except, since the Lorentz force has no associated poten-
tial, the perturbation of each orbital element must be calculated
separately. We use our result to derive strengths of Lorentz reso-
nances and elucidate their properties. In particular, we compare
Lorentz resonances to two types of gravitational resonances: those
arising from periodic tugs of a satellite and those due to the at-
traction of an arbitrarily shaped planet.

‘We find that Lorentz resonances share numerous properties with
their gravitational counterparts and show, using simple physical
arguments, that several of these patterns are fundamental,
applying not only to our expansions, but to all quantities expressed
in terms of orbital elements. Some of these patterns have been
previously called “d’Alembert rules” for satellite resonances. Other
similarities arise because, to first-order in the perturbing force, the
three problems share an integral of the motion. Yet there are also
differences; for example, first-order inclination resonances exist
for perturbations arising from planetary gravity and from the
Lorentz force, but not for those due to an orbiting sateilite. Finally,
we provide a heuristic treatment of a particle’s orbital evolution
under the influence of drag and resonant forces. Particles brought
into mean-motion resonances experience either trapping or reso-
nant ‘Jumps,” depending on the direction from which the reso-
nance is approached. We show that this behavior does not depend
on the details of the perturbing force but rather is fundamental to
all mean-motion reSORANCES.  © 1994 Academic Press, nc.

! Current address: Max Planck Institut fiir Kernphysik, Postfach
103980, 69029 Heidelberg, Germany.
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1. INTRODUCTION

Gravitational orbital resonances, in which the fre-
quency of a perturbing force is commensurate with a natu-
ral orbital frequency, have fundamental importance in the
Solar System. Satellites resonate with one another as in
the saturnian Mimas—Tethys and Enceladus~Dione pairs
as well as the famous jovian Io-Europa-Ganymede triple.
Atresonant locations in the main rings of Saturn, satellites
cause density and bending waves, and sometimes form
gaps and ringlets. Some features in the saturnian rings
have even been ascribed to tiny perturbations from axially
asymmetric {erms in the planet’s gravitational field
(Franklin et al. 1982, Marley and Porco 1993) and at Mars
these resonances may have influenced the eccentricity
and inclination of Phobos (Yoder 1982). Since gravita-
tional resonances are so common in the Solar System,
might nongravitational resonances also be prevalent? This
is almost certainly true; however, examples of such
resonances will only be found by looking in the right
places. Since nongravitational forces can compete with
gravitational ones solely when particles are small, we
expect these resonances for particles with radii less than-
a few micrometers. The faint ring systems of the giant
planets are composed primarily of tiny particles and so
such locales are ideal sites to seek out signs of nongravita-
tional resonant interactions.

These signs are clearly present both in the main jovian
ring (Burns ef al. 1985) and in Saturn’s E ring (Horanyi
et al. 1992), In the former location, Lorentz (electromag-
netic) resonances, which arise from Jupiter's spinning
magnetic fietd, are capable of pumping up the eccentricity
and inclination of ring particles. In particular, the transi-
tion between the main ring and the vertically extended
halo occurs at a location where the ratio of the orbital
frequency to the planet’s spin rate is nearly 3:2 (Burns
er al. 1985). Particles drifting inward and across this strong
resonant location increase their inclinations by a factor
of several hundred (see Schatfer and Burns 1992). The
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particles in Saturn’s diffuse E ring are also in nearly reso-
nant orbits although this time the driving force is radiation
pressure instead of electromagnetism. Here perturbations
of planetary gravity and electromagnetism cause an or-
bit's pericenter to precess at a rate nearly commensurate
with the orbital motien of Saturn. Thus an orbit retains
a given orientation with respect to the Sun for an extended
period of time, thereby allowing radiation pressure to
build up large orbital eccentricities and spread material
across the full breadth of the E ring (Horanyi et af. 1992).

Other nongravitational resonances have also been iden-
tified, among them two types of shadow resonances (Mig-
nard 1984, Horanyi and Burns 1991) and resonant charge
variations (Burns and Schaffer 1989, Northrop et al.
1989). In the former, conditions change in the planetary
shadow (radiation pressure and the photoelectric current
shut off) which is encountered once per orbit; such orbits
are thus intrinsically resonant. Shadow resonances may
be responsible for the strange azimuthal asymmetry seen
in the main jovian ring and in its halo (for a description
of the asymmetry, see Showalter et af. 1987). Resonant
charge variations occur when the charge on a dust grain
changes with a period that is commensurate with the
grain’s orbital period; the termination of the photoelectric
current during shadow passage provides a simple exam-
ple, while another depends on variations in the current
fiow to a grain as its position and velocity change along
its orbit.

Because gravitational resonances have been exten-
sively studied, it is valuable when studying nongravita-
tional effects to draw from the body of knowledge already
amassed. Accordingly, the primary emphasis of this work
is to explore the similarities of nongravitational and gravi-
tational orbital resonances by comparing and contrasting
their structure and effects on orbiting particies. We
choose to look at two different types of gravitational reso-
nances—those due to an orbiting satellite and those due
to the “‘lumpiness’’ of an arbitrarily shaped planet—and
we pick Lorentz resonances both because of their impor-
tance at Jupiter and because of their similarity to gravita-
tional resonances (Hamilton and Burns 1993). In the inter-
est of brevity, henceforth we adopt the following notation:
LR, Lorentz resonance; SGR, sateilite gravity resonance,
and PGR, planetary gravity resonance. By comparing
three different types of orbital resonances, we progress
in understanding the traits that underlie all orbital reso-
nances and those that are unique to particular ones.

A second goal of this paper is the mathematical charac-
terization of the Lorentz perturbation which is useful for
several applications. As noted above, Lorentz resonances
are known to play a key role at the inner edge of the main
jovian ring (Burns et al. 1985). They are also suspected
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of being important elsewhere, perhaps accounting for dust
found over the Neptunian pole (Hamiiton et al. 1992),
causing larger inclinations in the saturnian E ring (Horani
et al. 1992, Hamilton 1993), and accounting for curious
phenomena at the corotation distance (for Jupiter, see
Showalter ef al. 1985). These resonances have been ana-
lytically treated by Schaffer and Burns (1987) and more
recently by Schaffer and Burns (1992), who used a per-
turbed harmonic oscillator model of resonance. Here we
instead follow the standard celestial mechanics approach;
since gravitational perturbations have been treated in this
way, similarities and differences between resonances
might be more readily apparent. Furthermore, the celes-
tial mechanics approach has several advantages over the
harmonic oscillator approach, the most obvious of which
is that the results of perturbations are described by slowly
varying orbital elements which allow graphic visualization
of orbital evolution.

The importance of Lorentz resonances in many of the
above applications remains speculative because resonant
strengths are poorly known; indeed, even the structure
of these resonances is not well understood. In Section
2, we attempt to rectify this situation by expanding the
Lorentz force out to second order in small quantities e
and /. In Section 3, we compare SGRs, PGRs, and LRs
and discuss underlying symmetries contained in their
expansions. We add the important dissipative effects of
drag forces in Section 4, following which we present our
conclusions.

2. EXPANSION OF PERTURBING FORCES

2.1. Planetary Gravity

We begin by discussing perturbations to two-body mo-
tion arising from small deviations in a planetary gravity
field. This well-studied problem shares many aspects with
the Lorentz perturbation and, accordingly, facilitates our
later discussion of that force. Because we consider only
small perturbations, solutions to the full problem differ
only slightly from the exact solution to the two-body prob-
lem. Accordingly, we make use of the orbital elements
since these will change relatively slowly in time. The
basic task then, is to write the perturbation in terms of
osculating orbital elements so that the time rate of change
of each of these elements can be determined. We now
sketch the derivation following the comprehensive treat-
ment of Kaula (1966).

Working in a planet-centered reference frame rotating
at the planet’s spin rate ), the gravitational potential ®
outside an arbitrarily shaped body can be shown to satisfy
Laplace’s equation, V2® = 0 (Danby 1988). Solving La-
place’s equation leads to the standard spherical harmonic
expansion of the gravitational potential,
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where G is the gravitational constant, M, and R, ar¢ the
planetary mass and radius, and r, 8, ¢y are the usual
spherical coordinates defined in the rotating frame. These
coordinates can be translated into the nonrotating frame
by the identity ¢p = ¢ — A’, where A" = Q¢ is the
longitude of a reference point on the rotating planet. The
Pj-"(x) are associated Legendre functions (Kaula 1966,
Schaffer and Burns 1992}. Finally, the coefficients C7y
and S, are dimensionless quantities whose values are set
by the mass distribution within the planet. To facilitate
comparison of LRs and PGRs, we choose to Schmidt-
normalize the gravity coefficients. (See Stern 1976 for
a discussion of different normalization conventions; the
appropriate formulas can also be found in Schaffer and
Burns 1992.} We place asterisks on the coefficients as a
reminder of this unconventional choice.

