極端紫外線リソグラフィとは?

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 極端紫外線リソグラフィの意味・解説 

極端紫外線リソグラフィ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/01/23 05:53 UTC 版)


極端紫外線リソグラフィ (Extreme ultraviolet lithography、EUV または EUVLとしても知られる) は、極端紫外線を用いるもので、その波長は13.5 nmに達する次世代リソグラフィ 技術である。 極端紫外線は、近い将来2020年インテルグローバルファウンダリーサムスンが7 nmノードのTSMCが5nm、SMICの14 nmノードのリソグラフィーに使用することを想定して、現在開発がすすめられている。


  1. ^ webelements.com
  2. ^ Tao, Y.; et al. (2005). “Characterization of density profile of laser-produced Sn plasma for 13.5 nm extreme ultraviolet source”. Appl. Phys. Lett. 86 (20): 201501. doi:10.1063/1.1931825. 
  3. ^ Coons, R. W.; et al. (2010). “Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas”. Proc. SPIE 7636: 763636. doi:10.1117/12.848318. 
  4. ^ Paetzel, R.; et al. (2003). “Excimer lasers for superhigh NA 193-nm lithography”. Proc. SPIE 5040: 1665. doi:10.1117/12.485344. 
  5. ^ Harilal, S. S.; et al. (2006). “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography”. J. Phys. D 39 (3): 484. doi:10.1088/0022-3727/39/3/010. 
  6. ^ Trintchouk, F.; et al. (2006). “XLA-300: the fourth-generation ArF MOPA light source for immersion lithography”. Proc. SPIE 6154: 615423. doi:10.1117/12.658723. 
  7. ^ V. Bakshi, 2009 EUVL Workshop Summary, Sheraton Waikiki, Hawaii, July 13--17, 2009.
  8. ^ Cymer EUV light source
  9. ^ Cymer presentation at 2007 EUV Source Workshop
  10. ^ Saleh, B. E. A.; Teich, M. C. (1991). Fundamentals of Photonics. New York: John Wiley & Sons. pp. 521. ISBN 0471839655. 
  11. ^ IEEE Spectrum: A New Light Source
  12. ^ Chen, F. T. (2003). “Asymmetry and thickness effects in reflective EUV masks”. Proc. SPIE 5037: 347. doi:10.1117/12.483602. 
  13. ^ ASML update on ADT
  14. ^ Gullikson, E. M.; et al. (1996). “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions”. J. Electron Spec. and Rel. Phenom. 80: 313--316. doi:10.1016/0368-2048(96)02983-0. http://www.ird-inc.com/Publications/3%20Stable%20Silicon%20photodiodes.pdf. 
  15. ^ Keister, J. W. (2007). “Silicon Photodiodes for Absolute Soft X-ray Radiometry”. Proc. SPIE 6689: 26. doi:10.1117/12.741601. http://www.bnl.gov/u3cx8a/Keister_SPIE07_6689-26_paper.pdf. 
  16. ^ Berger, K. W.; Campiotti, R. H. (2000). “Absolute dosimetry for extreme-ultraviolet lithography”. Proc. SPIE 3998: 838. doi:10.1117/12.386448. 
  17. ^ Donati, S. (2000). Photodetectors: Devices, Circuits and Applications. Upper Saddle River, NJ: Prentice-Hall PTR. p. 182. ISBN 0130203378. 
  18. ^ Robert W. Hamm and Marianne E. Hamm, "The Beam Business: Accelerators in Industry", Physics Today, June 2011, pp. 49-50
  19. ^ H. Komori et al., Proc. SPIE 5374, pp. 839--846 (2004).
  20. ^ B. A. M. Hansson et al., Proc. SPIE 4688, pp. 102--109 (2002).
  21. ^ S. N. Srivastava et al., J. Appl. Phys.' 102, 023301 (2007).
  22. ^ A. Brunton et al., Proc. SPIE 5448, pp. 681-692 (2004).
  23. ^ L. Peters, "Double Patterning Leads Race for 32 nm", Semiconductor International, October 18, 2007.
  24. ^ M. Sugawara et al., J. Vac. Sci. Tech. B 21, 2701 (2003).
  25. ^ M. Chandhok et al., J. Vac. Sci. Tech B 22, 2966 (2004).
  26. ^ S. Jeong et al., Proc. SPIE 3997, 431 (2000).
  27. ^ N. S. Faradzhev et al., Bull. of the Russ. Acad. of Sci., Physics, vol. 74, pp. 28--32 (2010).
  28. ^ F. Barkusky et al., Optics Express 18, 4346 (2010).
  29. ^ J. V. Hermans et al., Proc. SPIE 7969, 79691M (2011).
