Metabolismとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 日本語表現辞典 > Metabolismの意味・解説 

metabolism

別表記:メタボリズム

「metabolism」とは

「metabolism」は、生物体の生命活動関連する物質変化を指す英語の単語である。具体的には、生物体がエネルギーを得るために食物分解し新たな細胞組織作り出す過程を指す。この過程は、無機物から有機物へ、有機物から無機物へという二つ相反する過程から成り立っている。

「metabolism」の発音・読み方

「metabolism」の発音は、IPA表記では/məˈtæbəlɪzəm/となる。IPAカタカナ読みでは「メタボリズム」となり、日本人発音するカタカナ英語読み方では「メタボリズム」となる。

「metabolism」の定義を英語で解説

Metabolism is the process by which living organisms convert food into energy and new cells or tissues. It consists of two opposing processes: the conversion of inorganic substances into organic ones, and the conversion of organic substances into inorganic ones.

「metabolism」の類語

「metabolism」の類語としては「biochemical process」や「cellular respiration」などがある。これらの単語生命体物質変化エネルギー生成過程を指す。

「metabolism」に関連する用語・表現

「metabolism」に関連する用語としては、「anabolism」(合成代謝)や「catabolism」(分解代謝)がある。「anabolism」は、エネルギー消費して細胞組織作り出す過程を、「catabolism」は、食物分解してエネルギー生成する過程を指す。

「metabolism」の例文

1. English: Regular exercise can boost your metabolism.
日本語訳: 定期的な運動はあなたの代謝活性化させることができる。
2. English: The metabolism of sugar produces energy in the body.
日本語訳: 糖の代謝体内エネルギー生み出す
3. English: Aging slows down the metabolism.
日本語訳: 加齢代謝遅くする。
4. English: Certain diseases can affect the metabolism.
日本語訳: 特定の病気代謝影響を及ぼすことがある
5. English: The doctor explained the role of metabolism in weight loss.
日本語訳: 医師体重減少における代謝役割について説明した
6. English: The metabolism of alcohol varies among individuals.
日本語訳: アルコール代謝個人によって異なる。
7. English: Metabolism plays a crucial role in the growth of organisms.
日本語訳: 代謝生物成長において重要な役割を果たす
8. English: The study focuses on the metabolism of cancer cells.
日本語訳: その研究がん細胞代謝焦点当てている。
9. English: The drug can alter the metabolism of the brain.
日本語訳: そのは脳の代謝変えることができる。
10. English: Understanding metabolism is essential for nutritionists.
日本語訳: 栄養士にとって、代謝理解することは不可欠である。

メタボリズム【metabolism】

読み方:めたぼりずむ

代謝」に同じ。

メタボリズム理論」に同じ。


物質交代

同義/類義語:代謝
英訳・(英)同義/類義語:Metabolism

生物体内での物質化学変化

代謝 metabolism


代謝

【仮名】たいしゃ
原文】metabolism

細胞または微生物内で起こる、化学変化総計重要な生命過程に必要とされるエネルギーおよび基礎物質は、これらの化学変化によって生成される

METABOLISM

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/27 20:25 UTC 版)

METABOLISM』(メタボリズム)はSING LIKE TALKINGの10枚目のオリジナル・アルバムBMGファンハウスより2001年9月26日に発売。アリオラジャパンより2015年2月11日にブルースペックCD2で再発売。


  1. ^ SING LIKE TALKING/METABOLISM”. tower.jp. 2023年1月2日閲覧。


「METABOLISM」の続きの解説一覧

代謝

(Metabolism から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/07 08:18 UTC 版)

代謝(たいしゃ、: metabolism)とは、生物の生存と機能に不可欠な一連の化学反応である。代謝の主な機能は大きく3つあり、食物を細胞プロセスを実行するためのエネルギーに変換すること、食物をタンパク質脂質核酸および一部の炭水化物の合成に必要な構成成分に変換すること、そして代謝廃棄物英語版を排出することである。酵素が触媒するこれらの反応によって生物は成長し、繁殖し、構造を維持し、環境に対応することができる。また、代謝という言葉は、消化、細胞内外・細胞間の物質輸送など、生体内で起こるすべての化学反応の全体を指すこともある。この文脈において、上記のような細胞内で起こる一連の反応を中間代謝: intermediary metabolism)と呼ぶ。