The disturbing function, i.e., the negative of Eq. (1)
rewritten in terms of orbital elements, is found by con-
verting the spherical coordinates to orbital quantities and
substituting into Eq. (1); the relevant expressions [Eqs.
(5)—(8) in Hamilton (1993)] allow #, #, and ¢ to be replaced
by a, e, i ), u, and v. Here &« and ¢ are the semimajor
axis and eccentricity of the elliptical orbit, 7 is the orbital
in¢lination, and Q is the longitude of the ascending node;
the argument of latitude, «, and the true anomaly, v, vary
rapidly and nonlinearly in time (Fig. 1). We therefore
replace these latter two quantities with the longitude of
pericenter w, which changes slowly, and the mean longi-
tude of the particle A, which varies nearly linearly in time.
In addition, this choice causes all reference angles to be
measured from the same zero-point in space which makes
the symmetries of the expansion most apparent (see Sec-
tion 3.1 below). The elements employed in our expansions
are therefore: a, e, i, ), w, and A,

We eliminate the argument of latitude with the ex-
pression

u=w—-—Q+v (2)

(Fig. 1), leaving only the true anomaly », which always
appears inside trigonometric functions, to be translated.
Because expressions relating cos » and sin » to trigono-
metric functions of the mean anomaly M are available
{e.g., Smart 1953, p. 41), we proceed by using multiple-
angle identities to first write our series (Eq. (1)) in terms
of sums and products of cos v and sin ». We do this using
a symbolic algebra program (MACSYMA), although with
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FIG, 1, Orbital elements. The symbols A and P stand for apoapse
and periapse, respectively, while AN and DN refer to the ascending
and descending nodes. Longitude angles (e.g., A, @, and {}) are measured
from a specified reference direction in space. Node angles (e.g., {}) are
measured to the ascending node while arguments (e.g., &« and w) are
measured from this point. Similarly, pericenter angles {e.g., w and w)
are measured 1o periapse while anomalies (e.g., ») are measured from
there.

care it can be done analytically (Kaula 1966). Next the
substitutions for cos v and sin » are employed; these
expressions are complicated, involving Bessel functions
and their derivatives, but can be reduced to the form
Z,Be/ cos(jM), where the B; are constants (Smart 1953,
p. 41). These expressions converge only for e < 0.66, a
constraint of little importance since most applications are
to low-eccentricity orbits. Finally, we complete the trans-
formation to our orbital elements by replacing M via the
identity M = A — w.

The resulting expression is quite complex, containing
products and quotients of infinite power series in the ec-
centricity. We simplify by formally multiplying and divid-
ing the various series so that each term in the full expres-
sion contains only a single power of the eccentricity.
Next, we replace all products and powers of trigonometric
functions with multiple-angle expressions; these steps are
computationally intensive and tedious, and therefore are
best left to symbolic programs. The final result is the
disturbing function, a series containing terms of the form:

fla,e,i,. .. )SCA XN+ AN + Ao+ Al), (3)
where SC is either sine or coéine, the A; are integer con-
stants, and fis function of a, e, i and the field coefficients
C}. and §%. Readers interested in more explicit analytic
results for the disturbing function relevant to planetary
gravity fields should consult Section 3.3 of Kaula (1966).
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TABLE 1
Orbital Perturbation Due to Planetary Gravity

I
A, Ay Ap, Ag (dn/dr)° (deldr)” (di/dr)? (dQ/dt)? (dw/dr)® (deldn)?
3,
4 -2 2 ] 204n¢? ~34de 0 0 34 0
3 -2 -1 0 63ne -7 0 0 Tle 0
2 =2 0 0 12n 2e 2i =2 -10 12
1 -2 1 0 —3ne -1 0 0 —1lle 0
0 -2 0 2 0 0 2 2 0 0
o Multiply by /(V3/4)C% (R, /a) sin W.
® Multiply by n(V3/4)C% 5(R,/a)* cos ¥,
Ci2
(dnldn)® (de/dt)” (difdr) (i dr)? {dw/dn)? (de/dt)?
4 -2 -1 -1 —60nei 5i Se Seli Sile 0
3 —2 0 -1 —9ni 0 1 1/i 0 0
2 —~2 14 -1 6rel i —e —eli —ile 0
2 -2 —1 1 18nei —3 3e —3eli —~3ife 0
1 -2 0 ] 3ni 0 i —-1/i 0 0
0 —~2 1 | 0 i e —efi —ile 0

¢ Multiply by n(V15/4)CY 2(R,/a)? cos .
4 Multiply by n(V15/4)C%2(R,/a)" sin V.

Note. The second-order expansion of perturbations due to the C3, and €% ; components of the planetary gravitationa! field. The first column
contains the resonant argument, ¥ = A, X + Ay M + Ajw + Apfd [see Eqgs. (3) and (11}]. When the disturbing function is expanded to second-
order in the small quantities (e and i), (dn/di} is given to second order, (de/dr) and (di/dt) to first order, and the angular quantities (dQ2/dt),
(dw/dr), and (de/dt) to zeroth order. The response for the $%, and 5%, components (Eq. (1)) are obtained from these by the transformation
C*— §* and ¥ — ¥ — g/2. Section 4.1 gives an example of how to use this table.

We wish to compare these results with those that arise
from the Lorentz force considered in the next section,
but because a disturbing function cannot be defined for
the Lorentz force, we must derive time rates of change
of the orbital elements in both cases. These rates are
obtained by inserting the disturbing function into Eq.
(£1.9.9) from Danby (1988), which gives six new series,
one for the rate of change of each orbital element, each
of which contains terms of the form of Eq. (3). We use
expressions for dn/dt, deldt, dildt, dQ/dt, dwl/dt, and
del/dt where the mean motion is given by

112
n= (ng) . 4)
The variable de/dt encapsulates all perturbative changes
to a particle’s orbital mean motion; it is equivalent to
Danby (1988) from de,/dr, and satisfies de/dr = di/dt ~
n. To facilitate the comparison of inclination and eccen-
tricity resonances, we Taylor-expand the six series in ¢
and i and truncate so that only terms second-order in small
quantities remain. Our results for selected quadrupole and
octupole components of the planetary gravity field are
presented in Table 1. Many of the patterns seen in Table

I [e.g., the similarity of the coefficients of the time rates of
change of the eccentricity (inclination) and the pericenter
(node)] follow from the fact that these expressions are
derived from a single disturbing function.

2.2 The Lorentz Force

In addition to planetary gravity, a charged dust grain
is influenced by the Lorentz force arising from the planet’s
rotating magnetic field. Close in, the magnetic field B
rotates at the planet’s constant spin rate €},. In a frame
rotating at this raie, the magnetic field is constant in time
and the Lorentz force is given by

Fey = g(vm] x B), (5)

where g is the charge on the grain, ¢ is the speed of light
in vacuum, and
(6)

V=V — (£}, X1

is the velocity relative to the magnetic field, with v as the
Kepler velocity in the nonrotating frame.
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When describing a magnetic field evaluated in a current-
freeregion (J ~ V x B = 0), the only remaining constraint
that must be satisfied is Maxwell’s equation V-B=0
(Stern 1976). If B = Vcl)mag, V x B =0is automatically
satisfied, and V-@mag = 0 with solutions like Eq. (I)
above. Hence

L = R i+l
-R,V > (—rﬁ)

i=t
g
;0 [g;x costkdg) + hyy sinlkdr)lPi(cos 0). (7)

The g;, and h;, are planetary magnetic field coefficients
with units of Gauss [Schaffer and Burns (1992) tabulate
values for the giant planets and give additional refer-
ences].

We now absorb several of the constants from Eqgs. (5),
(6), and (7) into a single dimensionless constant represent-
ing the ratio of the Lorentz force to planetary gravity. In
particular, we calculate the Lorentz force due to an
aligned dipolar magnetic field on a motionless grain in the
equatorial plane (i.e., v = 0 and 4 = 90°) and divide
by the gravitational force (both forces are radial). An
advantage of this choice is that the force ratio,

R
L = qgl.o p*°p (8)

cGM m,

is independent of the distance from the planet. Note that
the constant L depends both on properties of the grain
(the charge-to-mass ratio g/m,) and properties of the envi-
ronment (planctary mass, radius, spin rate, and dipole
strength).

The Lorentz force can be treated as a perturbation to
gravity for grains satisfying L < 1. Assuming typical grain
potentials of a few volis (e.g., Horanyi et al. 1992), this
inequality translates to grains larger than several tenths
of a micrometer in radius. For many applications, incind-
ing the jovian ring (Showalter et al. 1987) and the saturnian
E ring (Showalter et al. 1991), dust grains are inferred to be
micrometer-sized and gravitationally dominated; hence a
perturbation approach is appropriate.

Since the Lorentz force depends on velocity, it cannot
be written as the gradient of a potential and thus an elec-
tromagnetic disturbing function does not exist. Therefore,
in order to obtain the time rates of change of the orbital
elements for a general force, we proceed as follows:

1. Resolve the force into three orthogonal components:
one normal to the orbital plane, the second oriented radi-
ally, and the third perpendicular to the others.

2. Insert these components into the perturbation equa-
tions of celestial mechanics (e.g., Danby 1988, Eq.
(11.5.13)).
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3. Convert all quantities into orbital elements.

The first step has already been accomplished for the
Lorentz force [Hamilton (1993), Egs. (19a)-(19¢): note
that the magnetic field component in Eq. (i9b)’s center
term should be B, instead of B,]. Next we insert the
expressions for B, By, and B, from Eq. (7) into the force
components which are in turn substituted into the pertur-
bation equations.

Finally, we rewrite the perturbation equations in terms
of our set of orbital elements; this step closely parallels
that discussed above for the planetary gravity disturbing
function. For each of the six perturbation equations, we
first convert the spherical quantities (r, 8, ¢) to orbital
elements using Egs. (5)—(8) from Hamilton (1993), after
which we replace « and v with ), &, and M (see Eq. (2)
and the following discussion). After simplification, we are
again left with a series of terms of Eq. (3)’s form. Our
result for the response of a charged grain to magnetic
dipole, quadrupole, octupole, and select higher-order
terms, truncated to second-order in e and i, is given in
Table 11.