  30. ^ D. Tretheway and E. S. Aydil, J. Electrochem. Soc., vol. 143, 3674 (1996).
  31. ^ M. S. Bakir et al., CICC 2007, 421 (2007).
  32. ^ J. A. van der Pol et al., Microelectronics Rel., 39, 863 (1999).
  33. ^ J. Mathuni et al., Wafer Backside Paper
  34. ^ Brewer Science LED Brochure featuring Substrate Protection
  35. ^ B. L. Henke et al., J. Appl. Phys. 48, pp. 1852--1866 (1977).
  36. ^ SPIE EUV08 paper by T. Kozawa and S. Tagawa
  37. ^ N. Shimizu and H. Sato, 1996 IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, pp. 787--790 (1996)
  38. ^ Y. Ekinci et al., Microelectronic Engineering, vol. 84, pp. 700--704 (2007). Conference draft.
  39. ^ T. Kozawa et al., J. Vac. Sci. Tech. B 15, pp. 2582--2586 (1997).
  40. ^ T. Kozawa et al., J. Vac. Sci. Tech. B 22, pp. 3489-3492 (2004).
  41. ^ E. Stoffels et al., Plasma Sources Sci. & Tech. 10, 311-317 (2001).
  42. ^ M. P. Seah and W. A. Dench, Surf. Interf. Anal. 1, 2-11 (1979).
  43. ^ S. Tanuma et al., Surf. Interf. Anal. 21, 165--176 (1993).
  44. ^ B. Yakshinskiy et al., Intl. Symp. on EUVL 2009
  45. ^ C. Song et al., Chem. Mater. 20, 3473--3479 (2008).
  46. ^ H. H. Solak et al., Microel. Eng. 67--68, pp. 56--62 (2003).
  47. ^ N. Koch et al., Thin Solid Films 391, pp. 81--87 (2001).
  48. ^ J. Hollenshead and L. Klebanoff, J. Vac. Sci. & Tech. B 24, pp. 118--130 (2006).
  49. ^ J. Hollenshead and L. Klebanoff, J. Vac. Sci. & Tech. B 24, pp. 64--82 (2006).
  50. ^ M. H. L. van der Velden et al., J. Appl. Phys. 100, 073303 (2006).
  51. ^ http://spie.org/x48080.xml?pf=true&ArticleID=x48080
  52. ^ M. Lam, Ph.D. dissertation, U. of California, Berkeley, sec. 7.3 (2005).
  53. ^ P. P. Naulleau et al., Optics Communications 200, pp. 27--34 (2001).
  54. ^ I.-Y. Kang et al., Jap. J. Appl. Phys. vol. 44, pp. 5724--5726 (2005).
  55. ^ S. Huh et al., Proc. SPIE 7271 (2009).
  56. ^ C. A. Cutler et al., Proc. SPIE vol. 5037, 406 (2003).
  57. ^ D. Lauvernier et al., Microelectonic Eng. 75, 177--182 (2004).
  58. ^ EUV resist TWG 2008
  59. ^ Intel extending ArF lithography to 11 nm node
  60. ^ T. Wallow et al., Proc. SPIE vol. 8322, 83221J (2012).
  61. ^ J. Chen, 2011 IMEC Technology Forum
  62. ^ L. Szu-Kai and C. C. P. Chen, Proc. SPIE vol. 7274, 727436 (2009).
  63. ^ H. Kirchauer PhD Thesis (1998).
  64. ^ K. Tian et al., Proc. SPIE vol. 7274, 72740C (2009).
  65. ^ M. Bass (ed.), Handbook of Optics, 2.20, McGraw-Hill, 2010.
  66. ^ V. Domnenko et al., Proc. SPIE 7271, 727141 (2009).
  67. ^ D. C. Brandt et al., Proc. SPIE vol. 7271, 727103 (2009).
  68. ^ F. T. Chen et al., Proc. SPIE 8326, 8326L (2012).
  69. ^ S. M. Tamboli et al., Ind. J. Chem. Tech., vol. 11, 853 (2004).
  70. ^ J. N. Helbert et al., Macromolecules, vol. 11, 1104 (1978).
  71. ^ J. P. Cain et al., Proc. SPIE 5751, 301 (2005).
  72. ^ T. Kozawa, Jap. J. Appl. Phys. 51, 06FC01 (2012).
  73. ^ J. K. Stowers et al., Proc. SPIE 7969, 796915 (2011).
  74. ^ R. Gronheid et al., Proc. SPIE 8322, 83220M (2012).
  75. ^ Y. Tanaka et al., Proc. SPIE 6921, 69211D (2008).
  76. ^ A. G. Caster et al., J. Vac. Sci. Tech. B 28, 1304 (2010).
  77. ^ GlobalFoundries plans EUV by 2015
  78. ^ H. Feldmann et al., Proc. SPIE 7636, 76361C (2010).
  79. ^ S. Lombardo et al., J. Appl. Phys., 84, 472 (1998).
  80. ^ M. Dapor et al., J. Micro/Nanolith. MEMS MOEMS 9, 023001 (2010).
  81. ^ C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, 1986), pp. 281-3.