  1. ^ a b Friedrich C (1998). Physiology and genetics of sulfur-oxidizing bacteria. Advances in Microbial Physiology. 39. 235–89. doi:10.1016/S0065-2911(08)60018-1. ISBN 978-0-12-027739-1. PMID 9328649 
  2. ^ Pace NR (January 2001). “The universal nature of biochemistry”. Proceedings of the National Academy of Sciences of the United States of America 98 (3): 805–8. Bibcode2001PNAS...98..805P. doi:10.1073/pnas.98.3.805. PMC 33372. PMID 11158550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33372/. 
  3. ^ a b Smith E, Morowitz HJ (September 2004). “Universality in intermediary metabolism”. Proceedings of the National Academy of Sciences of the United States of America 101 (36): 13168–73. Bibcode2004PNAS..10113168S. doi:10.1073/pnas.0404922101. PMC 516543. PMID 15340153. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516543/. 
  4. ^ a b Ebenhöh O, Heinrich R (January 2001). “Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems”. Bulletin of Mathematical Biology 63 (1): 21–55. doi:10.1006/bulm.2000.0197. PMID 11146883. 
  5. ^ a b Meléndez-Hevia E, Waddell TG, Cascante M (September 1996). “The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution”. Journal of Molecular Evolution 43 (3): 293–303. Bibcode1996JMolE..43..293M. doi:10.1007/BF02338838. PMID 8703096. 
  6. ^ Smith RL, Soeters MR, Wüst RC, Houtkooper RH (August 2018). “Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease”. Endocrine Reviews 39 (4): 489–517. doi:10.1210/er.2017-00211. PMC 6093334. PMID 29697773. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093334/. 
  7. ^ Vander Heiden MG, DeBerardinis RJ (February 2017). “Understanding the Intersections between Metabolism and Cancer Biology”. Cell 168 (4): 657–669. doi:10.1016/j.cell.2016.12.039. PMC 5329766. PMID 28187287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329766/. 
  8. ^ Cooper GM (2000). “The Molecular Composition of Cells” (英語). The Cell: A Molecular Approach. オリジナルの27 August 2020時点におけるアーカイブ。. https://web.archive.org/web/20200827120320/https://www.ncbi.nlm.nih.gov/books/NBK9879/ 2020年6月25日閲覧。. 
  9. ^ Michie KA, Löwe J (2006). “Dynamic filaments of the bacterial cytoskeleton”. Annual Review of Biochemistry 75: 467–92. doi:10.1146/annurev.biochem.75.103004.142452. PMID 16756499. 
  10. ^ a b c d e Nelson DL, Cox MM (2005). Lehninger Principles of Biochemistry. New York: W. H. Freeman and company. p. 841. ISBN 978-0-7167-4339-2. https://archive.org/details/lehningerprincip00lehn_0/page/841 
  11. ^ Hothersall JS, Ahmed A (2013). “Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression”. Journal of Amino Acids 2013: 461901. doi:10.1155/2013/461901. PMC 3575661. PMID 23431419. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575661/. 
  12. ^ Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G (September 1987). “Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios”. The Biochemical Journal 246 (3): 633–9. doi:10.1042/bj2460633. PMC 1148327. PMID 3120698. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148327/. 
  13. ^ Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (May 2005). “A comprehensive classification system for lipids”. Journal of Lipid Research 46 (5): 839–61. doi:10.1194/jlr.E400004-JLR200. PMID 15722563. 
  14. ^ Lipid nomenclature Lip-1 & Lip-2”. www.qmul.ac.uk. 2020年6月6日時点のオリジナルよりアーカイブ。2020年6月6日閲覧。
  15. ^ Berg JM, Tymoczko JL, Gatto Jr GJ, Stryer L (8 April 2015). Biochemistry (8 ed.). New York: W. H. Freeman. pp. 362. ISBN 978-1-4641-2610-9. OCLC 913469736 
  16. ^ Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (November 2005). “Glycomics: an integrated systems approach to structure-function relationships of glycans”. Nature Methods 2 (11): 817–24. doi:10.1038/nmeth807. PMID 16278650. 
  17. ^ Sierra S, Kupfer B, Kaiser R (December 2005). “Basics of the virology of HIV-1 and its replication”. Journal of Clinical Virology 34 (4): 233–44. doi:10.1016/j.jcv.2005.09.004. PMID 16198625. 
  18. ^ a b Wimmer MJ, Rose IA (1978). “Mechanisms of enzyme-catalyzed group transfer reactions”. Annual Review of Biochemistry 47: 1031–78. doi:10.1146/annurev.bi.47.070178.005123. PMID 354490. 
  19. ^ Mitchell P (March 1979). “The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems”. European Journal of Biochemistry 95 (1): 1–20. doi:10.1111/j.1432-1033.1979.tb12934.x. PMID 378655. 
  20. ^ a b c Dimroth P, von Ballmoos C, Meier T (March 2006). “Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series”. EMBO Reports 7 (3): 276–82. doi:10.1038/sj.embor.7400646. PMC 1456893. PMID 16607397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456893/. 
  21. ^ Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P (September 2012). “ATP synthesis and storage”. Purinergic Signalling 8 (3): 343–57. doi:10.1007/s11302-012-9305-8. PMC 3360099. PMID 22528680. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360099/. 
  22. ^ Berg JM, Tymoczko JL, Stryer L (2002). “Vitamins Are Often Precursors to Coenzymes” (英語). Biochemistry. 5th Edition. オリジナルの15 December 2020時点におけるアーカイブ。. https://web.archive.org/web/20201215232601/https://www.ncbi.nlm.nih.gov/books/NBK22549/ 2020年6月9日閲覧。. 
  23. ^ Pollak N, Dölle C, Ziegler M (March 2007). “The power to reduce: pyridine nucleotides--small molecules with a multitude of functions”. The Biochemical Journal 402 (2): 205–18. doi:10.1042/BJ20061638. PMC 1798440. PMID 17295611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1798440/. 