3. PROPERTIES QF THE EXPANSIONS

3.1. Orbital Symmetries

Despite the fact that the PGR and LR expansions listed
in Tables I and II arise from very different perturbations,
remarkably similar patterns are evident in each case. For
instance, in both expansions the power of the eccentricity
inagiven term is related to the coefficient of the pericenter
angle, A, and the same holds for inclinations and nodes.
Furthermore, in both cases, the coefficients of the angular
quantitiesineveryresonant argument ¥ sumtozero. These
patterns are reminiscent of d’Alembert relations which
constrain the form of SGRs, imposing symmetries that
have been recognized for as long as the satellite disturbing
function has been expanded. According to Brown and
Shook (1933}, the relation between pericenter coefficients
and eccentricity powers was first discussed by d’Alembert
(1754); a more complete list of symmetries present in the
secular part of the disturbing function can be found in
Applegate et al. (1986). These patterns are actually mani-
festations of more fundamental constraints that arise not
from properties of a particular resonance, but rather from
the very nature of orbital elements. In this section, we
present simple physical arguments that constrain the form
of all expressions involving orbital elements, after which
we demonstrate how the constraints impose symmetries
on the Fourier expansions of SGRs, PGRs, and LRs.

Any physical quantity, Q (e.g., a position, velocity, or
perturbation equation, a perturbing force, the disturbing
function, etc.), that is expressed in terms of orbital ele-
ments can be written as a function of many variables,
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TABLE II
Orbital Perturbation Due to the Lorentz Force
810
A, A, A, Ag (dnidr) (de/dr)® (difdt)? (@ dry (dwldty (deldt)®
P4 0 -2 0 —6ne’ 2t = £)e 0 ¢ =-2(1 - &) 0
2 0 0 -2 —3ni 0 (1 — &) —(l—& 0 0
1 1] -1 0 —3ne (1-8& \] Q —(l — &)e 0
\] 0 0 0 0 0 0 (1-8 2 -201 - &)
¢ Multiply by nlL sin ¥,
¥ Multiply by #L cos ¥.
L2,
(dnldr)® (deldr)* (dildi)e (dChidn)e (dwldi)d (deld)
2 0 -1 -1 12nei -2 - &) -2 - 3p)e -2 - 3eli ~(2 = g)ile 0
1 0 0 -1 3ni 0 -t~ & —{1 — g}i 0 0
0 0 1 -1 0 —¢&i te geli Eile 0
¢ Multiply by nL{3/2)(g, o/g, )R /a) cos .
4 Multiply by nL(3/2)(g2,/8,0) (R /a) sin ¥,
&30
(dnidn)* (de/dt)< (ditdn)® dQudnyf (dwidt) (deldry
2 0 -2 0 One? =31 — & 0 0 - &) 0
2 0 1] -2 6ni? 0 —=2(1 — &) 21 — &) 0 0
1 0 -1 0 3ne —(1 — &) 0 0 (1 = &)e 0
v} 0 0 0 0 0 0 =21 -8 (1 -38 21 - ¢&)
¢ Multiply by rE(3/2)(g; o/g1a)(R/a)? sin W
I Multiply by nL(3/2)(g; o/g, g)(R /@) cos W.
811
(dn/dr)t {deldt)s (difdrye (@ dn® (dw/dr)* (detdry®
3 -1 -1 -1 —45nei i 32 — 3&e 52 — 3¢&)eli Sile 4]
2 -1 0 ~1 —12ni 0 Ml -8 a0 — g 0 0
1 1 -1 -1 ~2lnei (S~ 26 2 ~ 5&) 2 — 5feli (5 — 28)ile Q
1 -1 I -1 Snet 3i -3(2 - &)e —302 — Beli —3ife 0
1 -1 ~t 1 —15nei (3 + 28 2 — 75)e —(2 = Teeli (3 + 28)ile 0
\] -1 0 1 —12ni 0 41 — &) -4l — £Mi 1] 0
# Multiply by nL(1/4)(g, /g, 0) <05 ¥.
A Multiply by aL{1/4)(g, /g, o) sin ¥,
821
(dn/dty’ (de/dty (difdt) (dQ/dry (da/dt)! (deldt)é
3 -1 -2 0 —2ne* Tl - fe 0 0 -1 -8 0
3 -1 0 -2 — 9t 0 301 — £)i -31 -8 0 0
2 -1 -1 0 —bne 20 - & 0 o) =21 — £)le 0
1 1 -2 0 —9ne* 31— e 0 o) =31 - £ 0
I 1 0 -2 — 9 0 301 — £)i -3l - £) 0 0
1 -1 0 4] 12ne? —4(1 — £e 0 6(1 — &) =2(1 — 58) —-801 - £
0 -1 1 Q &ne - -5 Q I —AL — BMe
i Multiply by nL(V3/8)(g,,/810) (R /a) sin V.
J Multiply by nL(\/SM)(gZ,,fgl_o)(Rpla) cos .
81
(dnfdi)* {defdn)k (difdy* (a0 dr)’ (dw!dt)! (deldn)!
3 -1 -1 —1 141nei —¢19 — 108)i —(28 — 378 —(28 — 37&)edi —(19 - 108)ile 0
2 -1 0 -1 24ni 0 -8(1 — &) —8(1 - &N 0 0
t 1 -1 -1 Nnei —{19 — 128} —(12 — 19&)e ~(12 — 19¢)eli —(19 - 12&)ile 0
1 -1 1 -1 —2lnei (3 — 108y 4 + 3 4 + 38eli —(3 — 108)ile 0
1 -1 -1 1 2Tnei 301 — 484 —3(4 - e 34 — 78)eli I — 48dile 0
0 -1 0 1 24ni 0 —8(1 — &) 8(1 ~ &) 0 0

“ Multiply by nL(V6/16)(g; ,/8:.0)(Ry/a)? cos ¥.

! Multiply by nL (V6/16)(g, /8, 0)(R,fa)? sin ¥,
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TABLE II—Continued

¥ 822
A, A, AL Aq (dnidy™ (deldn)™ (dildn™ (€ dn)" (dw/dt)” (deldey”
4 -2 -1 —1 —48nei 4 43 — 4 43 — ag)eli dile 0
3 -2 0 -1 —9ni . 0 -8 30— ok [\ 0
2 -2 1 -1 I2nei 2i —X3 — 2£)e =23 - 28)eli —2ile ]
2 -1 -1 1 — 24nei 20 + £)i H3 - 50 —-23 - Sl 21 + &ile 0
1 =2 0 1 =9 0 3 - & =31 - &i \] 0
0 -2 1 1 —12rei 22 — £ —2Ee 2¢eli — N2 — thile 1]
" Multiply by nL(\/EM){gmlgl_u)(Rpla) cos V.
» Multiply by nl{V3/4)(g,2/g,2}(R,/a) sin .
832
{dn/dt)® {deldt)° (dil/dr)® (dQY/ dryw (dw/dry” (de/dr)?
4 -2 -2 0 ~15ne? 51 = e 0 0 =51 - &) 0
4 -2 0 -2 —6nd 0 A1 — £) -1 - ¢) 0 0
3 =2 -1 0 —3ne -8 [\ 0 —(1 — &e 0
2 -2 0 0 12ne? —4(1 — £le \] 41 — &) =21 — 38 —4(1 — £)
i -2 1 0 3ne ~(1 = §) 0 0 —(1 — &e o
0 -2 2 0 Ine? =1 - & 0 0 —(1 — £} 0
0 -2 0“_ 2 6ni? Q 21 — &4 =21 - & 0 ]
¢ Multiply by nE(V15/8)(g,1/g, o) (Ryfa)? sin .
# Multiply by m[.(\/B.’tt)(gnf’gm)(.Rpf‘a)1 cos V.
£33
(dnidt)y? (deldt)? (dildty? (dQ/dn’ (dw/dt)y (deldt)"
5 -3 -1 -1 — 165nei 11{ {4 — 58)¢ 11¢4 — 3¢)edi 1ile 0
4 -3 0 -1 — 24ni 0 8(1 — & 8(1 — & 0 0
3 -3 1 -1 45nel 5i —54 — 38 =54 — 3&)eli —3ile 0
3 -3 -1 1 —99nei (5 + 68 (28 — 398)e —(28 — 39&8%/i (5 + 6&€)ile 0
2 -3 0 1 —24ni 0 81 - &6 —8(1 — £Mi Q 0
1 -3 1 1 —2inef (11 ~ 68 —+ e @ + Qeli —(11 — 6&)ile 0
¢ Multiply by aL(V10/16)(g,5/2,0)(R,/a)? cos ¥
" Multiply by nL(V10/16)(g5 /g, 0)(R /@) sin .
&4
(dnldt)* (deldr)* (ditdr)s (dQ/dn)’ (dwldt)’ (defdt)
5 -3 -2 0 —39ne? 13(1 = £)e 0 0 —13(1 - & 0
5 -3 0 =2 —15n2 0 5(1 — £y =501 - &) 0 0
4 -3 -1 0 —bne 21 -8 0 0 =21 - &le \]
3 -3 0 0 I6ne? —12(1 = &)e 0 10(1 — &) -2(3 - 75 —-8(1 - &)
2 -3 1 0 bne —-2(1 — &) \] 0 =2(1 — ¢&)e 0
] -3 2 0 Ine? —(1 — & i) V] (1 = &) 0
1 -3 0 2 15n8 0 —5(1 — &)i -5 - & 0 0
* Multiply by aL{\VI0/16)(g, /g, ) (Ry/ay cos ¥,
! Multiply by nL(\/%I16)(34‘3."g|'g)(Rpla)3 sin V.
844
(dnidn* (de/dt)" (di/dry* (df}/dr)y (didt)® (deldn)®
6 —4 —1 -1 — 126nei % HS — 6E)e 5 — 68)eli Tile 0
5 -4 0 -1 — 15ni Q 51 ~ &) 501 — o)/ 0 0
4 -4 1 -1 36nei 3 =35 — 4¢)e =35 - 4&eli —3ile 0
4 -4 -1 1 —8dnei (3 + 4&) (25 — 32¢&)e —(25 — 32¢&)eli (3 + 48)ile 0
3 -4 0 1 —15ni 0 5(1 - &) —5(1 — &Wi 0 0
2 -4 1 1 —bnrel (7 — 45 —{5 — 28)e (5 = 28eli —(7 — 4&)ile 0