  82. ^ P. T. Henderson et al., Proc. Natl. Acad. Sci. USA 96, 8353-8358 (1999).
  83. ^ K. W. Lee et al., J. Kor. Phys. Soc. 55, 1720 (2009).
  84. ^ D. Emfietzoglou et al., Nucl. Instr. & Meth. in Phys. Res. B 267, 45--52 (2009).
  85. ^ H.-J. Fitting et al., J. Elec. Spec. & Rel. Phenom. 119, 35--47 (2001).
  86. ^ S. Hino, N. Sato, H. Inokuchi, Chem. Phys. Lett. vol. 37, 494 (1976).
  87. ^ R. Feder et al., J. Vac. Sci. Tech. 12, 1332 (1975).
  88. ^ K. Murata, J. Appl. Phys. 57, 575 (1985).
  89. ^ D. J. D. Carter et al., J. Vac. Sci. & Tech. B 15, pp. 2509--2513 (1997).
  90. ^ K. Yamazaki et al., Jap. J. Appl. Phys. 36, 7552-7556 (1997).
  91. ^ V. V. Ivin et al., Micr. Eng. 61-62, 343-349 (2002).
  92. ^ R. Renoud et al., J. Phys. Cond. Matt. 10, 5821-5832 (1998).
  93. ^ K. Wilder et al., J. Vac. Sci. Tech. B 16, 3864 (1998).
  94. ^ V. W. Ballarotto et al., JVST B 20, 2514-2518 (2002).
  95. ^ M. Kotera et al., Microprocesses and Nanotechnology, 2007 Digest of Papers, pp. 94--95 (2007).
  96. ^ M. Kotera et al., Jap. J. Appl. Phys. vol. 47, pp. 4944--4949 (2008).
  97. ^ A. Ritucci et al., "Damage and ablation of large band gap dielectrics induced by a 46.9 nm laser beam," March 9, 2006 report UCRL-JRNL-219656 (Lawrence Livermore National Laboratory).
  98. ^ T. Kozawa et al., Appl. Phys. Exp. 1, 027001 (2008).
  99. ^ T. Watanabe and H. Kinoshita, J. Photopolymer Sci. and Tech., vol. 21, 777-784 (2008).
  100. ^ R. Gronheid et al., J. Micro/Nanolith. MEMS MOEMS 10, 033004 (2011).
  101. ^ J. Drucker and M. R. Scheinfein, Phys. Rev. B vol. 47, 15973-15975 (1993).
  102. ^ EUV-IL at PSI
  103. ^ XIL beamline at PSI
  104. ^ V. Auzelyte et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).
  105. ^ K.B.Nguyen et al., J. Vac. Sci. Tech. B 14, 4188 (1996).
  106. ^ S. Yang et al., IEDM '98 Technical Digest, pp. 197-200 (1998).
  107. ^ B. La Fontaine et al., Proc. SPIE 6921, 69210P (2008).
  108. ^ AMD uses EUV to pattern metal layer in 45 nm test chip
  109. ^ B. Haavind and J. Montgomery, "SPIE: AMD, IBM tip first "full-field" EUV chip," Solid State Technology, Feb. 27, 2008
  110. ^ O. R. Wood II et al., Proc. SPIE 6517, 65170U (2007).
  111. ^ IMEC report on EUV printing of contacts
  112. ^ IMEC Makes 22 nm SRAM Cells With EUV Lithography
  113. ^ J. J. Biafore et al., SPIE Lithography Asia 2009, Proc. SPIE 7520, 75201P (2009).
  114. ^ KLA-Tencor brings stochastic modeling to EUV
  115. ^ T. I. Wallow et al., Proc. SPIE 7273, 72733T (2009).
  116. ^ EUVA: 2nd EUVL Symposium at Antwerp, Belgium (2003)
  117. ^ "Intel's extreme ultraviolet dream still somewhere over the rainbow."
  118. ^ High-Power EUV lithography lightsources come of age,http://www.electroiq.com/index/display/semiconductors-article-display/368295/articles/solid-state-technology/volume-52/issue-9/features/cover-article/high-power-euv-lithography-lightsources-come-of-age.html
  119. ^ Taking Semiconductor Manufacturing to the extreme, http://www.photonics.com/Article.aspx?AID=40103
  120. ^ SEMICON West - Lithography Challenges and Solutions
  121. ^ P.Naulleau et al., Pushing EUV lithography development beyond 22-nm half pitch, LBNL Paper LBNL-2288E (2010).
  122. ^ TSMC to take delivery of EUV lithography system in 2011
  123. ^ TSMC facing EUV, Wafer Cost Challenges.