  24. ^ Fatih Y (2009). Advances in food biochemistry. Boca Raton: CRC Press. pp. 228. ISBN 978-1-4200-0769-5. OCLC 607553259 
  25. ^ Heymsfield SB, Waki M, Kehayias J, Lichtman S, Dilmanian FA, Kamen Y, Wang J, Pierson RN (August 1991). “Chemical and elemental analysis of humans in vivo using improved body composition models”. The American Journal of Physiology 261 (2 Pt 1): E190-8. doi:10.1152/ajpendo.1991.261.2.E190. PMID 1872381. 
  26. ^ “Electrolyte Balance”. Anatomy and Physiology. OpenStax. オリジナルの2 June 2020時点におけるアーカイブ。. https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/ 2020年6月23日閲覧。 
  27. ^ Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). “The Action Potential and Conduction of Electric Impulses” (英語). Molecular Cell Biology (4th ed.). オリジナルの30 May 2020時点におけるアーカイブ。. https://www.ncbi.nlm.nih.gov/books/NBK21668/ 2020年6月23日閲覧。 
  28. ^ Dulhunty AF (September 2006). “Excitation-contraction coupling from the 1950s into the new millennium”. Clinical and Experimental Pharmacology & Physiology 33 (9): 763–72. doi:10.1111/j.1440-1681.2006.04441.x. PMID 16922804. 
  29. ^ Torres-Romero JC, Alvarez-Sánchez ME, Fernández-Martín K, Alvarez-Sánchez LC, Arana-Argáez V, Ramírez-Camacho M, Lara-Riegos J (2018). “Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes” (英語). Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Cham: Springer International Publishing. pp. 149–168. doi:10.1007/978-3-319-73975-5_8. ISBN 978-3-319-73975-5 
  30. ^ Cousins RJ, Liuzzi JP, Lichten LA (August 2006). “Mammalian zinc transport, trafficking, and signals”. The Journal of Biological Chemistry 281 (34): 24085–9. doi:10.1074/jbc.R600011200. PMID 16793761. オリジナルの25 June 2020時点におけるアーカイブ。. https://web.archive.org/web/20200625055940/https://www.jbc.org/content/281/34/24085 2020年6月24日閲覧。. 
  31. ^ Dunn LL, Suryo Rahmanto Y, Richardson DR (February 2007). “Iron uptake and metabolism in the new millennium”. Trends in Cell Biology 17 (2): 93–100. doi:10.1016/j.tcb.2006.12.003. PMID 17194590. 
  32. ^ a b Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). “How Cells Obtain Energy from Food” (英語). Molecular Biology of the Cell (4th ed.). オリジナルの5 July 2021時点におけるアーカイブ。. https://web.archive.org/web/20210705091156/https://www.ncbi.nlm.nih.gov/books/NBK26882/ 2020年6月25日閲覧。 
  33. ^ Raven J (2009-09-03). “Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments” (英語). Aquatic Microbial Ecology 56: 177–192. doi:10.3354/ame01315. ISSN 0948-3055. オリジナルの25 June 2020時点におけるアーカイブ。. https://web.archive.org/web/20200625091103/http://www.int-res.com/abstracts/ame/v56/n2-3/p177-192/ 2020年6月25日閲覧。. 
  34. ^ a b Nelson N, Ben-Shem A (December 2004). “The complex architecture of oxygenic photosynthesis”. Nature Reviews. Molecular Cell Biology 5 (12): 971–82. doi:10.1038/nrm1525. PMID 15573135. 
  35. ^ Madigan MT, Martinko JM (2006). Brock Mikrobiologie (11., überarb. Aufl ed.). München: Pearson Studium. pp. 604, 621. ISBN 3-8273-7187-2. OCLC 162303067 
  36. ^ Demirel Y (2016). Energy : production, conversion, storage, conservation, and coupling (Second ed.). Lincoln: Springer. pp. 431. ISBN 978-3-319-29650-0. OCLC 945435943 
  37. ^ Häse CC, Finkelstein RA (December 1993). “Bacterial extracellular zinc-containing metalloproteases”. Microbiological Reviews 57 (4): 823–37. doi:10.1128/MMBR.57.4.823-837.1993. PMC 372940. PMID 8302217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372940/. 
  38. ^ Gupta R, Gupta N, Rathi P (June 2004). “Bacterial lipases: an overview of production, purification and biochemical properties”. Applied Microbiology and Biotechnology 64 (6): 763–81. doi:10.1007/s00253-004-1568-8. PMID 14966663. 
  39. ^ Hoyle T (1997). “The digestive system: linking theory and practice”. British Journal of Nursing 6 (22): 1285–91. doi:10.12968/bjon.1997.6.22.1285. PMID 9470654. 
  40. ^ Souba WW, Pacitti AJ (1992). “How amino acids get into cells: mechanisms, models, menus, and mediators”. Journal of Parenteral and Enteral Nutrition 16 (6): 569–78. doi:10.1177/0148607192016006569. PMID 1494216. 
  41. ^ Barrett MP, Walmsley AR, Gould GW (August 1999). “Structure and function of facilitative sugar transporters”. Current Opinion in Cell Biology 11 (4): 496–502. doi:10.1016/S0955-0674(99)80072-6. PMID 10449337. 
  42. ^ Bell GI, Burant CF, Takeda J, Gould GW (September 1993). “Structure and function of mammalian facilitative sugar transporters”. The Journal of Biological Chemistry 268 (26): 19161–4. doi:10.1016/S0021-9258(19)36489-0. PMID 8366068. 
  43. ^ a b Bouché C, Serdy S, Kahn CR, Goldfine AB (October 2004). “The cellular fate of glucose and its relevance in type 2 diabetes”. Endocrine Reviews 25 (5): 807–30. doi:10.1210/er.2003-0026. PMID 15466941. 
  44. ^ Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HH, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S (18 December 2014). “Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question”. Oncoscience 1 (12): 777–802. doi:10.18632/oncoscience.109. PMC 4303887. PMID 25621294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303887/. 
  45. ^ Wipperman MF, Sampson NS, Thomas ST (2014). “Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis”. Critical Reviews in Biochemistry and Molecular Biology 49 (4): 269–93. doi:10.3109/10409238.2014.895700. PMC 4255906. PMID 24611808. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255906/. 