“ Multiply by nL(V35/16)(g.«/g 10} (R /)’ sin .
¥ Multiply by m!.(\/ﬁ.flG)(g,.,./gllo)(R;,.fa]3 cos ¥,

Note. The second-order expansion of perturbations due to the Lorentz force with £ = n/(,. All dipole, quadrupole, and octupole as well as a few of the important
higher-order terms are given in separate subtables. The first column contains the resonant argument, ¥ = A, & + A, M + A w + ApQ [see Egs. 3) and (11)]. As
with planetary gravity, we expand {dn/dt) to second order in e and i, (de/d!) and (di/df) to first order, and the angular quantities {d€}/dr), (dw/dt), and (de/d?) to zeroth
order. By convention, the hy; are taken Lo be zero; the response to the other #;, terms can be obtained from this table by substituting h;. in for g and subfracting
/2 from ¥. An example illustrating the proper use of this table for the g,, component is given in Eqs. (29a)-(29c} of Section 4.1.
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Q=F(X19X2’X3s---=¢|,¢2,¢3s,---), (9)

some of which are longitude angles (¢;) and some of which
are not (x;). For the Lorentz perturbation (see Section
2.2 and Table 1I), the set of x; includes the quantities {a,
e, i, L, g;., h;;}, while the set of ¢; is simply {(}, @, A,
L'}, Since the longitudes are angular quantities, F must
be periodic in each of them. A well-behaved periodic
function can be expanded as a Fourier series in each of
its cyclic variables; performing this expansion of Eq. (9)
yvields a series whose terms have the form

f(XI! X1s X3» o - - 3SC(W), (10)

where SC is either sine or cosine, the function f'plays the
role of an amplitude and

V=2 A4, (11
I

This series is summed over all possible unique sets of
integer A;’s. Now, although all quantities pertaining to an
arbitrary orbit may be expressed as a series with terms
of the form of Eq. (10), the converse is not true; not all
functions of this form represent valid physical quantities.
We now discuss four constraints on the form of Eq. (9)
that glf physical quantities must obey.

The first and best-known constraint arises from the
fact that all longitude angles are measured from the same
reference direction, or zero-point, in space (e.g.,
Applegate et al. (1986). Because space is isotropic, the
choice of reference direction is arbitrary, and hence its
selection can in no way atfect a given orbit or the perturba-
tions acting on it. We choose a new zero-point of longitude
by adding an angular quantity 8 to each of the longitude
terms and require that Eq. (9) be invariant under the
transformation

longitude angles — longitude angles + & (12)
(Fig. 1).

Applying Eq. (12) to the specific case of a scalar 0, we
find that since the invariance holds for arbitrary values
of the variables x; and ¢, the constraint applies separately
to each term in the Fourier series (Eq. 10). If Qs unaltered
by Eq. (12}, then combining Eqs. (10)—(12) yields:

fla, e i,. . )SCOY) = fla,e,i,. ..)SC(¥ + 38> A).
J
(13)

Now since § is arbitrary,
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(14)

Thus the longitude coefficients contained within each term
of any scalar physical quantity must sum to zero. Notice
in particular that this rule is strictly obeyed by each term
of the perturbation expansions listed in Tables I and II.

Unlike the zero-point of longitude, the line of nodes for
a given orbit is uniquely determined by the intersection
of the orbital plane with a given reference plane. Never-
theless, it is an arbitrary choice to measure angles with
respect to an orbit’s ascending node rather than its de-
scending node. If we adopt the unconventional choice of
using the descending node, the following modifications
must be made to the usual orbital elements:

node angles — node angles +

(15)

arguments — arguments —

i— —i.

The first two transformations adjust the angles so that
they are measured relative to the new reference point,
the descending node (Fig. 1). As seen from descending
node, the orbit dips below the reference plane in the direc-
tion of orbital motion and thus the new inclination is
negative. Since the transformation merely amounts to de-
scribing the same orbit from a different reference point,
as with the zero-point of longitude, no analytic expression
can depend on this choice.

In an entirely analogous manner, the line of apsides is
determined for an eccentric orbit, but one can measure
angles from either pericenter or from apocenter. By
choosing to measure from apocenter, the usual orbital
elements must be modified as follows:

periapse angles — periapse angles + 7

anomalies — anomalies —

(16}

e— —e.

As with the node above, the first two transformations
adjust angles so that they are measured relative to the
new reference point (Fig. 1). The third transformation, in
which the sign of the eccentricity is reversed, is necessary
so that the transformed distance and velocity components
along the elliptical orbit retain their original values.

Equations (15) and (16), like Eq. (12), express general
constraints that are strictly obeyed by Eq. (9) irregardless
of whether that expression is scalar, vectorial, or ten-
sorial. Applying Eqgs. (15) and (16) to a scalar equation,
we find that if Q is unaltered by the transformations, as
are dnldt, dQ/dt, dw/dt, and de/dr, then the following
expressions constrain the form of Eq. (10):
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fla,e i,.. )SC(P) =fla,e, —i,...)SC(¥ + 7Ay)
(17)
and
fla,e,i,. . )SC(W) = fla, —e,i,. . JSC(¥ + mA_),
(18)
which reduce to
fla,e,i,.. )= (—Dfla,e, —i,...) (19)
and
fla,e i, . )= (=1)fla, —e,i,...). 20

When (O is de/dr [dildr], it changes sign under the transfor-
mation Eq. (16) [Eq. (15)] and an extra minus sign appears
on the left-hand side of Eq. (20) [Eq. (19}]. Thus the
function f is not arbitrary; indeed, it must be either even
or odd in each of the variables ¢ and i. Furthermore, the
parity of f with respect to ¢ or i determines the parity
of the corresponding angular quantity’s coefficient. This
constraint is clearly evident for each of the entries in
Tables I and II; the time derivatives of the mean motion
and the angular quantities obey Eqs. (19) and (20) while
deldr and di/dt differ by a minus sign. The symmetries
also require that power series expansions of f contain a/
even (or all odd) powers of ¢ and i, a fact that is apparent
in high-order expansions of SGRs (Murray and Harper
1993), PGRs (Kaula 1966), and LLRs {(Hamilton, unpub-
lished).

The final simple constraint that we discuss arises from
reflection of a system through the xy plane. One could
reflect the entire physical system and demand that the
laws of physics still be obeyed, but it is equivalent to
reflect the coordinate system and describe the unreflected
physical system from the new reference frame. We choose
the latter approach since it parallels our previous discus-
sions. Imagine, therefore, working in a reflected coordi-
nate system in which angles are measured from the nega-
tive Z axis rather than the positive one (Fig. 2). The erbital
elements are affected by the change since the ascending
node of an orbit in the original xyz coordinate system is
the descending node in the new xy{—z) system. Since it
is usual to measure angles to (or from) the ascending
node, changing to the new system necessitates adding #
to angles that measure the location of the node and sub-
tracting 7 from arguments measured from that location
(i.e., the first two lines of Eq. (15)). With this transforma-
tion, we succeed in describing the same orbit from the
two reference frames. For SGRs, the transformation must
be performed on all satellite orbits and the requirement
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FIG. 2. An orbit seen from two coordinate systems. In the xyz
system, AN marks the position of the ascending node since the polar
angle 6 decreases as the satellite moves away from this point (i.e., the
orbit ascends above the xy reference plane). As seen from the xy(—z)
system, however, the polar angle is # — 6 and AN is the decending
node since the polar angle increases in the direction of orbital motion.

that the disturbing function, and hence Eq. {10}, be unal-
tered by the transformation implies that the sum of the
node coefficients in each term of the expansion must be
even. Taken together with Eq. (19), this in turn implies
the well-known resuit that ne first-order inclination reso-
nances exist for SGRs.

For PGRs and LRs, the gravitational and magnetic
fields must also be described in the new coordinate sys-
tem. Indeed, 2 — —% implies§ —» — 6,8 — = — 8, and
Pf(cos 6) — (—1)/** P¥cos ) (Fig. 2). To retain the
original configuration of the gravity field, the quantity

*P§(cos 6) must be unaltered and hence C¥— (—1)/**

.- With these transformations, we succeed in describing
the identical problem from two different coordinate sys-
tems and, as before, the results of a perturbation cannot
depend on the choice of reference frame. In the PGR
cxpansion of the time rates of change of the orbital ele-
ments (), each fis proportional to one of the C}f,. Since
Q itself is unaitered by the change of coordinate systems,
the constraint on Eq. (10) takes the form: C/,SC(¥) =
(=1 CHSC(Y + 7Ag) or

(— DA = (= 1)/*F 2n

For the LR expansions fis proportional to L(g; /g, 0), L.



230 DOUGLAS P,
is unaltered by the change of coordinate systems, and g; ;
transforms like C#. Thus the appropriate constraint
differs from Eq. (21) by a single minus sign. Summarizing
our results for the three resonances, we have:

SGRs, Sum of nede coefficients is always even;

PGRs,j + k + A, is always even; (22)

LRs,j + &k + Ay, is always odd.

Notice that the results for PGRs and LRs do not exclude
first-order inclination resonances. In fact, first-order incli-
nation resonances occur for PGRs when j + & is odd and
for LRs when f + k£ is even (cf. C%, term in Table I and
g, term in Table 1I).

The constraints presented in Eqs. (14), (19), (20), and
(22) account for many of the patterns seen in the expan-
sions of SGRs, PGRs, and LRs. More patterns will be
discussed below, but first we wish to stress the generality
of Eqs. (12), (15), and (16) and mirror symmetry. These
apply not only to SGRs, PGRs, and LRs, but to any
possible form of an arbitrary perturbation. For example,
each of the orbit-averaged perturbations for oblateness,
radiation pressure, and electromagnetism given in Hamil-
ton (1993) satisfy the general constraints. Moreover, the
three equations hold for all physical quantities that are
written in terms of orbital elements. This property can
be especially useful for spot-checking complicated ex-
pressions. For instance, the expansions for sin » and sin £
in terms of mean anomaly found in Danby (1988, p. 437)
do not manifest the symmetry implied by Eq. (16} and
hence cannot be correct; valid expressions are found in
Smart (1953).

The patterns in the SGR disturbing function have been
known for centuries and the fact that Eq. {14) follows
from the general constraint imposed by Eq. (12) is well
understood as is evident by discussions in recent publica-
tions (e.g., Applegate ¢t al. 1986, Milani ef al. 1987, Mes-
sage 1991). Mirror symmetry, one of the basic precepts
of modern physics, is less clearly reflected in the celestial
mechanics literature. Although we note that many celes-
tial dynamicists realize that this symmetry causes the
differences between eccentricity and inclination SGRs,
we have been unable to find a published derivation of this
fact. We can say with certainty (near certainty), however,
that the constraints that mirror symmetry imposes on LRs
(PGRs) are given here for the first time. Qur reasonably
extensive search of both the classical and modern litera-
ture also turned up no reference to the general transforma-
tions given in Eqs. (15) and (16), nor to the simple physical
arguments that we presented as proof. We conclude that
these concepts are most likely new, although we cannot
discount the possibility that similar ideas may have been
previously published in a location unknowr'} to us.

HAMILTON

3.2. The Jacobi Integral

The properties discussed above are shared by all pertur-
bations simply because of the nature of orbital elements.
The resulting rules explain many of the patterns that are
apparent in Tables I and II. Additional similarities are
present because in each of the problems there is a unique
rotating frame in which the perturbation is constant in
time; for SGRs the frame rotates at the angular rate of
perturbing satellite, while for PGRs and LRs, it rotates
at the planetary spin rate. When expressed in this rotating
frame, F = ma contains both a centrifugal term and a
Coriolis term. Nevertheless, a conserved quantity of the
motion (energy) can be found by taking the dot product
of the equation of motion with v, and integrating over
time; for SGRs, this procedure yields the classical Jacobi
constant (Danby 1988, p. 253).To zeroth-order in the per-
turbing force, the conserved quantity H is given by

_GM 1

H= r 2

Qo + y?) + %v%el, (23)

where, for SGRs, 2, here and below is understood to be
the mean motion of the perturbing satellite. The first term
is the gravitational potential energy, the second is the
potential corresponding to the centrifugal force, and the
final term represents the particle’s kinetic energy. Be-
cause of its perpendicularity to v, the Coriolis force
does not contribute to Eq. (23). In applying Eq. (23) to
SGRs, we neglect the small contribution of the perturbing
satellite which is a good approximation when one is not
too close to the satellite (cf. Roy 1978, p. 129). For PGRs,
we neglect the higher-order gravitational coefficients
which is also a reasonable approximation. Finally, the
Lorentz perturbation, like the Coriolis acceleration, is
perpendicular to v, (see Eq. (5)) and so its term disap-
pears when dotted with the velocity, Ieaving the energy
integral unaltered. This is true even if the particle’s charge
varies with time (Horanyi and Burns 1991). Thus Eq.
(23) is the exact integral of the motion for the Lorentz
perturbation. We now convert this constant of the motion
into orbital elements to see how it constrains the form of
our expansions. This conversion was first accomplished
by Tisserand (Roy 1978; Eq. (5.50)). We find

Rsyn a
— +
a 2 (R

/2
) (1 - eH"cosi=C, (24)

¥
where R, is the radial position of synchronous orbit and
C is a constant. We use

GMD 172
- (@)

syn

Q (25)
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and Eq. (4) to replace the distances in Eq. (24} with fre-
quencies. Since we are interested in expressing the con-
straint in terms of our derived time rates of change, we
differentiate and obtain

l Iy )d_”
n(ﬂ {1 — e’ cosi o

P

which, to lowest-order in ¢ and {, reduces to

Ine%e 4 a4 (1 —i) dn _ o, %)

dt dt Q, dr

Equations {26) and (27) provide a link between variations
in a, e, and { which can be used in a number of applica-
tions. For example, Burns and Schaffer (1989} and Hora-
nyi and Burns (1991) have used planar versions of Eq.
{26) in electromagnetic problems to obtain de/dr when
daldt (or dn/dt) is known, while Schaffer and Burns (1992)
were the first to apply a variant of Eq. (27) to elucidate
properties of Lorentz resonances. The expressions can
also be used to check derivations; the orbit-averaged elec-
tromagnetic expressions in Hamilton (1993), for instance,
obey Eq. (26) as they must. We now discuss how Eq.
(26) constrains the form of our expansions given in Tables
I and Ii.

For any orbit, the changes in the orbital elements im-
posed by the full perturbation must satisfy Eq. (26). In
general, many terms add together to produce these
changes, but at resonant locations the effects of a single
term dominate all others. At these locations, the resonant
term itself must obey Eq. (26), but elsewhere it need not.
The expansion of PGRs (Table 1) illustrates this property
nicely; only at resonance, where #/Q, = |A,/4,|, do
single resonant terms satisfy Eq. (27). The situation for
Lorentz resonances is even simpler. As can be seen in
Table 1I, each term satisfies Eq. (27), regardless of the
value of ¢ = n/Q2,, and thus the cumulative perturbation
automatically does too.

3.3. Additional Patterns

In the previous few sections we have discussed simple
physical ideas that put strong constraints on the form of
all resonances; here we investigate rules of a more limited
scope. Some of these apply to just one type of resonance
while others follow from mathematical properties of the
expansions rather than from simple physical arguments.

Several additional physical rules further constrain the
form of Lorentz resonances. First, the Lorentz force must
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vanish for a circular uninclined orbit at the synchronous
distance, since there the velocity relative to the magnetic
field is zero (Eq. (5)). This fact is reflected in the expansion
of Table 1II; all dn/dt, de/dt, dildt, and de/dr terms disap-
pear in the limit n — Q ,, e —> 0, i— 0 (cf. Hamilton 1993).
The dQ/dt and dw/dr terms need not vanish in this limit
as these orbital elements are undefined for planar and
circular orbits, respectively. Furthermore, consideration
of Eqs. (5) and (6) shows that the Lorentz expansion splits
into ftwo pieces, one arising from the v X B component
of the force (¢ terms in Table 1I), and one due to (2, x
r} X B (constant terms in Table II}. Since the v X B force
can do no work in the non-rotating frame, it cannot alter
the orbital energy, and hence there are no £ terms in Table
II's dn/dt entries. :

Some patterns can best be explained mathematically.
One such regularity seen in both Table I and Table 1I is
that the powers of the eccentricity and inclination in the
dn/dt equation equal or exceed the arguments of the corre-
sponding angular quantities in ¥. This property can be
shown to be true by carefully following through the expan-
sion of the perturbing forces; it stems from the fact that
each appearance of a v or u is accompanied by an e or {,
respectively. Furthermore, the structure of the perturba-
tion equations (Danby 1988, Eq. (11.5.13)) also insures
that the power of ¢ in the de/dt and dw/dt equations are,
at most, one and two lower than A, while the power of
i in the di/dt and dQ/dr terms follow the same pattern
with respect to Ay. Finally, the fact that the absolute
values of the numerical coefficients in the de/dt and dw/dt
(difdt and dQ/d?t) terms are identical, at least to lowest
order, also follows from the structure of the perturbation
equations.

For typical resonant arguments, the equality in the pat-
terns discussed in the above paragraph holds exactly.
The only exceptions are resonances at synchronous orbit
which have arguments of the form Ax — A)'. Addition-
ally, these strange resonances are the only ones that in-
fluence the de/dt equation, although the effect is weak
for LRs since £ = 1, Examining the 2x — 2A’ resonant
argument (see the C%, entries of Table I and the g,,
entries of Table I1), we see that the gravitational version
of this resonance has much more influence on the orbital
elements than the Lorentz version does. This manifests
the fact that the Lorentz force weakens drastically in the
vicinity of synchronous orbit.

The resonant arguments of Tables I and II all have
|A,:| = &, which follows directly from the fact that the
gravitational and magnetic fields for the appropriate coef-
ficients have k-fold longitudinal symmetry. This con-
straint, taken together with Eqs. (14) and (22} and the
above discusion, allows us 1o predict which resonant argu-
ments will appear for a given field coefficient. In compar-
ing Table I's C%, and Table II's g, , entries, for example,
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we see that all possible first- and second-order resonant
arguments (those for which |4 4| + |4 .| = 2) are present.
The g;, eniries also contain all possible arguments of
order two, but a few are missing from the C%, entries.
The missing arguments are best explained by looking at
the mathematical expansion of planetary gravity (Kaula
1966). Properties of the series expansions for PGRs show
that all arguments with A, = ¢ and A, = =2 as well as
those that satisfy j — & + A, < 0 cannot appear in the
expansion. The missing term (C%,:¥ = =2\’ + 2w)is
an example of the former constraint, while (C%,: ¥ =
4x — 27" — 20))’s absence illustrates the latter,

3.4, Global Structure; Considerations of
Resonance Strength

Although the ideas discussed above significantly con-
strain the structure of individual resonances, they put few
restrictions on the global properties of the entire expan-
sions. Accordingly, in this section we address the distribu-
tion and relative strengths of resonances in each of the
three cases.

To a first approximation, the distributions of SGRs,
PGRs, and LRs relative to synchronous orbit are almost
identical because the nodal and apsidal frequencies are
slow compared to the mean motions and, consequently,
can be ignored when calculating rough resonance posi-
tions. For all three problems, Nth-order resonances
(N = |Ag| + |Agl) are located inside synchronous orbit
when [A4,| < |A,.| and outside that position when |4, | >
|A,.|. The radial location of resonance, a, is determined

by
a _ (92)211 _
R R

syn

2/3
Ay

A,

(28)

As in Section 3.2, for SGRs R,,, and (), are understood
to be the perturbing satellite’s distance and mean motion,
respectively. We use Eq. (28) to plot the positions of
several first-order resonances (N = 1) and two second-
order ones (N = 2) in Fig. 3. These resonances cluster
together most tightly in the vicinity of synchronous or-
bit—adjacent resonances become arbitrarily close for
large A,. Higher-order resonances behave similarly al-
though Eq. (28) shows that they extend further from syn-
chronous orbit than their first-order cousins,

Although resonances lie in similar positions for cach
perturbation, their strengths relative to one another vary
depending on the details of the perturbing force. For ex-
ample, each field coefficient (e.g., g, ;) produces two first-
order resonances, one inside Ry, (¥ = A — 2N + (})
and one outside (W = 3x — 2A" — Q). For LRs, the
strengths of these two resonances are related since, to a
sign, they have identical entries (Table il); for PGRs,
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FIG.3. Location of the several strong first-order (solid lines) and two
representative second-order (dashed lines) Lorentz resonances around
Jupiter. For Jupiter, R,,, = 2.24 planetary radii. The figure applies
equally well to planetary gravity resonances and, if the perturbing satel-
lite is at R, , to satellite resonances. In Section 4, we find that dust grains
spiraling toward synchronous orbit can become trapped at resonant
locations while those dragged away from synchronous orbit experience
resonant jumps in either the inclination or eccentricity. Both of the
displayed second-order resonances (3:5 and 3; 1) arise from the g43
component of the magnetic field (Table II). Since the second-order 1:3
resonance is found far beyond the | : 2 resonance (Eq. (28)), we see that
higher-order resonances cover a broader radial range than first-order
ones do.

through, the entries differ (Table I). More important, how-
ever, is the morphology of resonances in the vicinity of
synchronous orbit. For SGRs, synchronous orbit is occu-
pied by the perturbing satellite and so resonant strengths
rise as this location is approached. Since resonances both
increase in strength and decrease in separation as syn-
chronous orbit is neared, it is inevitable that resonance
overlap eventually occurs. At this point, single-resonance
models of orbital motion are inappropriate and chaotic
motions predominate; Wisdom (1980) has shown that res-
onance overlap occurs at a distance proportional to u?7,
where w is the satellite-to-planetary mass ratio. Unlike
SGRs, PGRs and LRs tend to weaken as synchronous
orbit is approached since these resonances depend on
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successively larger powers of R, /a (Fig. 3 and Tables 1
and II). Thus the spacing and strength effects compete,
and it is not immediately obvious which deminates; Schaf-
fer and Burns (1987), however, argue that this variety of
resonance overlap does not occur for Lorentz resonances.

Instead, a different type of resonant overlap happens
for PGRs and LRs. Just as the main energy levels of the
hydrogen atom resolve into a muitiplet of closely spaced
levels, so a detailed examination of resonant locations
reveals a similar fine structure. Each individual location
(e.g., 3:2 in Fig. 3) resolves into a cluster of resonances
with a fixed ratio A,/A,  and different nodal and apsidal
coefficients. These resonances lie at slightly different lo-
cations due to the non-zero precession rates d€/dr and
dw/dt which arise primarily from the axisymmetric com-
ponents of SGRs, PGRs, and LRs (e.g., the g;, terms of
Table II). If one ignores the resonant contributions to
precession, then for SGRs and PGRs, inclination reso-
nances lie further from synchronous orbit than eccentric-
ity resonances; this is due to the fact that secular gravita-
tional perturbations cause orbital nodes to regress and
orbital pericenters to precess. For LRs, the situation is
more complicated because both gravitational and electro-
magnetic perturbations influence the precession rates. In
some cases, the Lorentz force can cause the opposiie
behavior, i.e., nodal precession and apsidal regression
(see the g, yand g; ocomponents of Table II}. Thus inclina-
tion resonances may be closer to synchronous orbit than
eccentricity resonances. Finally, since the electromag-
netic precession rate depends on L, and hence on the
charge-to-mass ratio of a dust grain, an ensemble of parti-
cles of different sizes will experience resonances in a
range of slightly different locations. For some charge-to-
mass ratios, the strong first-order inclination and eccen-
tricity resonances are close enough to interfere with one
another, leading to resonant overlap and chaos (see Fig.
5 of Schaffer and Burns 1992).

In the expansions of PGRs and [.Rs presented in Tables
I and II, we have assumed that the gravitational and mag-
netic field coefficients are time-independent and thus the
fields rotate .as rigid objects (i.e., at a single frequency).
In reatity, however, these coefficients probably change
slowly [cf. Levy (1989) for LRs at Jupiter] and, in some
cases, even rapidly [cf. Marley (1991}, Marley and Porco
(1993) for PGRs at Saturn]. Unfortunately, the physics
driving these changes, especially those of the magnetic
field, are poorly understood, which precludes a quantita-
tive discussion. Nevertheless, we can determine the quali-
tative effects of gradual changes in the fields by analogy
with satellite resonances. In SGRs, the perturbing satellite
has three distinct orbital frequencies: its rapid mean mo-
tion and slower nodal and apsidal precession rates. If the
precession rates are suppressed, all corotation resonances
(whose arguments depend on quantities of the perturber
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that are gradually changing) disappear from the disturbing
function. In an entirely similar manner, the inclusion of
slow drift frequencies to both the PGR and LR problems
introduces corotation resonances that are slightly sepa-
rated from the nominal resonant locations (Fig. 3).

Because corotation resonances affect only the pertur-
bee’s mean motion, they are often of minor importance.
When a satellite is the perturber, however, the paired
interactions of a corotation resonance and a nearby eccen-
tricity resonance are capable of longitudinally confining
ring arcs (Goldreich et al. 1986, Porco 1991). Thus the
existence of corotation resonances in the other two cases
may not be entirely academic. In particular, we suggest
that similar trapping mechanisms may operate in some
faint rings that are influenced by Lorentz forces.

4. COUPLING WITH DRAG FORCES

4.1. Resonant Equations

Acting alone, mean-motion resonances are capable of
inducing moderately large, periodic changes in the orbital
elements of nearby particles. Nonetheless, because the
majority of possible orbits are far from resonant locations,
resonant effects might seem to be unimportant. Not so!
When coupled with a drag force, which causes secular
evolution of an orbit’s mean motion, the importance of
resonances is greatly enhanced since drag forces will inev-
itably transport distant particles to resonant locations
where they can be strongly perturbed. Furthermore, drag
forces allow resonant perturbations to secularly change
orbital eccentricities and inclinations as we will demon-
strate below. Depending on the direction of the drift, drag
forces acting at resonance can cause jumps in the value of
e and/or i as well as resonant trapping with an associated
sustained growth in those elements. )

The importance of the coupling between drag forces
and resonances was first recognized by Goldreich (1965),
who argued that tidal drags cause satellites to evolve into,
and subsequently become stably trapped in, satellite
mean-motion resonances. Since then, the capture process
has been reexamined (Greenberg 1973a), individual exam-
ples have been analyzed (e.g., Sinclair 1975, Greenberg
1973b), and Hamiltonian methods have been applied to
the process (Peale 1976, Henrard 1982, Borderies and
Goldreich 1984, Dermott et al. 1988, Malhotra 1991}, In
these next few sections we argue that particles drifting
into PGRs and LRs display dynamic behavior similar to
that seen at SGRs. We also illustrate how our LR expan-
sion can be applied to the study of particular resonances.

Small particles that make up diffuse ring systems are
not significantly influenced by tidal forces; instead several
additional drag forces operate on these particles. Plasma
and atmospheric drags arise from motion through swarms
of charged and neutral molecules that corotate with the
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planet; accordingly, these drags slow particles inside of
R, and speed up those outside of this position. Orbital
evolution, therefore, is radially away from the synchro-
nous location. Poynting—Robertson drag arises from the
asymmetric scattering and reradiation of photons (Burns
et al. 1979) and always causes orbits to lose energy and
evolve inward. Finally, resonant charge variations arise
from the lag in the response of a grain’s charge as its
orbital motion takes it into regions with different charging
currents. Depending on the plasma parameters, resonant
charge variations can cause the semimajor axis to either
increase or decrease (Burns and Schaffer 1989, Northrop
et al. 1989). Although these drag forces only operate on
small particles they, like tidal evolution, can bring mate-
rial to resonances and influence the subsequent dynamics.
The analogous process for interplanetary dust—evolution
under Poynting—Robertson drag into resonances with the
planets—was first recognized by Gold (1975) and later
numerically studied by Goncezi ef al. (1982). Several recent
papers revisit and extend the early results (e.g., Jackson
and Zook 1989, 1992, Weidenschilling and Jackson 1993,
Roques ef al. 1993, Lazzaro et al. 1993).

After the discussion in Section 3, it should not be sur-
prising that LRs and PGRs behave almost identically to
SGRs when coupled with a drag force. The main differ-
ence is due to the existence of strong first-order inclina-
tion-type PGRs and LRs. In fact for LRs, inclination reso-
nances are usually stronger than the corresponding
eccentricity ones (Table 1I). Thus, while a distribution of
dust evolving through a set of SGRs might be expected
to remain roughly planar due to the dominance of eccen-
tricity-type resonances, this will not be the case for PGRs
and especially LRs as the jovian halo so elegantly demon-
strates (Burns er al. 1985). To emphasize this point, we
treat a first-order inclination-type resonance in this sec-
tion although the structure of the equations, and hence
the resonant dynamics, is identical for an eccentricity
resonance (see Table II and Hamilton and Burns 1993).

In writing a set of equations valid for the passage of a
grain through an isolated resonance, we include the drag
force as well as the perturbation’s resonant and secular
terms. We specialize the equations to the 3: 2 first-order
Lorentz inclination resource which is thought to cause
the transition from the main jovian ring to its interior halo
(Burns ef al. 1985). The governing equations come from
the (g;,: ¥ = 2A — 3X" + () entry of Table II. Since a
first-order inclination resonance does not strongly affect
e, w, and e (see Table II), we ignore changes in these
elements. Taking £ = n/{), = 3/2, the appropriate expres-
sions are

A 3in Beos@A — 3N + Q) + Ay

0 (29a)
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di , .
O = Loosoh =N+ )+ Ty (29D)
dQ} nB . Ay -
FrRT sin@A =30 + ) + O, (29¢c)
where €}, is the nearly constant secular precession rate

arising from electromagnetic and gravitational forces; its
presence slightly alters the physical location of resonance.
Drag terms influence each of Eqs. (29a)-(29¢), but contri-
butions to d{}/dt are neglected as they are dominated by
Q... Finally, the limited radial extent of the resonance
zone justifies treating 714, as a constant. The resonance
strength,

2 2 12 2
g~ VI0L ((83,3 + h33) ) (EE) ~(0.05L, (30)
2 £10 a

is one-third of the dn/di coefficient taken from the (g45:
T = 2)x — 3\ + ) entry of Table II. In the final approxi-
mation, we have used parameters appropriate for the jov-
ian 3:2 resonance, namely g, = 4.218 G, g, ; = —0.231
G, hy; = —0.294 G (Acufia et al. 1983), and a/R, = 1.7,
At Jupiter, a micrometer-sized grain charged to a potential
of +5V, has L =~ 0.028 and hence 8 = 0.0014, a value
orders of magnitude greater than typical SGR strengths.
Furthermore, since drag forces act on small particles
much faster than tidal forces influence large ones, evolu-
tion of dust particles in Lorentz resonances proceeds cor-
respondingly more rapidly.

To improve our calculation of 8, we would need to
include additional contributions from the g;; and 4,
(j=35,7,9,...) field coefficients, but unfortunately, the
values of these coefficients are unknown for all nonterres-
trial magnetic fields. Nevertheless, we can get a rough
upper bound on the error in 8 by assuming that the higher-
order field coefficients are roughly equal in magnitude to
the octupole coefficients [for the terrestrial magnetic field,
the coefficients decrease in magnitude with increasing
order—(Stern 1976)]. In this case, the higher-order terms
contribute =0.58 to the resonance strength. There are
also terms in Eqs. (29a)-(29c¢) that depend on larger pow-
ers of e and i, but these contributions amount to <0.18
for conditions present in the jovian ring.

Finally, we note that the structure of Eqgs. {29a)—(29¢)
is appropriate for all first-order inclination resonances;
only the constant coefficients in each equation differ from
one resonance to the next {Table II). Second-order (Nth-
order) resonances differ only in that the power of / in each
of the dn/dr, dil/d:t, and d$}/dt equations is one (N — 1)
larger. The (g,5: ¥ = 5A — 30" — 20) and (g45: ¥ =
A — 3N+ 2Q) entries of Table I are each second-order
inclination resonances; their positions relative to Jupiter
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are given in Fig. 3. Eccentricity resonances of all orders
are identical in form to inclination resonances if all i’s are
replaced by ¢’s, and all (}’s by w’s. Because all of these
different types of resonances have a similar structure, we
expect the same type of dynamic behavior at each of
them.

4.2, Resonance Trapping

What happens to particles that drift into resonance?
The question is most exactly treated by transforming Eqs.
(29a)—(29¢) into canonical variables from which a pendu-
lum-like Hamiltonian can be defined (cf. Peale 1976). Such
an analysis shows that for an isolated resonance there are
two possibilities depending on the direction from which
the resonance is approached: resonance trapping and res-
onant jumps. A trapping probability, which depends on
the relative strengths of the resonance and the drag force,
is associated with the former. Unfortunately, the Hamilto-
nian results are awkward to interpret in terms of the orbital
elements, the variables that have geometric meaning. Ac-
cordingly, the purpose of this and the following section
is to give simple descriptions and approximate formulae
in terms of orbital elements without resorting to a Hamil-
tonian analysis. In so doing, we further emphasize the
similarities between SGRs, PGRs, and LRs.

When a particle enters the resonance zone and subse-
quently is stable against perturbations that attempt to
dislodge it, the particle is szid to have been trapped into
resonance. For the particle to remain trapped, its orbital
period must stay nearly commensurate with the forcing
period, and hence the average value of dn/dt must be
zero. This can occur only when the first term in Eq. (29a)
balances the second. Thus very large drag rates preclude
trapping or, put another way, for a given drag rate many
resonances, especially higher-order ones, are too weak
to trap passing particles. In Fig. 4, we show what happens
to a grain that encounters the 3:2 inclination resonance
while slowly drifting toward synchronous orbit. Resonant
perturbations stop the evolution of the mean motion and
simultaneously cause the inclination to grow. The latter
growth can be easily explained with the energy constraint,
Eq. (27).

Although drag forces themselves need not produce
changes in the orbital elements that satisfy Eq. (27) (reso-
nant charge variations are an exception and will be dis-
cussed separately below), the resonant portion of the per-
turbation must. Since the cumulative perturbations for n,
e, and { are written as sums of resonant and drag terms
(Eqgs. (29a) and (29b)), we solve for the resonant terms
and substitute these into Eq. (27). The energy constraint
takes the form

de .di_%(]

n ) .
dt dt 3n B Q_) T gy ¥ ‘Idrag‘ (31)

P
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As it stands, Eq. (31) is directly applicable to mixed reso-
nances (all of the second-order resonances with g; , coef-
ficients satisfying j + k& = odd}, which influence both e
and i, For nearly circular orbits at inclination resonances,
however, eccentricities are only weakly perturbed and
can usually be ignored. Furthermore, drag forces typically
do not strongly affect orbital inclinations so the / drag t€TM
can be dropped. Taking these approximations yields

ﬂ _ hdrag ( _ fl )
‘a3 ! Q) (32)
which can be directly integrated to
. 2P dragl n
= =2 drag _
P= \/10 + (1 _n,,)’ (33)

where i is the initial inclination and 1 = N (27/Q,) is
time, with N as the number of jovian rotations (cf. Hamil-
ton and Burns (1993)). The prediction of Eq. (33) agrees
well with the numerical integration of Eqs. (29a)-(29¢)
presented in Fig. 4, We note that Eqs. (32) and (33) are
applicable to inclination resonances of all orders and that
similar expressions apply to nearly planar orbits at eccen-
tricity resonances. Incidentally, Eq. (32) can also be ob-
tained directly for the 3 : 2 inclination resonance by setting
dn/dt = 0 in Eqgs. (292)-(29¢) and solving for i di/dr.

As an interesting aside, consider the case where reso-
nant charge variations cause evolution through a Lorentz
resonance. Because this drag force is entirely electromag-
netic, the full perturbation satisfies Eq. (27). If a particle
becomes trapped in a resonance, then dn/dr is zero and
hence e deldt + idildt = 0. Thus there can be no secular
increase in one of these elements without a corresponding
decrease in the other. ‘

Equation (31) shows that particles trapped in reso-
nances systematically change their inclinations and/or ec-
centricities. Evolution toward synchronous orbit makes
i increase while evolution in the opposite sense causes it
to decrease (Eq. (33)). Because Eq. (33) gives nonsensical
results for shrinking inclinations (the quantity inside the
square root becomes negative), particles drifting away
from synchronous orbit cannot stay in resonance forever.
In fact, by linearizing Eqgs. (29a)-(29¢) around the equilib-
rium inclination, it can be shown that solutions in which
[ decreases are unstable and so particles do not become
trapped at ali. Conversely, when drifts are toward syn-
chronous orbit, { increases and the linearization yields
stable solutions—at least as long as i is small enough for
Egs. (29a)-(29¢) to be applicable.

Thus we find that trapping into pure inclination-type
and eccentricity-type SGRs, PGRs, or LRs occurs only
when drifts are toward the synchronous location (Fig. 3);
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FIG. 4, Resonance trapping. A plot of the orbital evolution numerically determined by Eqs. (29a)-(29¢) for jovian parameters 8 = 1.4 x
107 and ngy, = ~ 107°0%. Plotted against N,,, the number of jovian rotations, are the mean motion ratio n/Q,, the inclination i, and the resonant
angle ¥, Initial conditions are ny; = 1.6}, iy = 0.01, and ¥y = 0. The resonant angle ¥ librates with small amplitude around a value slightly
less than 270° as could have been anticipated by setting Eq. (29a) to zero and solving for ¥. The dashed curve comes from Eq. (33) which, for
these parameters and N, = Ny + 100, is i ~ 0.0037(N, — Ng)"%. It has been offset slightly to the left (by the choice Ny = 1400) for clarity.
Integrations of the full equations of motion, both for SGRs (cf. Fig. 11 of Dermott et al. 1988) and for LRs (Hamilton, unpublished), show behavior
qualitatively similar to this.
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FIG. 5. Jumps at resonance. A plot of the orbital evolution by Eqs. (292)-(29c) with parameters appropriate for a 1-pm grain: 8 = 1.4 x
1073 f'tdmg = l(]‘sﬂf,. Initial conditions are ny, = 1.48,, iy = 0.01, and ¥, = 0. Notice that the jumps in mean motion (semimajor axis) and
inclination occur simultaneocusly near n ~ 3£2,/2 as required by Eq. (34). The resonant argument ¥ librates around a value near 50° until passage
through the resonance occurs, after which it circulates. Integrations of the full equations of motion, both for SGRs (cf. Fig. § of Dermott er al.
1988) and LRs (Hamilton, unpublished), show behavior qualitatively similar to this.

in such cases, the energy integral Eq. (27) requires that discrete jumps in the inclination (or eccentricity} happen
there be an associated ‘‘square root’” growthine ori (Eq. instead. In this section we discuss the mechanism that
(33) and Fig. 4). leads to resonant jumps and derive a simple expression
to approximate the jump amplitude in the limiting case of
low e and i, and slow drag (cf. Hamilton and Burns 1993).

When drifts are away from synchronous orbit, or when Figure 5 shows the orbital history of a dust grain drifting
the drag rate is too high for resonant trapping to occur, away from synchronous orbit and through the jovian 3:2

4.3. Jumps at Resonance
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inclination resonance. Far from resonance, the angle ¥
is seen to circulate rapidly and the resonance has little
influence on the motion of an orbiting dust particle. As
drags bring the particle closer to resonance, however, ¥
starts librating about a value near 90°; because of their
cos ¥ dependence, however, dn/dt and di/dt are still not
strongly perturbed (Eqs. {29a) and (29b)). Eventually, the
equilibrium point about which libration occurs becomes
unstable (one can solve for the point at which this occurs
from Eqs. (29a)-(29¢}). The resonance variable ¥ drifts
away from 90°, and resonant perturbations to dn/dt over-
whelm the drag force, quickiy pushing orbits across the
resonance zone. At this point ¥ starts circulating rapidly
in the opposite sense, resonant perturbations dwindle in
strength, and drag forces dominate orbital evolution once
again.

It is clear from Fig. 5 that both » and i experience jumps
during passage through resonance. Since the jumps are
caused by resonant forces, their magnitudes are necessar-
ily related by Eq. (27). In particular, for inclination reso-
nances, eccentricities are unaffected and so

i (Y (-
e 0-2)

where dn and di are the jump amplitudes; the former can
be approximated simply from the width of the region over
which resonant perturbations are significant, which we
estimate to be roughly the resonance’s libration width.
We obtain the libration width by setting d¥/dt = 0 and
using Eqs. (29a)—(29c¢) to solve separately for the largest
possible mean motion (n,,,) and the smallest (x,,,); the
libration width is then simply |dn| = n,,, — n,,,. For
grains drifting away from synchronous orbit through a
first-order inclination resonance, we find the mean motion

Jjump,
= f‘—),
(1

which, combined with Eq. (34), yields the inclination
jump,

(34)

dn = _2nB

I

[

0 (35)

P

(36)

As they stand, these expressions are ambiguous since it
is unclear what value 7 has. For nearly circular orbits that
drift into strong first-order resonances, however, di = i,
where /; is the inclination immediately after the jump. We
approximate the inclination during resonant passage with
i = {2 = dif2, which allows us to express each jump
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TABLE 111
Results of Resenance-Drag Interactions

Resonance Drag force Typical dynamics
SGR Tidal Trapping
SGR Plasma and atmospheric and Trapping and jumps

Poynting-Robertsen

PGR® Tidal and plasma and atmospheric Jumps
PGR Poynting-Robertson Trapping and jumps
LR Tidal (Incompatible)
LR Plasma and atmospheric Jumps
LR Poynting-Robertson Trapping and jumps
All Resenant charge variations ?

? Here we have assumed a static gravity field for PGRs which is a good approxi-
mation for the terrestrial planets, Since gravitational modes of the giant planets
can rotate rapidly {c¢f, Marley 1991), resonant locations are significanily altered
and, hence, both types of dynamical behavior can occur.

amplitude purely as a function of the resonance’s location

and strength:
1/3
di=2 (g)

dn~ —2n(3pH)"? (1 - Qi)

p

o
Q

p

1 - . (37

(38)

As usual, the above discussion applies equally well to
all first-order eccentricity resonances. Applying Eqgs. (38)
and (37) to our jovian example and taking the appropriate
parameters from Fig. 5’s caption, we estimate dn =
0.03Q2, and di = 0.08, values lower than, but in reasonable
agreement with, the numerically determined jumps ob-
served in Fig. 5. We have also verified the functionat
dependence of di on g and I — »/(1, in additional numeri-
cal experiments. The numerically determined final inclina-
tion in Fig. 5 is =5.5° which corresponds to particles rising
=10,000 km above the jovian equatorial plane, a value
in agreement with the ring’s observed half-thickness of
8000-10,000 km measured by Showalter et al. (1987).
Thus the vertical thickness of the jovian halo is consistent
with micrometer-sized grains drifting inward from the
main ring through the 3:2 Lorentz first-order inclination
resonance.

Here, and in the preceding section, we have demon-
strated that when drag forces bring particles to mean-
motion resonances, either trapping or resonant jumps can
occur. Because the results of a particular encounter de-
pend so strongly on the direction of drag-induced orbital
evolution, however, certain resonance—drag combina-
tions manifest only a single type of behavior. For instance,
tidal forces typically drive inner satellites toward outer
ones and so the most common resonant phenomena for
SGRs is trapping (cf. Goldreich 1965). Conversely, at
Lorentz resonances, plasma and atmospheric drags cause
orbits to evolve away from the synchronous location
which leads to resonant jumps. In Table I1I, we summa-
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rize the typical outcome of couplings between each of the
resonances and drag forces discussed above. In all cases,
the dynamical outcome of an interaction depends on the
direction of drag-induced orbital evolution at a given reso-
nant location, not on the structure of the particular reso-
nance. This serves to reemphasize the fact that reso-
nances arising from very different perturbations are
dynamically similar.

5. SUMMARY

In this paper, we present the first disturbing-function-
style expansion of the Lorentz force (Table II). Our
expansion, which is to second order in eccentricities and
inclinations, provides simple equations valid for first-or-
der ¢ and { resonances as well as for second-order &2, 1%,
and e/ resonances. To lowest order, our equations for
Lorentz resonances have the same form as those derived
for gravitational resonances which accounts nicely for
the similar dynamical behavior that we have observed in
numerical integrations.

We trace many of the similarities between different
types of resonances to basic orbital symmetries that con-
strain the functional form of all quantities—and hence all
perturbations—expressed in terms of orbital elements. In
particular, these orbital symmetries account for several
of the patterns long noticed in expansions of the satellite
disturbing function. Additional regularities are due to the
fact that the three perturbations considered in this pa-
per—SGRs, PGRs, and LRs—are all constrained by a
nearly identical integral of the motion. This integral exists
for an arbitrary orbital perturbation provided that a rotat-
ing frame can be found in which the perturbation, or at
least the resonant part thereof, is independent of time.

Our results imply that the orbital dynamics displayed
at mean-motion resonances are fundamental. The first-
order structure of a given resonance is determined primar-
ily by orbital symmetries and by the integral of the motion.
The character of the perturbing force is important only
in determining absolute resonance strengths.
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