  124. ^ H. Meiling, "EUVL - getting ready for volume introduction," Semicon West, July 14, 2010.
  125. ^ O. Wood and B. LaFontaine, Source Power Requirement for HVM.
  126. ^ U. S. Patent 6977715.
  127. ^ H-W Kim et al., Proc. SPIE vol. 7636, 76360Q (2010).
  128. ^ S. A. George et al., Proc. SPIE vol. 7636, 763626 (2010).
  129. ^ H. Mizuno et al., Proc. SPIE vol. 7271, 72710U (2009).
  130. ^ P. P. Naulleau et al., Proc. SPIE 7636, 76362H (2010).
  131. ^ L. W. Shive and B. L. Gilmore, ECS Trans. vol. 16, 401-405 (2008).
  132. ^ T-S. Eom et al., Proc. SPIE 7271, 727115 (2009).
  133. ^ EETimes article on NAND Flash scaling 3/22/2010.
  134. ^ C. Taylor, "Samsung intros 64-Gbit MLC NAND chip," Electronic News, October 23, 2007.
  135. ^ M. LaPedus, Intel, Micron roll 34-nm NAND device, EETimes, 5/29/2008.
  136. ^ Sandisk-Toshiba reclaim NAND process lead with 19 nm
  137. ^ E. S. Putna et al., Proc. SPIE vol. 7969, 79692K (2011).
  138. ^ e.g., US Patent Application 20090153826
  139. ^ IEDM 2011 Press Tip Sheet
  140. ^ Semiconductor International 9/14/2009 Intel Ramping 32 nm Manufacturing in Oregon
  141. ^ EETimes 9/22/2009 Otellini: Intel to ship more SOCs than PC CPUs -- someday
  142. ^ 22 nm HP Integrated Patterning Improvements for EUVL
  143. ^ Intel Confirms Production of 22nm Processors for late 2011
  144. ^ Sematech launches EUV metrology consortium
  145. ^ SanDisk, 2/26/2010 Investor Day.
  146. ^ T. Matsuyama et al., 2006 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 50-56 (2006).
  147. ^ J. Cobb et al., "Flare compensation in EUV Lithography," 2003 EUV Symposium, Antwerp.
  148. ^ ASML, 2009 Lithography Workshop.
  149. ^ ASML, Mask TWG, EUVL Symposium, 2008.
  150. ^ K. Murakami et al., Proc. SPIE 8322, 832215 (2012).
  151. ^ Y. Sekine et al., 1st International EUVL Symposium, 2002.
  152. ^ M. A. Golub and A. A. Friesem, J. Opt. Soc. Am. A, 24, 687 (2007).
  153. ^ Louis, E.; et al. (2011). “Nanometer interface and materials control for multilayer EUV-optical applications”. Prog. Surf. Sci. 86 (11--12): 255--294. doi:10.1016/j.progsurf.2011.08.001. 
  154. ^ H. Yang et al., Proceedings of the 1st IEEE Intl. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 391--394 (2006).
  155. ^ D2S announces litho tradeoffs at 20 nm and below
  156. ^ W. Chao et al., JVST B 27, 2606-2611 (2009).
  157. ^ W. Chao et al., Proc. SPIE vol. 6883, 688309 (2008).
  158. ^ 2009 Sokudo Lithography Breakfast Forum
  159. ^ EUV late for 10 nm
  160. ^ ASML's EUV Roadmap Points to New Wavelength
  161. ^ Cymer EUV roadmap slips
  162. ^ Samsung resets EUV roadmap for memory scaling
  163. ^ Foundry rivals say EUV not ready for prime time
  164. ^ EUV misses 14 nm node
  165. ^ R. Peeters and S. Young, ASML Images 2012 Issue 1, p. 4.
  166. ^ ASML EUV tool update
  167. ^ Samsung and SKHynix EUV order
  168. ^ H. S. Kim, Future of Memory Devices and EUV Lithography, 2009 EUV Symposium
  169. ^ H. Mizoguchi, "Laser Produced Plasma EUV Light Source Gigaphoton Update," EUVL Source Workshop, May 12, 2008.






英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「極端紫外線リソグラフィ」の関連用語

極端紫外線リソグラフィのお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

画像から探す

練習艦「あおくも」型

ミルクホイッパー

つばき油

南芳一

人力カルチベータ

パプアキンイロクワガタ

高塔

WS003SH





極端紫外線リソグラフィのページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの極端紫外線リソグラフィ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2017 Weblio RSS