  46. ^ Sakami W, Harrington H (1963). “Amino Acid Metabolism”. Annual Review of Biochemistry 32: 355–98. doi:10.1146/annurev.bi.32.070163.002035. PMID 14144484. 
  47. ^ Brosnan JT (April 2000). “Glutamate, at the interface between amino acid and carbohydrate metabolism”. The Journal of Nutrition 130 (4S Suppl): 988S–90S. doi:10.1093/jn/130.4.988S. PMID 10736367. 
  48. ^ Young VR, Ajami AM (September 2001). “Glutamine: the emperor or his clothes?”. The Journal of Nutrition 131 (9 Suppl): 2449S–59S; discussion 2486S–7S. doi:10.1093/jn/131.9.2449S. PMID 11533293. 
  49. ^ Hosler JP, Ferguson-Miller S, Mills DA (2006). “Energy transduction: proton transfer through the respiratory complexes”. Annual Review of Biochemistry 75: 165–87. doi:10.1146/annurev.biochem.75.062003.101730. PMC 2659341. PMID 16756489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659341/. 
  50. ^ Schultz BE, Chan SI (2001). “Structures and proton-pumping strategies of mitochondrial respiratory enzymes”. Annual Review of Biophysics and Biomolecular Structure 30: 23–65. doi:10.1146/annurev.biophys.30.1.23. PMID 11340051. オリジナルの22 January 2020時点におけるアーカイブ。. https://web.archive.org/web/20200122235247/https://authors.library.caltech.edu/1623/1/SCHarbbs01.pdf 2019年11月11日閲覧。. 
  51. ^ Capaldi RA, Aggeler R (March 2002). “Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor”. Trends in Biochemical Sciences 27 (3): 154–60. doi:10.1016/S0968-0004(01)02051-5. PMID 11893513. 
  52. ^ Friedrich B, Schwartz E (1993). “Molecular biology of hydrogen utilization in aerobic chemolithotrophs”. Annual Review of Microbiology 47: 351–83. doi:10.1146/annurev.mi.47.100193.002031. PMID 8257102. 
  53. ^ Weber KA, Achenbach LA, Coates JD (October 2006). “Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction”. Nature Reviews. Microbiology 4 (10): 752–64. doi:10.1038/nrmicro1490. PMID 16980937. オリジナルの2 May 2019時点におけるアーカイブ。. https://web.archive.org/web/20190502051428/https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1203&context=bioscifacpub 2019年10月6日閲覧。. 
  54. ^ Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC, Kuenen JG (December 1998). “The anaerobic oxidation of ammonium”. FEMS Microbiology Reviews 22 (5): 421–37. doi:10.1111/j.1574-6976.1998.tb00379.x. PMID 9990725. 
  55. ^ Simon J (August 2002). “Enzymology and bioenergetics of respiratory nitrite ammonification”. FEMS Microbiology Reviews 26 (3): 285–309. doi:10.1111/j.1574-6976.2002.tb00616.x. PMID 12165429. 
  56. ^ Conrad R (December 1996). “Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)”. Microbiological Reviews 60 (4): 609–40. doi:10.1128/MMBR.60.4.609-640.1996. PMC 239458. PMID 8987358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239458/. 
  57. ^ Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (July 2005). “Microbial co-operation in the rhizosphere”. Journal of Experimental Botany 56 (417): 1761–78. doi:10.1093/jxb/eri197. PMID 15911555. 
  58. ^ van der Meer MT, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, de Leeuw JW, Sinninghe Damsté JS, Ward DM (July 2005). “Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park”. Applied and Environmental Microbiology 71 (7): 3978–86. Bibcode2005ApEnM..71.3978V. doi:10.1128/AEM.71.7.3978-3986.2005. PMC 1168979. PMID 16000812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168979/. 
  59. ^ Tichi MA, Tabita FR (November 2001). “Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism”. Journal of Bacteriology 183 (21): 6344–54. doi:10.1128/JB.183.21.6344-6354.2001. PMC 100130. PMID 11591679. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC100130/. 
  60. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). “Energy Conversion: Mitochondria and Chloroplasts” (英語). Molecular Biology of the Cell (4th ed.). オリジナルの15 December 2020時点におけるアーカイブ。. https://web.archive.org/web/20201215131416/https://www.ncbi.nlm.nih.gov/books/NBK21063/ 2020年7月3日閲覧。 
  61. ^ Allen JP, Williams JC (October 1998). “Photosynthetic reaction centers”. FEBS Letters 438 (1–2): 5–9. doi:10.1016/S0014-5793(98)01245-9. PMID 9821949. 
  62. ^ Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (June 2004). “Cyclic electron flow around photosystem I is essential for photosynthesis”. Nature 429 (6991): 579–82. Bibcode2004Natur.429..579M. doi:10.1038/nature02598. PMID 15175756. 
  63. ^ a b Mandal A (2009年11月26日). “What is Anabolism?” (英語). News-Medical.net. 2020年7月5日時点のオリジナルよりアーカイブ。2020年7月4日閲覧。
  64. ^ Miziorko HM, Lorimer GH (1983). “Ribulose-1,5-bisphosphate carboxylase-oxygenase”. Annual Review of Biochemistry 52: 507–35. doi:10.1146/annurev.bi.52.070183.002451. PMID 6351728. 
  65. ^ Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (April 2002). “Crassulacean acid metabolism: plastic, fantastic”. Journal of Experimental Botany 53 (369): 569–80. doi:10.1093/jexbot/53.369.569. PMID 11886877. 
  66. ^ Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (May 2005). “Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria”. Journal of Bacteriology 187 (9): 3020–7. doi:10.1128/JB.187.9.3020-3027.2005. PMC 1082812. PMID 15838028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082812/. 
  67. ^ Strauss G, Fuchs G (August 1993). “Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle”. European Journal of Biochemistry 215 (3): 633–43. doi:10.1111/j.1432-1033.1993.tb18074.x. PMID 8354269. 
  68. ^ Wood HG (February 1991). “Life with CO or CO2 and H2 as a source of carbon and energy”. FASEB Journal 5 (2): 156–63. doi:10.1096/fasebj.5.2.1900793. PMID 1900793. 
  69. ^ Shively JM, van Keulen G, Meijer WG (1998). “Something from almost nothing: carbon dioxide fixation in chemoautotrophs”. Annual Review of Microbiology 52: 191–230. doi:10.1146/annurev.micro.52.1.191. PMID 9891798. 
  70. ^ Boiteux A, Hess B (June 1981). “Design of glycolysis”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 293 (1063): 5–22. Bibcode1981RSPTB.293....5B. doi:10.1098/rstb.1981.0056. PMID 6115423. 
  71. ^ Pilkis SJ, el-Maghrabi MR, Claus TH (June 1990). “Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics”. Diabetes Care 13 (6): 582–99. doi:10.2337/diacare.13.6.582. PMID 2162755. 
  72. ^ a b Ensign SA (July 2006). “Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation”. Molecular Microbiology 61 (2): 274–6. doi:10.1111/j.1365-2958.2006.05247.x. PMID 16856935. 
  73. ^ Finn PF, Dice JF (2006). “Proteolytic and lipolytic responses to starvation”. Nutrition 22 (7–8): 830–44. doi:10.1016/j.nut.2006.04.008. PMID 16815497. 
  74. ^ a b Kornberg HL, Krebs HA (May 1957). “Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle”. Nature 179 (4568): 988–91. Bibcode1957Natur.179..988K. doi:10.1038/179988a0. PMID 13430766. 
  75. ^ Evans RD, Heather LC (June 2016). “Metabolic pathways and abnormalities”. Surgery (Oxford) 34 (6): 266–272. doi:10.1016/j.mpsur.2016.03.010. ISSN 0263-9319. オリジナルの31 October 2020時点におけるアーカイブ。. https://web.archive.org/web/20201031143458/https://ora.ox.ac.uk/objects/uuid:84c0a8e7-38e9-4de2-ba19-9f129a07987a 2020年8月28日閲覧。. 
  76. ^ Freeze HH, Hart GW, Schnaar RL (2015). “Glycosylation Precursors”. Essentials of Glycobiology (3rd ed.). Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. doi:10.1101/glycobiology.3e.005. PMID 28876856. オリジナルの24 February 2022時点におけるアーカイブ。. https://web.archive.org/web/20220224114901/https://www.ncbi.nlm.nih.gov/books/NBK453043/ 2020年7月8日閲覧。 
  77. ^ Opdenakker G, Rudd PM, Ponting CP, Dwek RA (November 1993). “Concepts and principles of glycobiology”. FASEB Journal 7 (14): 1330–7. doi:10.1096/fasebj.7.14.8224606. PMID 8224606. 
  78. ^ McConville MJ, Menon AK (2000). “Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (review)”. Molecular Membrane Biology 17 (1): 1–16. doi:10.1080/096876800294443. PMID 10824734. 
  79. ^ Chirala SS, Wakil SJ (November 2004). “Structure and function of animal fatty acid synthase”. Lipids 39 (11): 1045–53. doi:10.1007/s11745-004-1329-9. PMID 15726818. 
  80. ^ White SW, Zheng J, Zhang YM (2005). “The structural biology of type II fatty acid biosynthesis”. Annual Review of Biochemistry 74: 791–831. doi:10.1146/annurev.biochem.74.082803.133524. PMID 15952903. 
  81. ^ Ohlrogge JB, Jaworski JG (June 1997). “Regulation of Fatty Acid Synthesis”. Annual Review of Plant Physiology and Plant Molecular Biology 48: 109–136. doi:10.1146/annurev.arplant.48.1.109. PMID 15012259. 
  82. ^ Dubey VS, Bhalla R, Luthra R (September 2003). “An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants”. Journal of Biosciences 28 (5): 637–46. doi:10.1007/BF02703339. PMID 14517367. オリジナルの15 April 2007時点におけるアーカイブ。. https://web.archive.org/web/20070415213325/http://www.ias.ac.in/jbiosci/sep2003/637.pdf. 
  83. ^ a b Kuzuyama T, Seto H (April 2003). “Diversity of the biosynthesis of the isoprene units”. Natural Product Reports 20 (2): 171–83. doi:10.1039/b109860h. PMID 12735695. 
  84. ^ Grochowski LL, Xu H, White RH (May 2006). “Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate”. Journal of Bacteriology 188 (9): 3192–8. doi:10.1128/JB.188.9.3192-3198.2006. PMC 1447442. PMID 16621811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1447442/. 
  85. ^ Lichtenthaler HK (June 1999). “The 1-Deoxy-D-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants”. Annual Review of Plant Physiology and Plant Molecular Biology 50: 47–65. doi:10.1146/annurev.arplant.50.1.47. PMID 15012203. 
  86. ^ a b Schroepfer GJ (1981). “Sterol biosynthesis”. Annual Review of Biochemistry 50: 585–621. doi:10.1146/annurev.bi.50.070181.003101. PMID 7023367. 
  87. ^ Lees ND, Skaggs B, Kirsch DR, Bard M (March 1995). “Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review”. Lipids 30 (3): 221–6. doi:10.1007/BF02537824. PMID 7791529. 
  88. ^ Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (November 1996). “Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae”. Nucleic Acids Research 24 (22): 4420–49. doi:10.1093/nar/24.22.4420. PMC 146264. PMID 8948633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC146264/. 
  89. ^ Guyton AC, Hall JE (2006). Textbook of Medical Physiology. Philadelphia: Elsevier. pp. 855–6. ISBN 978-0-7216-0240-0. https://archive.org/details/textbookmedicalp00acgu 
  90. ^ Ibba M, Söll D (May 2001). “The renaissance of aminoacyl-tRNA synthesis”. EMBO Reports 2 (5): 382–7. doi:10.1093/embo-reports/kve095. PMC 1083889. PMID 11375928. オリジナルの1 May 2011時点におけるアーカイブ。. https://web.archive.org/web/20110501181419/http://www.molcells.org/home/journal/include/downloadPdf.asp?articleuid=%7BA158E3B4-2423-4806-9A30-4B93CDA76DA0%7D. 
  91. ^ Lengyel P, Söll D (June 1969). “Mechanism of protein biosynthesis”. Bacteriological Reviews 33 (2): 264–301. doi:10.1128/MMBR.33.2.264-301.1969. PMC 378322. PMID 4896351. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC378322/. 
  92. ^ a b Rudolph FB (January 1994). “The biochemistry and physiology of nucleotides”. The Journal of Nutrition 124 (1 Suppl): 124S–127S. doi:10.1093/jn/124.suppl_1.124S. PMID 8283301.  Zrenner R, Stitt M, Sonnewald U, Boldt R (2006). “Pyrimidine and purine biosynthesis and degradation in plants”. Annual Review of Plant Biology 57: 805–36. doi:10.1146/annurev.arplant.57.032905.105421. PMID 16669783. 
  93. ^ Stasolla C, Katahira R, Thorpe TA, Ashihara H (November 2003). “Purine and pyrimidine nucleotide metabolism in higher plants”. Journal of Plant Physiology 160 (11): 1271–95. doi:10.1078/0176-1617-01169. PMID 14658380. 
  94. ^ Davies O, Mendes P, Smallbone K, Malys N (April 2012). “Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism”. BMB Reports 45 (4): 259–64. doi:10.5483/BMBRep.2012.45.4.259. PMID 22531138. オリジナルの24 October 2020時点におけるアーカイブ。. https://web.archive.org/web/20201024132423/http://wrap.warwick.ac.uk/49510/1/WRAP_Malys_%5B45-4%5D1204261917_%28259-264%29BMB_11-169.pdf 2019年9月18日閲覧。. 
  95. ^ Smith JL (December 1995). “Enzymes of nucleotide synthesis”. Current Opinion in Structural Biology 5 (6): 752–7. doi:10.1016/0959-440X(95)80007-7. PMID 8749362. 
  96. ^ Testa B, Krämer SD (October 2006). “The biochemistry of drug metabolism--an introduction: part 1. Principles and overview”. Chemistry & Biodiversity 3 (10): 1053–101. doi:10.1002/cbdv.200690111. PMID 17193224. 
  97. ^ Danielson PB (December 2002). “The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans”. Current Drug Metabolism 3 (6): 561–97. doi:10.2174/1389200023337054. PMID 12369887. 
  98. ^ King CD, Rios GR, Green MD, Tephly TR (September 2000). “UDP-glucuronosyltransferases”. Current Drug Metabolism 1 (2): 143–61. doi:10.2174/1389200003339171. PMID 11465080. 
  99. ^ Sheehan D, Meade G, Foley VM, Dowd CA (November 2001). “Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily”. The Biochemical Journal 360 (Pt 1): 1–16. doi:10.1042/0264-6021:3600001. PMC 1222196. PMID 11695986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222196/. 
  100. ^ Galvão TC, Mohn WW, de Lorenzo V (October 2005). “Exploring the microbial biodegradation and biotransformation gene pool”. Trends in Biotechnology 23 (10): 497–506. doi:10.1016/j.tibtech.2005.08.002. PMID 16125262. 
  101. ^ Janssen DB, Dinkla IJ, Poelarends GJ, Terpstra P (December 2005). “Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities”. Environmental Microbiology 7 (12): 1868–82. doi:10.1111/j.1462-2920.2005.00966.x. PMID 16309386. オリジナルの11 November 2019時点におけるアーカイブ。. https://web.archive.org/web/20191111195543/https://pure.rug.nl/ws/files/3623678/2005EnvironMicrobiolJanssen.pdf 2019年11月11日閲覧。. 
  102. ^ Davies KJ (1995). “Oxidative stress: the paradox of aerobic life”. Biochemical Society Symposium 61: 1–31. doi:10.1042/bss0610001. PMID 8660387. 
  103. ^ Tu BP, Weissman JS (February 2004). “Oxidative protein folding in eukaryotes: mechanisms and consequences”. The Journal of Cell Biology 164 (3): 341–6. doi:10.1083/jcb.200311055. PMC 2172237. PMID 14757749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172237/. 
  104. ^ Sies H (March 1997). “Oxidative stress: oxidants and antioxidants”. Experimental Physiology 82 (2): 291–5. doi:10.1113/expphysiol.1997.sp004024. PMID 9129943. 
  105. ^ Vertuani S, Angusti A, Manfredini S (2004). “The antioxidants and pro-antioxidants network: an overview”. Current Pharmaceutical Design 10 (14): 1677–94. doi:10.2174/1381612043384655. PMID 15134565. 
  106. ^ von Stockar U, Liu J (August 1999). “Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth”. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1412 (3): 191–211. doi:10.1016/S0005-2728(99)00065-1. PMID 10482783. 
  107. ^ Demirel Y, Sandler SI (June 2002). “Thermodynamics and bioenergetics”. Biophysical Chemistry 97 (2–3): 87–111. doi:10.1016/S0301-4622(02)00069-8. PMID 12050002. オリジナルの4 August 2020時点におけるアーカイブ。. https://web.archive.org/web/20200804002615/https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1006&context=chemengthermalmech 2019年9月22日閲覧。. 
  108. ^ Albert R (November 2005). “Scale-free networks in cell biology”. Journal of Cell Science 118 (Pt 21): 4947–57. arXiv:q-bio/0510054. Bibcode2005q.bio....10054A. doi:10.1242/jcs.02714. PMID 16254242. 
  109. ^ Brand MD (January 1997). “Regulation analysis of energy metabolism”. The Journal of Experimental Biology 200 (Pt 2): 193–202. doi:10.1242/jeb.200.2.193. PMID 9050227. オリジナルの29 March 2007時点におけるアーカイブ。. https://web.archive.org/web/20070329202116/http://jeb.biologists.org/cgi/reprint/200/2/193 2007年3月12日閲覧。. 
  110. ^ Soyer OS, Salathé M, Bonhoeffer S (January 2006). “Signal transduction networks: topology, response and biochemical processes”. Journal of Theoretical Biology 238 (2): 416–25. Bibcode2006JThBi.238..416S. doi:10.1016/j.jtbi.2005.05.030. PMID 16045939. 
  111. ^ a b Salter M, Knowles RG, Pogson CI (1994). “Metabolic control”. Essays in Biochemistry 28: 1–12. PMID 7925313. 
  112. ^ Westerhoff HV, Groen AK, Wanders RJ (January 1984). “Modern theories of metabolic control and their applications (review)”. Bioscience Reports 4 (1): 1–22. doi:10.1007/BF01120819. PMID 6365197. 
  113. ^ Fell DA, Thomas S (October 1995). “Physiological control of metabolic flux: the requirement for multisite modulation”. The Biochemical Journal 311 (Pt 1): 35–9. doi:10.1042/bj3110035. PMC 1136115. PMID 7575476. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136115/. 
  114. ^ Hendrickson WA (November 2005). “Transduction of biochemical signals across cell membranes”. Quarterly Reviews of Biophysics 38 (4): 321–30. doi:10.1017/S0033583506004136. PMID 16600054. 
  115. ^ Cohen P (December 2000). “The regulation of protein function by multisite phosphorylation--a 25 year update”. Trends in Biochemical Sciences 25 (12): 596–601. doi:10.1016/S0968-0004(00)01712-6. PMID 11116185. 
  116. ^ Lienhard GE, Slot JW, James DE, Mueckler MM (January 1992). “How cells absorb glucose”. Scientific American 266 (1): 86–91. Bibcode1992SciAm.266a..86L. doi:10.1038/scientificamerican0192-86. PMID 1734513. 
  117. ^ Roach PJ (March 2002). “Glycogen and its metabolism”. Current Molecular Medicine 2 (2): 101–20. doi:10.2174/1566524024605761. PMID 11949930. 
  118. ^ Newgard CB, Brady MJ, O'Doherty RM, Saltiel AR (December 2000). “Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1”. Diabetes 49 (12): 1967–77. doi:10.2337/diabetes.49.12.1967. PMID 11117996. オリジナルの19 June 2007時点におけるアーカイブ。. https://web.archive.org/web/20070619211503/http://diabetes.diabetesjournals.org/cgi/reprint/49/12/1967.pdf 2007年3月25日閲覧。. 
  119. ^ Romano AH, Conway T (1996). “Evolution of carbohydrate metabolic pathways”. Research in Microbiology 147 (6–7): 448–55. doi:10.1016/0923-2508(96)83998-2. PMID 9084754. 
  120. ^ Koch A (1998). How did bacteria come to be?. Advances in Microbial Physiology. 40. 353–99. doi:10.1016/S0065-2911(08)60135-6. ISBN 978-0-12-027740-7. PMID 9889982 
  121. ^ Ouzounis C, Kyrpides N (July 1996). “The emergence of major cellular processes in evolution”. FEBS Letters 390 (2): 119–23. doi:10.1016/0014-5793(96)00631-X. PMID 8706840. 
  122. ^ Caetano-Anollés G, Kim HS, Mittenthal JE (May 2007). “The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture”. Proceedings of the National Academy of Sciences of the United States of America 104 (22): 9358–63. Bibcode2007PNAS..104.9358C. doi:10.1073/pnas.0701214104. PMC 1890499. PMID 17517598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890499/. 
  123. ^ Schmidt S, Sunyaev S, Bork P, Dandekar T (June 2003). “Metabolites: a helping hand for pathway evolution?”. Trends in Biochemical Sciences 28 (6): 336–41. doi:10.1016/S0968-0004(03)00114-2. PMID 12826406. 
  124. ^ Light S, Kraulis P (February 2004). “Network analysis of metabolic enzyme evolution in Escherichia coli”. BMC Bioinformatics 5: 15. doi:10.1186/1471-2105-5-15. PMC 394313. PMID 15113413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC394313/.  Alves R, Chaleil RA, Sternberg MJ (July 2002). “Evolution of enzymes in metabolism: a network perspective”. Journal of Molecular Biology 320 (4): 751–70. doi:10.1016/S0022-2836(02)00546-6. PMID 12095253. 
  125. ^ Kim HS, Mittenthal JE, Caetano-Anollés G (July 2006). “MANET: tracing evolution of protein architecture in metabolic networks”. BMC Bioinformatics 7: 351. doi:10.1186/1471-2105-7-351. PMC 1559654. PMID 16854231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559654/. 
  126. ^ Teichmann SA, Rison SC, Thornton JM, Riley M, Gough J, Chothia C (December 2001). “Small-molecule metabolism: an enzyme mosaic”. Trends in Biotechnology 19 (12): 482–6. doi:10.1016/S0167-7799(01)01813-3. PMID 11711174. 
  127. ^ Spirin V, Gelfand MS, Mironov AA, Mirny LA (June 2006). “A metabolic network in the evolutionary context: multiscale structure and modularity”. Proceedings of the National Academy of Sciences of the United States of America 103 (23): 8774–9. Bibcode2006PNAS..103.8774S. doi:10.1073/pnas.0510258103. PMC 1482654. PMID 16731630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482654/. 
  128. ^ Lawrence JG (December 2005). “Common themes in the genome strategies of pathogens”. Current Opinion in Genetics & Development 15 (6): 584–8. doi:10.1016/j.gde.2005.09.007. PMID 16188434.  Wernegreen JJ (December 2005). “For better or worse: genomic consequences of intracellular mutualism and parasitism”. Current Opinion in Genetics & Development 15 (6): 572–83. doi:10.1016/j.gde.2005.09.013. PMID 16230003. 
  129. ^ Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (March 2006). “Chance and necessity in the evolution of minimal metabolic networks”. Nature 440 (7084): 667–70. Bibcode2006Natur.440..667P. doi:10.1038/nature04568. PMID 16572170. 
  130. ^ Rennie MJ (November 1999). “An introduction to the use of tracers in nutrition and metabolism”. The Proceedings of the Nutrition Society 58 (4): 935–44. doi:10.1017/S002966519900124X. PMID 10817161. 
  131. ^ Phair RD (December 1997). “Development of kinetic models in the nonlinear world of molecular cell biology”. Metabolism 46 (12): 1489–95. doi:10.1016/S0026-0495(97)90154-2. PMID 9439549. 
  132. ^ Sterck L, Rombauts S, Vandepoele K, Rouzé P, Van de Peer Y (April 2007). “How many genes are there in plants (... and why are they there)?”. Current Opinion in Plant Biology 10 (2): 199–203. doi:10.1016/j.pbi.2007.01.004. PMID 17289424. 
  133. ^ Borodina I, Nielsen J (June 2005). “From genomes to in silico cells via metabolic networks”. Current Opinion in Biotechnology 16 (3): 350–5. doi:10.1016/j.copbio.2005.04.008. PMID 15961036. 
  134. ^ Gianchandani EP, Brautigan DL, Papin JA (May 2006). “Systems analyses characterize integrated functions of biochemical networks”. Trends in Biochemical Sciences 31 (5): 284–91. doi:10.1016/j.tibs.2006.03.007. PMID 16616498. 
  135. ^ Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (February 2007). “Global reconstruction of the human metabolic network based on genomic and bibliomic data”. Proceedings of the National Academy of Sciences of the United States of America 104 (6): 1777–82. Bibcode2007PNAS..104.1777D. doi:10.1073/pnas.0610772104. PMC 1794290. PMID 17267599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794290/. 
  136. ^ Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (May 2007). “The human disease network”. Proceedings of the National Academy of Sciences of the United States of America 104 (21): 8685–90. Bibcode2007PNAS..104.8685G. doi:10.1073/pnas.0701361104. PMC 1885563. PMID 17502601. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885563/. 
  137. ^ Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL (July 2008). “The implications of human metabolic network topology for disease comorbidity”. Proceedings of the National Academy of Sciences of the United States of America 105 (29): 9880–5. Bibcode2008PNAS..105.9880L. doi:10.1073/pnas.0802208105. PMC 2481357. PMID 18599447. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481357/. 
  138. ^ Csete M, Doyle J (September 2004). “Bow ties, metabolism and disease”. Trends in Biotechnology 22 (9): 446–50. doi:10.1016/j.tibtech.2004.07.007. PMID 15331224. 
  139. ^ Ma HW, Zeng AP (July 2003). “The connectivity structure, giant strong component and centrality of metabolic networks”. Bioinformatics 19 (11): 1423–30. doi:10.1093/bioinformatics/btg177. PMID 12874056. 
  140. ^ Zhao J, Yu H, Luo JH, Cao ZW, Li YX (August 2006). “Hierarchical modularity of nested bow-ties in metabolic networks”. BMC Bioinformatics 7: 386. arXiv:q-bio/0605003. Bibcode2006q.bio.....5003Z. doi:10.1186/1471-2105-7-386. PMC 1560398. PMID 16916470. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560398/. 
  141. ^ Thykaer J, Nielsen J (January 2003). “Metabolic engineering of beta-lactam production”. Metabolic Engineering 5 (1): 56–69. doi:10.1016/S1096-7176(03)00003-X. PMID 12749845. 
  142. ^ González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005). “Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol”. Metabolic Engineering 7 (5–6): 329–36. doi:10.1016/j.ymben.2005.06.001. hdl:10400.14/3388. PMID 16095939. 
  143. ^ Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (October 2003). “Metabolic engineering for microbial production of shikimic acid”. Metabolic Engineering 5 (4): 277–83. doi:10.1016/j.ymben.2003.09.001. PMID 14642355. 
  144. ^ Koffas M, Roberge C, Lee K, Stephanopoulos G (1999). “Metabolic engineering”. Annual Review of Biomedical Engineering 1: 535–57. doi:10.1146/annurev.bioeng.1.1.535. PMID 11701499. 
  145. ^ metabolism | Origin and meaning of metabolism by Online Etymology Dictionary” (英語). www.etymonline.com. 2017年9月21日時点のオリジナルよりアーカイブ。2020年7月23日閲覧。
  146. ^ Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. pp. 400–401. ISBN 978-1-4088-3622-4. https://archive.org/stream/lagoonhowaristot0000lero?ref=ol#page/402/mode/2up 
  147. ^ Al-Roubi AS (1982). Ibn Al-Nafis as a philosopher. Symposium on Ibn al-Nafis, Second International Conference on Islamic Medicine. Kuwait: Islamic Medical Organization.
  148. ^ Eknoyan G (1999). “Santorio Sanctorius (1561-1636) - founding father of metabolic balance studies”. American Journal of Nephrology 19 (2): 226–33. doi:10.1159/000013455. PMID 10213823. 
  149. ^ Williams HA (1904). Modern Development of the Chemical and Biological Sciences. A History of Science: in Five Volumes. IV. New York: Harper and Brothers. pp. 184–185. https://archive.org/details/historyofscience04willuoft/page/n7/mode/2up 2007年3月26日閲覧。 
  150. ^ Manchester KL (December 1995). “Louis Pasteur (1822-1895)--chance and the prepared mind”. Trends in Biotechnology 13 (12): 511–5. doi:10.1016/S0167-7799(00)89014-9. PMID 8595136. 
  151. ^ Kinne-Saffran E, Kinne RK (1999). “Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs”. American Journal of Nephrology 19 (2): 290–4. doi:10.1159/000013463. PMID 10213830. 
  152. ^ Eduard Buchner's 1907 Nobel lecture Archived 8 July 2017 at the Wayback Machine. at http://nobelprize.org Archived 5 April 2006 at the Wayback Machine. Accessed 20 March 2007
  153. ^ Kornberg H (December 2000). “Krebs and his trinity of cycles”. Nature Reviews. Molecular Cell Biology 1 (3): 225–8. doi:10.1038/35043073. PMID 11252898. 
  154. ^ Krebs HA, Henseleit K (1932). “Untersuchungen über die Harnstoffbildung im tierkorper”. Z. Physiol. Chem. 210 (1–2): 33–66. doi:10.1515/bchm2.1932.210.1-2.33. 
  155. ^ Krebs HA, Johnson WA (April 1937). “Metabolism of ketonic acids in animal tissues”. The Biochemical Journal 31 (4): 645–60. doi:10.1042/bj0310645. PMC 1266984. PMID 16746382. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266984/. 




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Metabolism」の関連用語

Metabolismのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Metabolismのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
実用日本語表現辞典実用日本語表現辞典
Copyright © 2024実用日本語表現辞典 All Rights Reserved.
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
JabionJabion
Copyright (C) 2024 NII,NIG,TUS. All Rights Reserved.
スパファインダージャパンスパファインダージャパン
Copyright (C) 2024 SPAFINDER JAPAN All rights reserved.
がん情報サイトがん情報サイト
Copyright ©2004-2024 Translational Research Informatics Center. All Rights Reserved.
財団法人先端医療振興財団 臨床研究情報センター
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのMETABOLISM (改訂履歴)、代謝 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS