ハビタブルゾーンとは? わかりやすく解説

Weblio 辞書 > ビジネス > 新語時事用語辞典 > ハビタブルゾーンの意味・解説 

ハビタブルゾーン


ハビタブルゾーン

天文学などにおいて、生命生まれ居住することが可能である、とされる領域生命居住可能領域

ハビタブル‐ゾーン【habitable zone】

読み方:はびたぶるぞーん

宇宙における、生命生存適した領域恒星周囲をまわる惑星表面において、液体存在する温度になる領域を指す。太陽系場合地球公転軌道程度の距離に相当する広義にはだけではなくメタン二酸化炭素液体存在する領域含まれるいずれも生命存在するためには有機物液体溶け込み蒸発降雨などによって凝集が起こることが重要だ考えられている。また、生命存在だけでなく、進化にも適した領域ゴルディロックスゾーンという。生命居住可能領域


ハビタブルゾーン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/04 17:44 UTC 版)

ハビタブルゾーン[1][2]英語: Habitable zone、HZ)とは、地球と似た生命が存在できる天文学上の領域[1]。日本語では生命居住可能領域[1][3]生存可能圏[1]生存可能領域[4]と呼ばれる。


注釈

  1. ^ 直訳すると「拡張ハビタブルゾーン」の意。
  2. ^ 太陽により近い金星を例にとると、大気中の水蒸気は約0.003%しかなく、地球の1%と比較して極度に乾燥している[40]

出典

  1. ^ a b c d ハビタブルゾーン”. 天文学辞典. 日本天文学会. 2019年7月23日閲覧。
  2. ^ a b c d ハビタブルゾーンとは - コトバンク”. コトバンク. 2019年7月23日閲覧。
  3. ^ ハビタブルゾーンに地球型の3惑星発見”. ナショナルジオグラフィック (2013年4月22日). 2016年6月12日閲覧。
  4. ^ a b c d 小玉貴則 (2018年). “系外惑星「遠い世界の物語」 その10 ~ハビタブル惑星の現状とこれから” (PDF). 日本惑星科学会. 2019年7月23日閲覧。
  5. ^ a b c d e Dole, Stephen H. (1964). Habitable Planets for Man. Blaisdell Publishing Company. p. 103. https://www.rand.org/pubs/commercial_books/CB179-1.html 
  6. ^ a b c d e Kopparapu, Ravi Kumar (2013). “A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarfs”. The Astrophysical Journal Letters 767 (1): L8. arXiv:1303.2649. Bibcode2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. http://iopscience.iop.org/2041-8205/767/1/L8. 
  7. ^ a b c d e f g Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (1993). “Habitable Zones around Main Sequence Stars”. Icarus 101 (1): 108–118. Bibcode1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. http://www.sciencedirect.com/science/article/pii/S0019103583710109. 
  8. ^ Su-Shu Huang, American Scientist 47, 3, pp. 397–402 (1959)
  9. ^ Cruz, Maria; Coontz, Robert (2013). “Exoplanets - Introduction to Special Issue”. Science 340 (6132): 565. doi:10.1126/science.340.6132.565. PMID 23641107. http://www.sciencemag.org/content/340/6132/565. 
  10. ^ 地上に生まれた最初の生命 他の星に生命体の可能性”. NIKKEI STYLE (2015年12月20日). 2018年1月19日閲覧。
  11. ^ a b Huggett, Richard J. (1995). Geoecology: An Evolutionary Approach. Routledge, Chapman & Hall. p. 10. ISBN 978-0-415-08689-9. https://books.google.com/books/about/Geoecology.html?id=VyQjwI9UkVIC 
  12. ^ Overbye, Dennis (2015年1月6日). “As Ranks of Goldilocks Planets Grow, Astronomers Consider What's Next”. The New York Times. https://www.nytimes.com/2015/01/07/science/space/as-ranks-of-goldilocks-planets-grow-astronomers-consider-whats-next.html 2019年7月23日閲覧。 
  13. ^ Overbye, Dennis (2013年11月4日). “Far-Off Planets Like the Earth Dot the Galaxy”. The New York Times. https://www.nytimes.com/2013/11/05/science/cosmic-census-finds-billions-of-planets-that-could-be-like-earth.html 2019年7月23日閲覧。 
  14. ^ Petigura, Eric A.; Howard, Andrew W.; Marcy, Geoffrey W. (2013). “Prevalence of Earth-size planets orbiting Sun-like stars”. Proceedings of the National Academy of Sciences of the United States of America 110 (48): 19273–19278. arXiv:1311.6806. Bibcode2013PNAS..11019273P. doi:10.1073/pnas.1319909110. PMC 3845182. PMID 24191033. http://www.pnas.org/content/early/2013/10/31/1319909110. 
  15. ^ Khan, Amina (2013年11月4日). “Milky Way may host billions of Earth-size planets”. Los Angeles Times. http://www.latimes.com/science/la-sci-earth-like-planets-20131105,0,2673237.story 2019年7月23日閲覧。 
  16. ^ Anglada-Escudé, Guillem et al. (2016). “A terrestrial planet candidate in a temperate orbit around Proxima Centauri”. Nature 536 (7617): 437–440. arXiv:1609.03449. Bibcode2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. 
  17. ^ Schirber, Michael (2009年10月26日). “Detecting Life-Friendly Moons”. Astrobiology Magazine. 2019年7月23日閲覧。
  18. ^ a b Lammer, H.; Bredehöft, J. H.; Coustenis, A.; Khodachenko, M. L. et al. (2009). “What makes a planet habitable?” (PDF). The Astronomy and Astrophysics Review 17 (2): 181–249. Bibcode2009A&ARv..17..181L. doi:10.1007/s00159-009-0019-z. オリジナルの2016-06-02時点におけるアーカイブ。. https://web.archive.org/web/20160602235333/http://veilnebula.jorgejohnson.me/uploads/3/5/8/7/3587678/lammer_et_al_2009_astron_astro_rev-4.pdf. 
  19. ^ Edwards, Katrina J.; Becker, Keir; Colwell, Frederick (2012). “The Deep, Dark Energy Biosphere: Intraterrestrial Life on Earth”. Annual Review of Earth and Planetary Sciences 40 (1): 551–568. Bibcode2012AREPS..40..551E. doi:10.1146/annurev-earth-042711-105500. ISSN 0084-6597. 
  20. ^ a b Cowen, Ron (2008年6月7日). “A Shifty Moon”. Science News. http://www.sciencenews.org/view/generic/id/32135/title/A_shifty_moon 2019年7月23日閲覧。 
  21. ^ a b Bryner, Jeanna (2009年6月24日). “Ocean Hidden Inside Saturn's Moon”. Space.com. TechMediaNetwork. http://www.space.com/scienceastronomy/090624-enceladus-ocean.html 2019年7月23日閲覧。 
  22. ^ Abbot, D. S.; Switzer, E. R. (2011). “The Steppenwolf: A Proposal for a Habitable Planet in Interstellar Space”. The Astrophysical Journal 735 (2): L27. arXiv:1102.1108. Bibcode2011ApJ...735L..27A. doi:10.1088/2041-8205/735/2/L27. 
  23. ^ a b “Rogue Planets Could Harbor Life in Interstellar Space, Say Astrobiologists”. MIT Technology Review. MIT Technology Review. (2011年2月9日). http://www.technologyreview.com/view/422659/rogue-planets-could-harbor-life-in-interstellar-space-say-astrobiologists/ 2019年7月23日閲覧。 
  24. ^ Wall, Mike (2015年9月28日). “Salty Water Flows on Mars Today, Boosting Odds for Life”. Space.com. http://www.space.com/30673-water-flows-on-mars-discovery.html?adbid=10153086098981466&adbpl=fb&adbpr=17610706465 2019年7月23日閲覧。 
  25. ^ Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto (2015). “The phase diagram of high-pressure superionic ice”. Nature Communications 6: 8156. Bibcode2015NatCo...6E8156S. doi:10.1038/ncomms9156. ISSN 2041-1723. PMC 4560814. PMID 26315260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560814/. 
  26. ^ a b c Villard, Ray (2011年11月18日). “Alien Life May Live in Various Habitable Zones : Discovery News”. Discovery Communications LLC. News.discovery.com. http://news.discovery.com/space/planetary-habitable-zones-defined-by-alien-biochemistry-111118.html 2019年7月23日閲覧。 
  27. ^ 3rd Edition (1728), trans Bruce, I
  28. ^ Strughold, Hubertus (1953). The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars. University of New Mexico Press. https://books.google.com/books/about/The_green_and_red_planet.html?id=zNbPAAAAMAAJ 
  29. ^ Kasting, James (2010). How to Find a Habitable Planet. Princeton University Press. p. 127. ISBN 978-0-691-13805-3. https://books.google.com/books?id=xPqEeB-SRvUC 
  30. ^ Huang, Su-Shu (1966). Extraterrestrial life: An Anthology and Bibliography. National Research Council (U.S.). Study Group on Biology and the Exploration of Mars. Washington, D. C.: National Academy of Sciences. pp. 87–93. https://books.google.com/books?id=D0UrAAAAYAAJ 
  31. ^ Huang, Su-Shu (1960). “Life-Supporting Regions in the Vicinity of Binary Systems”. Publications of the Astronomical Society of the Pacific 72 (425): 106–114. Bibcode1960PASP...72..106H. doi:10.1086/127489. 
  32. ^ Gilster, Paul (2004). Centauri Dreams: Imagining and Planning Interstellar Exploration. Springer. p. 40. ISBN 978-0-387-00436-5. https://books.google.com/books/about/Centauri_Dreams.html?id=L4fffd3SivkC 
  33. ^ "The Goldilocks Zone" (Press release). NASA. 2 October 2003. 2019年7月23日閲覧
  34. ^ Seager, Sara (2013). “Exoplanet Habitability”. Science 340 (577): 577–581. Bibcode2013Sci...340..577S. doi:10.1126/science.1232226. PMID 23641111. 
  35. ^ a b c d Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5 
  36. ^ Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter (2001). “The Galactic Habitable Zone I. Galactic Chemical Evolution”. Icarus 152 (1): 185–200. arXiv:astro-ph/0103165. Bibcode2001Icar..152..185G. doi:10.1006/icar.2001.6617. 
  37. ^ a b c d e Hadhazy, Adam (2013年4月3日). “The 'Habitable Edge' of Exomoons”. Astrobiology Magazine (NASA). http://www.astrobio.net/exclusive/5364/the-habitable-edge-of-exomoons 2019年7月23日閲覧。 
  38. ^ a b Fogg, M. J. (1992). “An Estimate of the Prevalence of Biocompatible and Habitable Planets”. Journal of the British Interplanetary Society 45 (1): 3–12. Bibcode1992JBIS...45....3F. PMID 11539465. 
  39. ^ Redd, Nola Taylor (2011年8月25日). “Greenhouse Effect Could Extend Habitable Zone”. Astrobiology Magazine (NASA). http://www.astrobio.net/exclusive/4174/greenhouse-effect-could-extend-habitable-zone 2019年7月23日閲覧。 
  40. ^ a b 今村剛 (JAXA宇宙科学研究所). “金星の気候の謎”. 岩波書店「科学」2007年2月号掲載記事からの改変. JAXA. 2019年12月16日閲覧。
  41. ^ 江守正多 (温暖化リスク評価研究室長) (2010年3月). “ココが知りたい地球温暖化 | Q15 温暖化は暴走する?”. 国立環境研究所 地球環境研究センター. 2019年12月19日閲覧。
  42. ^ a b c 佐々木貴教. “ハビタブルゾーンとハビタブルプラネット”. Extrasolar Planet's Catalogue. 京都大学. 2019年7月23日閲覧。
  43. ^ a b Zsom, Andras; Seager, Sara; De Wit, Julien (2013). “Towards the Minimum Inner Edge Distance of the Habitable Zone”. The Astrophysical Journal 778 (2): 109. arXiv:1304.3714. Bibcode2013ApJ...778..109Z. doi:10.1088/0004-637X/778/2/109. 
  44. ^ Pierrehumbert, Raymond; Gaidos, Eric (2011). “Hydrogen Greenhouse Planets Beyond the Habitable Zone”. The Astrophysical Journal Letters 734 (1): L13. arXiv:1105.0021. Bibcode2011ApJ...734L..13P. doi:10.1088/2041-8205/734/1/L13. 
  45. ^ a b c Ramirez, Ramses; Kaltenegger, Lisa (2017). “A Volcanic Hydrogen Habitable Zone”. The Astrophysical Journal Letters 837 (1): L4. arXiv:1702.08618. Bibcode2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8. 
  46. ^ Stellar habitable zone calculator”. University of Washington. 2019年7月23日閲覧。
  47. ^ Venus”. Case Western Reserve University (2006年9月13日). 2012年4月26日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  48. ^ Landis, Geoffrey A. (2003). “Colonization of Venus”. AIP Conf. Proc. 654 (1): 1193–1198. Bibcode2003AIPC..654.1193L. doi:10.1063/1.1541418. オリジナルの2012-07-11時点におけるアーカイブ。. https://archive.is/20120711103532/http://link.aip.org/link/?APCPCS/654/1193/1. 
  49. ^ Sharp, Tim. “Atmosphere of the Moon”. Space.com. TechMediaNetwork. 2019年7月23日閲覧。
  50. ^ Bolonkin, Alexander A. (2009). Artificial Environments on Mars. Berlin Heidelberg: Springer. pp. 599–625. ISBN 978-3-642-03629-3 
  51. ^ a b Haberle, Robert M.; McKay, Christopher P.; Schaeffer, James; Cabrol, Nathalie A.; Grin, Edmon A.; Zent, Aaron P.; Quinn, Richard (2001). “On the possibility of liquid water on present-day Mars”. Journal of Geophysical Research 106 (E10): 23317. Bibcode2001JGR...10623317H. doi:10.1029/2000JE001360. ISSN 0148-0227. 
  52. ^ Mann, Adam (2014年2月18日). “Strange Dark Streaks on Mars Get More and More Mysterious”. Wired. 2019年7月23日閲覧。
  53. ^ NASA Finds Possible Signs of Flowing Water on Mars”. voanews.com. 2019年7月23日閲覧。
  54. ^ Is Mars Weeping Salty Tears?”. news.sciencemag.org. 2011年8月14日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  55. ^ Webster, Guy (2013年12月10日). “NASA Mars Spacecraft Reveals a More Dynamic Red Planet”. NASA. 2019年7月23日閲覧。
  56. ^ Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E. (2017). “The relative influence of H2 O and CO2 on the primitive surface conditions and evolution of rocky planets”. Journal of Geophysical Research: Planets 122 (7): 1458–1486. Bibcode2017JGRE..122.1458S. doi:10.1002/2017JE005286. ISSN 2169-9097. 
  57. ^ Flashback: Water on Mars Announced 10 Years Ago”. SPACE.com (2000年6月22日). 2019年7月23日閲覧。
  58. ^ Flashback: Water on Mars Announced 10 Years Ago”. SPACE.com (2010年6月22日). 2019年7月23日閲覧。
  59. ^ Science@NASA, The Case of the Missing Mars Water”. 2009年3月27日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  60. ^ Scully, Jennifer E.C.; Russell, Christopher T.; Yin, An; Jaumann, Ralf; Carey, Elizabeth; Castillo-Rogez, Julie; McSween, Harry Y.; Raymond, Carol A. et al. (2015). “Geomorphological evidence for transient water flow on Vesta”. Earth and Planetary Science Letters 411: 151–163. Bibcode2015E&PSL.411..151S. doi:10.1016/j.epsl.2014.12.004. ISSN 0012-821X. 
  61. ^ Raponi, Andrea; De Sanctis, Maria Cristina; Frigeri, Alessandro; Ammannito, Eleonora; Ciarniello, Mauro; Formisano, Michelangelo; Combe, Jean-Philippe; Magni, Gianfranco et al. (2018). “Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle”. Science Advances 4 (3): eaao3757. Bibcode2018SciA....4O3757R. doi:10.1126/sciadv.aao3757. ISSN 2375-2548. PMC 5851659. PMID 29546238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851659/. 
  62. ^ https://photojournal.jpl.nasa.gov/catalog/PIA21471 PIA21471: Landslides on Ceres
  63. ^ Budyko, M. I. (1969). “The effect of solar radiation variations on the climate of the Earth”. Tellus 21 (5): 611–619. Bibcode1969TellA..21..611B. doi:10.1111/j.2153-3490.1969.tb00466.x. 
  64. ^ Sellers, William D. (1969). “A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System”. Journal of Applied Meteorology 8 (3): 392–400. Bibcode1969JApMe...8..392S. doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. 
  65. ^ North, Gerald R. (1975). “Theory of Energy-Balance Climate Models”. Journal of the Atmospheric Sciences 32 (11): 2033–2043. Bibcode1975JAtS...32.2033N. doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2. 
  66. ^ Rasool, I.; De Bergh, C. (1970). “The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere” (PDF). Nature 226 (5250): 1037–1039. Bibcode1970Natur.226.1037R. doi:10.1038/2261037a0. ISSN 0028-0836. PMID 16057644. http://pubs.giss.nasa.gov/docs/1970/1970_Rasool_DeBergh_1.pdf. 
  67. ^ Hart, M. H. (1979). “Habitable zones about main sequence stars”. Icarus 37 (1): 351–357. Bibcode1979Icar...37..351H. doi:10.1016/0019-1035(79)90141-6. 
  68. ^ Spiegel, D. S.; Raymond, S. N.; Dressing, C. D.; Scharf, C. A.; Mitchell, J. L. (2010). “Generalized Milankovitch Cycles and Long-Term Climatic Habitability”. The Astrophysical Journal 721 (2): 1308–1318. arXiv:1002.4877. Bibcode2010ApJ...721.1308S. doi:10.1088/0004-637X/721/2/1308. 
  69. ^ Abe, Y.; Abe-Ouchi, A.; Sleep, N. H.; Zahnle, K. J. (2011). “Habitable Zone Limits for Dry Planets”. Astrobiology 11 (5): 443–460. Bibcode2011AsBio..11..443A. doi:10.1089/ast.2010.0545. PMID 21707386. 
  70. ^ a b Pierrehumbert, Raymond; Gaidos, Eric (2011). “Hydrogen Greenhouse Planets Beyond the Habitable Zone”. The Astrophysical Journal Letters 734 (1): L13. arXiv:1105.0021. Bibcode2011ApJ...734L..13P. doi:10.1088/2041-8205/734/1/L13. 
  71. ^ a b c Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio (2013). “The habitable zone of Earth-like planets with different levels of atmospheric pressure”. The Astrophysical Journal 767 (1): 65–?. arXiv:1302.4566. Bibcode2013ApJ...767...65V. doi:10.1088/0004-637X/767/1/65. http://iopscience.iop.org/0004-637X/767/1/65/. 
  72. ^ Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F.; Eymet, Vincent; Robinson, Tyler D.; Mahadevan; Terrien, Ryan C.; Domagal-Goldman, Shawn et al. (2013). “Habitable Zones Around Main-Sequence Stars: New Estimates”. The Astrophysical Journal 765: 131. arXiv:1301.6674. Bibcode2013ApJ...765..131K. doi:10.1088/0004-637X/765/2/131. https://iopscience.iop.org/article/10.1088/0004-637X/765/2/131/meta. 
  73. ^ Leconte, Jeremy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizee (2013). “Increased insolation threshold for runaway greenhouse processes on Earth like planets”. Nature 504 (7479): 268–271. arXiv:1312.3337. Bibcode2013Natur.504..268L. doi:10.1038/nature12827. PMID 24336285. 
  74. ^ Cuntz, Manfred (2013). “S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. I. Method and Applications”. The Astrophysical Journal 780 (1): 14. arXiv:1303.6645. Bibcode2014ApJ...780...14C. doi:10.1088/0004-637X/780/1/14. 
  75. ^ Forget, F.; Pierrehumbert, R. T. (1997). “Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation”. Science 278 (5341): 1273–1276. Bibcode1997Sci...278.1273F. doi:10.1126/science.278.5341.1273. PMID 9360920. 
  76. ^ Mischna, M.; Kasting, J. F.; Pavlov, A.; Freedman, R. (2000). “Influence of Carbon Dioxide Clouds on Early Martian Climate”. Icarus 145 (2): 546–554. Bibcode2000Icar..145..546M. doi:10.1006/icar.2000.6380. PMID 11543507. 
  77. ^ Vu, Linda. "Planets Prefer Safe Neighborhoods" (Press release). Spitzer.caltech.edu. NASA/Caltech. 2019年7月23日閲覧
  78. ^ Buccino, Andrea P.; Lemarchand, Guillermo A.; Mauas, Pablo J. D. (2006). “Ultraviolet radiation constraints around the circumstellar habitable zones”. Icarus 183 (2): 491–503. arXiv:astro-ph/0512291. doi:10.1016/j.icarus.2006.03.007. 
  79. ^ a b Barnes, Rory; Heller, René (2013). “Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary”. Astrobiology 13 (3): 279–291. arXiv:1203.5104. Bibcode2013AsBio..13..279B. doi:10.1089/ast.2012.0867. PMC 3612282. PMID 23537137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612282/. 
  80. ^ a b Yang, J.; Cowan, N. B.; Abbot, D. S. (2013). “Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets”. The Astrophysical Journal 771 (2): L45. arXiv:1307.0515. Bibcode2013ApJ...771L..45Y. doi:10.1088/2041-8205/771/2/L45. 
  81. ^ Agol, Eric (2011). “Transit Surveys for Earths in the Habitable Zones of White Dwarfs”. The Astrophysical Journal Letters 731 (2): 1–5. arXiv:1103.2791. Bibcode2011ApJ...731L..31A. doi:10.1088/2041-8205/731/2/L31. http://iopscience.iop.org/2041-8205/731/2/L31/. 
  82. ^ Ramirez, Ramses; Kaltenegger, Lisa (2014). “Habitable Zones of Pre-Main-Sequence Stars”. The Astrophysical Journal Letters 797 (2): L25. arXiv:1412.1764. Bibcode2014ApJ...797L..25R. doi:10.1088/2041-8205/797/2/L25. 
  83. ^ Carroll, Bradley W.; Ostlie, Dale A. (2007). An Introduction to Modern Astrophysics (2nd ed.) 
  84. ^ Richmond, Michael (2004年11月10日). “Late stages of evolution for low-mass stars”. Rochester Institute of Technology. 2019年7月23日閲覧。
  85. ^ Guo, J.; Zhang, F.; Chen, X.; Han, Z. (2009). “Probability distribution of terrestrial planets in habitable zones around host stars”. Astrophysics and Space Science 323 (4): 367–373. arXiv:1003.1368. Bibcode2009Ap&SS.323..367G. doi:10.1007/s10509-009-0081-z. 
  86. ^ Kasting, J. F.; Ackerman, T. P. (1986). “Climatic Consequences of Very High Carbon Dioxide Levels in the Earth's Early Atmosphere” (PDF). Science 234 (4782): 1383–1385. doi:10.1126/science.11539665. PMID 11539665. https://zenodo.org/record/1230890/files/article.pdf. 
  87. ^ a b Franck, S.; von Bloh, W.; Bounama, C.; Steffen, M.; Schönberner, D.; Schellnhuber, H.-J. (2002). "Habitable Zones and the Number of Gaia's Sisters" (PDF). In Montesinos, Benjamin; Giménez, Alvaro; Guinan, Edward F. (eds.). ASP Conference Series. The Evolving Sun and its Influence on Planetary Environments. Astronomical Society of the Pacific. pp. 261–272. Bibcode:2002ASPC..269..261F. ISBN 1-58381-109-5
  88. ^ Croswell, Ken (2001年1月27日). “Red, willing and able” (Full reprint). New Scientist. 2019年7月23日閲覧。
  89. ^ Alekseev, I. Y.; Kozlova, O. V. (2002). “Starspots and active regions on the emission red dwarf star LQ Hydrae”. Astronomy and Astrophysics 396: 203–211. Bibcode2002A&A...396..203A. doi:10.1051/0004-6361:20021424. 
  90. ^ a b Alpert, Mark (2005年11月7日). “Red Star Rising”. 2019年7月23日閲覧。
  91. ^ Research Corporation (2006). “Andrew West: 'Fewer flares, starspots for older dwarf stars'”. EarthSky. http://earthsky.org/space/fewer-flares-starspots-for-older-dwarf-stars. 
  92. ^ Cain, Fraser (2007年). “AstronomyCast episode 40: American Astronomical Society Meeting, May 2007”. Universe Today. 2007年9月26日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  93. ^ Ray Villard (2009年7月27日). “Living in a Dying Solar System, Part 1”. Astrobiology. 2019年7月23日閲覧。
  94. ^ Christensen, Bill (2005年4月1日). “Red Giants and Planets to Live On”. Space.com. TechMediaNetwork. http://www.space.com/920-red-giants-planets-live.html 2019年7月23日閲覧。 
  95. ^ a b c Ramirez, Ramses; Kaltenegger, Lisa (2016). “Habitable Zones of Post-Main Sequence Stars”. The Astrophysical Journal 823 (1): 6. arXiv:1605.04924. Bibcode2016ApJ...823....6R. doi:10.3847/0004-637X/823/1/6. 
  96. ^ a b Lopez, B.; Schneider, J.; Danchi, W. C. (2005). “Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?”. The Astrophysical Journal 627 (2): 974–985. arXiv:astro-ph/0503520. Bibcode2005ApJ...627..974L. doi:10.1086/430416. 
  97. ^ Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). “Titan under a red giant sun: A new kind of "habitable" moon”. Geophysical Research Letters 24 (22): 2905–2908. Bibcode1997GeoRL..24.2905L. doi:10.1029/97GL52843. ISSN 0094-8276. PMID 11542268. 
  98. ^ Voisey, Jon (2011年2月23日). “Plausibility Check – Habitable Planets around Red Giants”. Universe Today. http://www.universetoday.com/83248/plausibility-check-habitable-planet-around-red-giants/ 2019年7月23日閲覧。 
  99. ^ Alien Life More Likely on 'Dune' Planets Archived December 2, 2013, at the Wayback Machine., 09/01/11, Charles Q. Choi, Astrobiology Magazine
  100. ^ Habitable Zone Limits for Dry Planets, Yutaka Abe, Ayako Abe-Ouchi, Norman H. Sleep, and Kevin J. Zahnle. Astrobiology. June 2011, 11(5): 443–460. doi:10.1089/ast.2010.0545
  101. ^ Drake, Michael J. (2005). “Origin of water in the terrestrial planets”. Meteoritics & Planetary Science 40 (4): 519–527. Bibcode2005M&PS...40..519D. doi:10.1111/j.1945-5100.2005.tb00960.x. 
  102. ^ Drake, Michael J.; Humberto, Campins (2005). "Origin of water in the terrestrial planets". Asteroids, Comets, and Meteors (IAU S229). 229th Symposium of the International Astronomical Union. Vol. 1. Búzios, Rio de Janeiro, Brazil: Cambridge University Press. pp. 381–394. Bibcode:2006IAUS..229..381D. doi:10.1017/S1743921305006861. ISBN 978-0-521-85200-5
  103. ^ Kuchner, Marc (2003). “Volatile-rich Earth-Mass Planets in the Habitable Zone”. Astrophysical Journal 596 (1): L105–L108. arXiv:astro-ph/0303186. Bibcode2003ApJ...596L.105K. doi:10.1086/378397. 
  104. ^ Charbonneau, David; Zachory K. Bert; Jonathan Irwin; Christopher J. Burke; Philip Nutzman; Lars A. Buchhave; Christophe Lovis; Xavier Bonfils et al. (2009). “A super-Earth transiting a nearby low-mass star”. Nature 462 (17 December 2009): 891–894. arXiv:0912.3229. Bibcode2009Natur.462..891C. doi:10.1038/nature08679. PMID 20016595. http://www.nature.com/nature/journal/v462/n7275/full/nature08679.html. 
  105. ^ Kuchner, Seager; Hier-Majumder, M.; Militzer, C. A. (2007). “Mass–radius relationships for solid exoplanets”. The Astrophysical Journal 669 (2): 1279–1297. arXiv:0707.2895. Bibcode2007ApJ...669.1279S. doi:10.1086/521346. http://www.iop.org/EJ/abstract/0004-637X/669/2/1279/. 
  106. ^ Vastag, Brian (2011年12月5日). “Newest alien planet is just the right temperature for life”. The Washington Post. https://www.washingtonpost.com/national/health-science/newest-alien-planet-is-just-the-right-temperature-for-life/2011/12/05/gIQAPk1vWO_story.html 2019年7月23日閲覧。 
  107. ^ Robinson, Tyler D.; Catling, David C. (2012). “An Analytic Radiative-Convective Model for Planetary Atmospheres”. The Astrophysical Journal 757 (1): 104. arXiv:1209.1833. Bibcode2012ApJ...757..104R. doi:10.1088/0004-637X/757/1/104. 
  108. ^ Shizgal, B. D.; Arkos, G. G. (1996). “Nonthermal escape of the atmospheres of Venus, Earth, and Mars”. Reviews of Geophysics 34 (4): 483–505. Bibcode1996RvGeo..34..483S. doi:10.1029/96RG02213. 
  109. ^ D. P. Hamilton; J. A. Burns (1992). “Orbital stability zones about asteroids. II – The destabilizing effects of eccentric orbits and of solar radiation” (PDF). Icarus 96 (1): 43–64. Bibcode1992Icar...96...43H. doi:10.1016/0019-1035(92)90005-R. http://www.astro.umd.edu/~hamilton/research/reprints/HamBurns91.pdf. 
  110. ^ Becquerel P. (1950). “La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l'alun de fer dans le vide les plus eléve” (French). C. R. Acad. Sci. Paris 231: 261–263. 
  111. ^ Horikawa, Daiki D. (2012). Alexander V. Altenbach, Joan M. Bernhard & Joseph Seckbach. ed. Anoxia Evidence for Eukaryote Survival and Paleontological Strategies. (21st ed.). Springer Netherlands. pp. 205–217. ISBN 978-94-007-1895-1. http://www.springerlink.com/content/wp400661m4236045/abstract/ 
  112. ^ Kane, Stephen R.; Gelino, Dawn M. (2012). “The Habitable Zone and Extreme Planetary Orbits”. Astrobiology 12 (10): 940–945. arXiv:1205.2429. Bibcode2012AsBio..12..940K. doi:10.1089/ast.2011.0798. PMID 23035897. 
  113. ^ Paul Gilster (2015年1月30日). “A Review of the Best Habitable Planet Candidates”. Centauri Dreams, Tau Zero Foundation. 2019年7月23日閲覧。
  114. ^ Giovanni F. Bignami (2015). The Mystery of the Seven Spheres: How Homo sapiens will Conquer Space. Springer. p. 110. ISBN 978-3-319-17004-6. https://books.google.com/books?id=crvpCQAAQBAJ&pg=PA110 
  115. ^ Wethington, Nicholos (2008年9月16日). “How Many Stars are in the Milky Way?”. Universe Today. http://www.universetoday.com/22380/how-many-stars-are-in-the-milky-way/ 2019年7月23日閲覧。 
  116. ^ a b Torres, Abel Mendez (2013年4月26日). “Ten potentially habitable exoplanets now”. Habitable Exoplanets Catalog. University of Puerto Rico. 2019年7月23日閲覧。
  117. ^ Borenstein, Seth (2011年2月19日). “Cosmic census finds crowd of planets in our galaxy”. Associated Press. オリジナルの2011年9月27日時点におけるアーカイブ。. https://web.archive.org/web/20110927053134/http://apnews.excite.com/article/20110219/D9LG45NO0.html 2019年7月23日閲覧。 
  118. ^ Choi, Charles Q. (2011年3月21日). “New Estimate for Alien Earths: 2 Billion in Our Galaxy Alone”. Space.com. 2019年7月23日閲覧。
  119. ^ Catanzarite, J.; Shao, M. (2011). “The Occurrence Rate of Earth Analog Planets Orbiting Sun-Like Stars”. The Astrophysical Journal 738 (2): 151. arXiv:1103.1443. Bibcode2011ApJ...738..151C. doi:10.1088/0004-637X/738/2/151. 
  120. ^ Williams, D.; Pollard, D. (2002). “Earth-like worlds on eccentric orbits: excursions beyond the habitable zone”. International Journal of Astrobiology 1 (1): 61–69. Bibcode2002IJAsB...1...61W. doi:10.1017/S1473550402001064. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=105145. 
  121. ^ 70 Virginis b”. Extrasolar Planet Guide. Extrasolar.net. 2012年6月19日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  122. ^ Williams, D.; Pollard, D. (2002). “Earth-like worlds on eccentric orbits: excursions beyond the habitable zone”. International Journal of Astrobiology 1 (1): 61–69. Bibcode2002IJAsB...1...61W. doi:10.1017/S1473550402001064. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=105145. 
  123. ^ Sudarsky, David; Burrows, Adam; Hubeny, Ivan (2003). “Theoretical Spectra and Atmospheres of Extrasolar Giant Planets”. The Astrophysical Journal 588 (2): 1121–1148. arXiv:astro-ph/0210216. Bibcode2003ApJ...588.1121S. doi:10.1086/374331. http://iopscience.iop.org/0004-637X/588/2/1121/fulltext. 
  124. ^ Jones, B. W.; Sleep, P. N.; Underwood, D. R. (2006). “Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties”. The Astrophysical Journal 649 (2): 1010–1019. arXiv:astro-ph/0603200. Bibcode2006ApJ...649.1010J. doi:10.1086/506557. 
  125. ^ Butler, R. P.; Wright, J. T.; Marcy, G. W.; Fischer, D. A.; Vogt, S. S.; Tinney, C. G.; Jones, H. R. A.; Carter, B. D. et al. (2006). “Catalog of Nearby Exoplanets”. The Astrophysical Journal 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode2006ApJ...646..505B. doi:10.1086/504701. 
  126. ^ Canup, R. M.; Ward, W. R. (2006). “A common mass scaling for satellite systems of gaseous planets”. Nature 441 (7095): 834–839. Bibcode2006Natur.441..834C. doi:10.1038/nature04860. PMID 16778883. 
  127. ^ Barnes, J. W.; O'Brien, D. P. (2002). “Stability of Satellites around Close‐in Extrasolar Giant Planets”. The Astrophysical Journal 575 (2): 1087–1093. arXiv:astro-ph/0205035. Bibcode2002ApJ...575.1087B. doi:10.1086/341477. 
  128. ^ Lovis, C.; Mayor, M.; Pepe, F.; Alibert, Y.; Benz, W.; Bouchy, F.; Correia, A. C.; Laskar, J. et al. (2006). “An extrasolar planetary system with three Neptune-mass planets”. Nature 441 (7091): 305–309. arXiv:astro-ph/0703024. Bibcode2006Natur.441..305L. doi:10.1038/nature04828. PMID 16710412. http://www.nature.com/nature/journal/v441/n7091/abs/nature04828.html. 
  129. ^ a b Astronomers Discover Record Fifth Planet Around Nearby Star 55 Cancri”. Sciencedaily.com (2007年11月6日). 2019年7月23日閲覧。
  130. ^ Fischer, Debra A.; Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Laughlin, Greg; Henry, Gregory W.; Abouav, David; Peek, Kathryn M. G. et al. (2008). “Five Planets Orbiting 55 Cancri”. The Astrophysical Journal 675 (1): 790–801. arXiv:0712.3917. Bibcode2008ApJ...675..790F. doi:10.1086/525512. http://iopscience.iop.org/0004-637X/675/1/790/fulltext/. 
  131. ^ Ian Sample, science correspondent (2007年11月7日). “Could this be Earth's near twin? Introducing planet 55 Cancri f”. The Guardian. https://www.theguardian.com/science/2007/nov/07/spaceexploration 2019年7月23日閲覧。 
  132. ^ Than, Ker (2007年2月24日). “Planet Hunters Edge Closer to Their Holy Grail”. Space.com. http://www.space.com/scienceastronomy/070424_exoplanet_side.html 2019年7月23日閲覧。 
  133. ^ Rpbertspm, R.; Mahadevan, S.; Endl, M; Roy, A. (2014). “Stellar activity masquerading as planets in the habitable zone of the M dwarf Glise 581”. Science 345 (6195): 440-444. doi:10.1126/science.1253253. 
  134. ^ Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita (2014). “Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581”. Science 345 (6195): 440–444. arXiv:1407.1049. Bibcode2014Sci...345..440R. doi:10.1126/science.1253253. PMID 24993348. 
  135. ^ Researchers find potentially habitable planet” (French). maxisciences.com (2011年8月30日). 2019年7月23日閲覧。
  136. ^ “Kepler 22-b: Earth-like planet confirmed”. BBC. (2011年12月5日). https://www.bbc.co.uk/news/science-environment-16040655 2019年7月23日閲覧。 
  137. ^ Scharf, Caleb A. (2011年12月8日). “You Can't Always Tell an Exoplanet by Its Size”. 2019年7月23日閲覧。: "If it [Kepler-22b] had a similar composition to Earth, then we're looking at a world in excess of about 40 Earth masses".
  138. ^ Anglada-Escude, Guillem; Arriagada, Pamela; Vogt, Steven; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B. et al. (2012). “A planetary system around the nearby M dwarf GJ 667C with at least one super-Earth in its habitable zone”. The Astrophysical Journal 751 (1): L16. arXiv:1202.0446. Bibcode2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16. 
  139. ^ Results for HIP 19394”. SIMBAD Astronomical Database. CDS. 2019年7月23日閲覧。
  140. ^ Méndez, Abel (2012年8月29日). “A Hot Potential Habitable Exoplanet around Gliese 163”. Planetary Habitability Laboratory. University of Puerto Rico at Arecibo. 2019年7月23日閲覧。
  141. ^ Nola Taylor Redd (2012年9月20日). “Newfound Alien Planet a Top Contender to Host Life”. Space.com. 2019年7月23日閲覧。
  142. ^ A Hot Potential Habitable Exoplanet around Gliese 163”. Spacedaily.com. 2019年7月23日閲覧。
  143. ^ Tuomi, Mikko; Anglada-Escude, Guillem; Gerlach, Enrico; Jones, Hugh R. R.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, Paul (2012). “Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307”. Astronomy and Astrophysics 549: A48. arXiv:1211.1617. Bibcode2013A&A...549A..48T. doi:10.1051/0004-6361/201220268. 
  144. ^ Aron, Jacob (2012年12月19日). “Nearby Tau Ceti may host two planets suited to life”. New Scientist. Reed Business Information. 2019年7月23日閲覧。
  145. ^ Tuomi, M.; Jones, H. R. A.; Jenkins, J. S.; Tinney, C. G.; Butler, R. P.; Vogt, S. S.; Barnes, J. R.; Wittenmyer, R. A. et al. (2013). “Signals embedded in the radial velocity noise”. Astronomy and Astrophysics 551: A79. arXiv:1212.4277. Bibcode2013A&A...551A..79T. doi:10.1051/0004-6361/201220509. 
  146. ^ Torres, Abel Mendez (2013年5月1日). “The Habitable Exoplanets Catalog”. Habitable Exoplanets Catalog. University of Puerto Rico. 2019年7月23日閲覧。
  147. ^ Lauren M. Weiss; Geoffrey W. Marcy (2014). “The mass-radius relation for 65 exoplanets smaller than 4 Earth radii”. The Astrophysical Journal Letters 783 (1): 7. arXiv:1312.0936. Bibcode2014ApJ...783L...6W. doi:10.1088/2041-8205/783/1/L6. https://iopscience.iop.org/article/10.1088/2041-8205/783/1/L6. 
  148. ^ Solar Variability and Terrestrial Climate”. NASA Science (2013年1月8日). 2019年7月23日閲覧。
  149. ^ Stellar Luminosity Calculator”. University of Nebraska-Lincoln astronomy education group. 2019年7月23日閲覧。
  150. ^ Council, National Research (18 September 2012). The Effects of Solar Variability on Earth's Climate: A Workshop Report. doi:10.17226/13519. ISBN 978-0-309-26564-5. http://www.nap.edu/catalog/13519/the-effects-of-solar-variability-on-earths-climate-a-workshop 
  151. ^ Most of Earth's twins aren't identical, or even close!, By Ethan. June 5, 2013.
  152. ^ Are there oceans on other planets?”. National Oceanic and Atmospheric Administration (2017年7月6日). 2019年7月23日閲覧。
  153. ^ a b Johnson, Michele (2013年4月18日). “NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date”. NASA. 2019年7月23日閲覧。
  154. ^ a b Overbye, Dennis (2013年4月18日). “Two Promising Places to Live, 1,200 Light-Years from Earth”. The New York Times. https://www.nytimes.com/2013/04/19/science/space/2-new-planets-are-most-earth-like-yet-scientists-say.html 2019年7月23日閲覧。 
  155. ^ Moskowitz, Clara (2013年1月9日). “Most Earth-Like Alien Planet Possibly Found”. Space.com. 2019年7月23日閲覧。
  156. ^ Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Isaacson, Howard; Jenkins, Jon M.; Kolbl, Rea et al. (2013). “A Super-Earth-Sized Planet Orbiting in or Near the Habitable Zone Around a Sun-Like Star”. The Astrophysical Journal 768 (2): 101. arXiv:1304.4941. Bibcode2013ApJ...768..101B. doi:10.1088/0004-637X/768/2/101. 
  157. ^ Stephen R. Kane; Thomas Barclay; Dawn M. Gelino. “A Potential Super-Venus in the Kepler-69 System”. The Astrophysical Journal Letters 770 (2): L20. arXiv:1305.2933. Bibcode2013ApJ...770L..20K. doi:10.1088/2041-8205/770/2/L20. 
  158. ^ Borucki, William J. et al. (2013). “Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone”. Science Express 340 (6132): 587–590. arXiv:1304.7387. Bibcode2013Sci...340..587B. doi:10.1126/science.1234702. PMID 23599262. http://www.sciencemag.org/content/early/2013/04/17/science.1234702. 
  159. ^ Chang, Kenneth (2014年4月7日). “Scientists Find an 'Earth Twin,' or Maybe a Cousin”. The New York Times. https://www.nytimes.com/2014/04/18/science/space/scientists-find-an-earth-twin-or-maybe-a-cousin.html 2019年7月23日閲覧。 
  160. ^ Chang, Alicia (2014年4月17日). “Astronomers spot most Earth-like planet yet”. AP News. http://apnews.excite.com/article/20140417/DAD832V81.html 2019年7月23日閲覧。 
  161. ^ Morelle, Rebecca (2014年4月17日). “'Most Earth-like planet yet' spotted by Kepler”. BBC News. https://www.bbc.co.uk/news/science-environment-27054366 2019年7月23日閲覧。 
  162. ^ Wall, Mike (2014年6月3日). “Found! Oldest Known Alien Planet That Might Support Life”. Space.com. 2019年7月23日閲覧。
  163. ^ Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath (2015). “Stellar activity mimics a habitable-zone planet around Kapteyn's star”. The Astrophysical Journal 805 (2): L22. arXiv:1505.02778. Bibcode2015ApJ...805L..22R. doi:10.1088/2041-8205/805/2/L22. ISSN 2041-8213. 
  164. ^ a b c Clavin, Whitney (2015年1月6日). “NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones”. NASA. 2019年7月23日閲覧。
  165. ^ Jensen, Mari N. (2015年1月16日). “Three nearly Earth-size planets found orbiting nearby star: One in 'Goldilocks' zone”. Science Daily. https://www.sciencedaily.com/releases/2015/01/150116093052.htm 2019年7月23日閲覧。 
  166. ^ Jenkins, Jon M.; Twicken, Joseph D.; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Latham, David W.; Esquerdo, Gilbert A. et al. (2015). “Discovery and Validation of Kepler-452b: A 1.6 R⨁ Super Earth Exoplanet in the Habitable Zone of a G2 Star”. The Astronomical Journal 150 (2): 56. arXiv:1507.06723. Bibcode2015AJ....150...56J. doi:10.1088/0004-6256/150/2/56. ISSN 1538-3881. http://iopscience.iop.org/1538-3881/150/2/56/article. 
  167. ^ NASA telescope discovers Earth-like planet in star's habitable zone”. BNO News (2015-0). 2019年7月23日閲覧。
  168. ^ NASA’s Kepler Mission Discovers Bigger, Older Cousin to Earth”. NASA (2015年7月23日). 2018-0-23閲覧。
  169. ^ Dressing, Courtney D.; Vanderburg, Andrew; Schlieder, Joshua E.; Crossfield, Ian J. M.; Knutson, Heather A.; Newton, Elisabeth R.; Ciardi, David R.; Fulton, Benjamin J. et al. (2017). “Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. II. Planetary Systems Observed During Campaigns 1–7” (PDF). The Astronomical Journal 154 (5): 207. arXiv:1703.07416. Bibcode2017AJ....154..207D. doi:10.3847/1538-3881/aa89f2. ISSN 1538-3881. https://authors.library.caltech.edu/78341/2/Dressing_2017_AJ_154_207.pdf. 
  170. ^ Gillon, Michaël; Triaud, Amaury H. M. J. et al. (2017). “Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1” (PDF). Nature 542 (7642): 456-460. doi:10.1038/nature21360. ISSN 0028-0836. http://www.eso.org/public/archives/releases/sciencepapers/eso1706/eso1706a.pdf. 
  171. ^ Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; Berta-Thompson, Zachory K.; Newton, Elisabeth R. et al. (2017). “A temperate rocky super-Earth transiting a nearby cool star”. Nature 544 (7650): 333–336. arXiv:1704.05556. Bibcode2017Natur.544..333D. doi:10.1038/nature22055. PMID 28426003. 
  172. ^ Astronomers are beaming techno into space for aliens to decode”. Wired UK (2017年11月16日). 2019年7月23日閲覧。
  173. ^ In Earth's Backyard: Newfound Alien Planet May be Good Bet for Life”. Space.com (2017年11月15日). 2019年7月23日閲覧。
  174. ^ K2-155 d”. Exoplanet Exploration (2018年). 2019年7月23日閲覧。
  175. ^ Mack, Eric (2018年3月13日). “A super-Earth around a red star could be wet and wild”. CNET. 2019年7月23日閲覧。
  176. ^ Whitwam, Ryan (2018年3月14日). “Kepler Spots Potentially Habitable Super-Earth Orbiting Nearby Star”. ExtremeTech. 2019年7月23日閲覧。
  177. ^ Zechmeister, M.; Dreizler, S.; Ribas, I.; Reiners, A.; Caballero, J. A. (2019). “The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star”. Astronomy and Astrophysics. arXiv:1906.07196. Bibcode2019arXiv190607196Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. 
  178. ^ Torres, Abel (2012年6月12日). “Liquid Water in the Solar System”. 2019年7月23日閲覧。
  179. ^ Munro, Margaret (2013年). “Miners deep underground in northern Ontario find the oldest water ever known”. National Post. 2019年7月23日閲覧。
  180. ^ Davies, Paul (2013年). “The Origin of Life II: How did it begin?” (PDF). 2019年7月23日閲覧。[リンク切れ]
  181. ^ Taylor, Geoffrey (1996年). “Life Underground” (PDF). Planetary Science Research Discoveries. 2019年7月23日閲覧。
  182. ^ Doyle, Alister (2013年3月4日). “Deep underground, worms and "zombie microbes" rule”. Reuters. https://www.reuters.com/article/2013/03/04/us-life-idUSBRE9230WM20130304 2019年7月23日閲覧。 
  183. ^ Nicholson, W. L.; Moeller, R.; Horneck, G.; PROTECT Team (2012). “Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT”. Astrobiology 12 (5): 469–486. Bibcode2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID 22680693. 
  184. ^ Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5 
  185. ^ Decker, Heinz; Holde, Kensal E. (2011). “Oxygen and the Exploration of the Universe”. Oxygen and the Evolution of Life. pp. 157–168. doi:10.1007/978-3-642-13179-0_9. ISBN 978-3-642-13178-3 
  186. ^ a b Stewart, Ian; Cohen, Jack (2002). Evolving the Alien. Ebury Press. ISBN 978-0-09-187927-3 
  187. ^ Goldsmith, Donald; Owen, Tobias (1992). The Search for Life in the Universe (2nd ed.). Addison-Wesley. p. 247. ISBN 978-0-201-56949-0 
  188. ^ Vaclav Smil (2003). The Earth's Biosphere: Evolution, Dynamics, and Change. MIT Press. p. 166. ISBN 978-0-262-69298-4. https://books.google.com/books?id=8ntHWPMUgpMC 
  189. ^ Reynolds, R. T.; McKay, C. P.; Kasting, J. F. (1987). “Europa, Tidally Heated Oceans, and Habitable Zones Around Giant Planets”. Advances in Space Research 7 (5): 125–132. Bibcode1987AdSpR...7..125R. doi:10.1016/0273-1177(87)90364-4. http://www.sciencedirect.com/science/article/pii/0273117787903644. 
  190. ^ Guidetti, R.; Jönsson, K. I. (2002). “Long-term anhydrobiotic survival in semi-terrestrial micrometazoans”. Journal of Zoology 257 (2): 181–187. doi:10.1017/S095283690200078X. 
  191. ^ Baldwin, Emily (2012年4月26日). “Lichen survives harsh Mars environment”. Skymania New. 2019年7月23日閲覧。
  192. ^ de Vera, J. P. (2012年4月26日). “The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars” (PDF). European Geosciences Union. 2012年5月4日時点のオリジナルよりアーカイブ。2019年7月23日閲覧。
  193. ^ a b Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J.; Rabbow, Elke; de la Torre, Rosa et al. (2015). “Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station”. Astrobiology 15 (12): 1052–1059. Bibcode2015AsBio..15.1052O. doi:10.1089/ast.2015.1324. ISSN 1531-1074. PMID 26684504. 
  194. ^ Isler, K.; van Schaik, C. P (2006). “Metabolic costs of brain size evolution”. Biology Letters 2 (4): 557–560. doi:10.1098/rsbl.2006.0538. ISSN 1744-9561. PMC 1834002. PMID 17148287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1834002/. 
  195. ^ Palca, Joe. “'Goldilocks' Planet's Temperature Just Right For Life”. 2010-09-29 (NPR). https://www.npr.org/templates/story/story.php?storyId=130215192 2019年7月23日閲覧。 
  196. ^ Project Cyclops: A design study of a system for detecting extraterrestrial intelligent life”. NASA (1971年). 2019年7月23日閲覧。
  197. ^ Joseph A. Angelo (2007). Life in the Universe. Infobase Publishing. p. 163. ISBN 978-1-4381-0892-6. https://books.google.com/books?id=I5gHntgLLvIC&pg=PA163 
  198. ^ Turnbull, Margaret C.; Tarter, Jill C. (2003). “Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems”. The Astrophysical Journal Supplement Series 145 (1): 181–198. arXiv:astro-ph/0210675. Bibcode2003ApJS..145..181T. doi:10.1086/345779. 
  199. ^ Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen et al. (2013). “A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets”. The Astrophysical Journal 767 (1): 94. arXiv:1302.0845. Bibcode2013ApJ...767...94S. doi:10.1088/0004-637X/767/1/94. 
  200. ^ Zaitsev, A. L. (2004). "Transmission and reasonable signal searches in the Universe". Horizons of the Universe Передача и поиски разумных сигналов во Вселенной. Plenary presentation at the National Astronomical Conference WAC-2004 "Horizons of the Universe", Moscow, Moscow State University, June 7, 2004 (Russian). Moscow.
  201. ^ Grinspoon, David (2007年12月12日). “Who Speaks for Earth?”. Seedmagazine.com. 2019年7月23日閲覧。
  202. ^ P. C. Gregory; D. A. Fischer (2010). “A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris”. Monthly Notices of the Royal Astronomical Society 403 (2): 731–747. arXiv:1003.5549. Bibcode2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. 
  203. ^ B. Jones; Underwood, David R.; Sleep, P. Nick (2005). “Prospects for Habitable "Earths" in Known Exoplanetary Systems”. The Astrophysical Journal 622 (2): 1091–1101. arXiv:astro-ph/0503178. Bibcode2005ApJ...622.1091J. doi:10.1086/428108. 
  204. ^ Moore, Matthew (2008年10月9日). “Messages from Earth sent to distant planet by Bebo”. London: .telegraph.co.uk. オリジナルの2008年10月11日時点におけるアーカイブ。. https://web.archive.org/web/20081011142445/http://www.telegraph.co.uk/news/newstopics/howaboutthat/3166709/Messages-from-Earth-sent-to-distant-planet-by-Bebo.html 2019年7月23日閲覧。 
  205. ^ a b Gowanlock, M. G.; Patton, D. R.; McConnell, S. M. (2011). “A Model of Habitability Within the Milky Way Galaxy”. Astrobiology 11 (9): 855–873. arXiv:1107.1286. Bibcode2011AsBio..11..855G. doi:10.1089/ast.2010.0555. PMID 22059554. 
  206. ^ a b c d Prantzos, Nikos (2006). “On the "Galactic Habitable Zone"”. Space Science Reviews 135 (1–4): 313–322. arXiv:astro-ph/0612316. Bibcode2008SSRv..135..313P. doi:10.1007/s11214-007-9236-9. 
  207. ^ Lineweaver, C. H.; Fenner, Y.; Gibson, B. K. (2004). “The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way”. Science 303 (5654): 59–62. arXiv:astro-ph/0401024. Bibcode2004Sci...303...59L. doi:10.1126/science.1092322. PMID 14704421. 
  208. ^ E. Spitoni; F. Matteucci; A. Sozzetti (2014). “The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows”. Monthly Notices of the Royal Astronomical Society 440 (3): 2588-2598. arXiv:1403.2268. Bibcode2014MNRAS.440.2588S. doi:10.1093/mnras/stu484. https://academic.oup.com/mnras/article/440/3/2588/1750210. 
  209. ^ a b c d 松村武宏 (2019年6月24日). “超大質量ブラックホール周囲でも生命が存在できる可能性”. sorae.info. 2019年7月23日閲覧。
  210. ^ a b c d Mara Johnson-Groh (2019年6月19日). “Voracious Black Holes Could Feed Alien Life on Rogue Worlds”. 2019年7月23日閲覧。



ハビタブルゾーン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/07/20 12:10 UTC 版)

ケプラー16(AB)b」の記事における「ハビタブルゾーン」の解説

ケプラー16(AB)b表面温度は-100から-70であると推定されている。ケプラー16のハビタブルゾーンは、明るい恒星であるケプラー16A光度から、5500kmから1億600kmであると推定されており、ケプラー16(AB)b軌道長半径の値1億500kmは、ハビタブルゾーンの外側の縁に相当するケプラー16(AB)bガス惑星なので、地球考えられるような生命存在しにくいと考えられるが、仮に地球サイズ衛星存在すれば、十分な大気を持つことによって生命発生することが可能であるという。テキサス大学アーリントン校のビリー・クォールズらのコンピューター・シミュレーション結果では、ケプラー16誕生後ケプラー16Aのハビタブルゾーンに存在した地球型惑星が、他天体重力影響軌道から外側放り出され移動途中でケプラー16(AB)b捕獲され衛星になりうるという。衛星地球質量5分の1より重ければ、衛星公転によるケプラー16(AB)b軌道微妙なふらつき検出できるという。 連星系において生命の可能性議論できることは重要である。なぜならば宇宙には単独星は少なくかなりの恒星二重上の連星であるからである。かつては連星系において惑星安定して存在することがなく、したがって生命存在する可能性も低いと考えられてきたが、ケプラー16(AB)b発見は、科学者何十年も発見することのできなかった、連星系惑星生命の可能性示唆する重要なマイルストーン」である。

※この「ハビタブルゾーン」の解説は、「ケプラー16(AB)b」の解説の一部です。
「ハビタブルゾーン」を含む「ケプラー16(AB)b」の記事については、「ケプラー16(AB)b」の概要を参照ください。


ハビタブルゾーン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/05 14:51 UTC 版)

橙色矮星系の居住可能性」の記事における「ハビタブルゾーン」の解説

K型主系列星のハビタブルゾーンは、恒星から0.5から1天文単位の距離にあり、比較少量放射を受ける。これは、表面液体の水存在するのに十分な放射エネルギー与えるが、生命を滅ぼすほど強い放射はないという意味で、生命維持適している。しかし、数学的なモデルでは、ダイナモ生成磁場の強さ考えられる最大場合でも、恒星から0.8天文単位よりも近くにある地球質量程度惑星は、コロナ質量放出極紫外線放射による外圏底の大気浸食により、大気大部分を失うと結論づけている。 ハビタブルゾーンは非常に安定で、橙色矮星主系列星段階にある間のほとんどの期間続く。K型主系列星のハビタブルゾーンの大きさは、惑星恒星から潮汐固定されないのに十分な程度である。これは、惑星自転行い、さらに恐らく四季を持つという意味で、生命出現にとって都合が良い

※この「ハビタブルゾーン」の解説は、「橙色矮星系の居住可能性」の解説の一部です。
「ハビタブルゾーン」を含む「橙色矮星系の居住可能性」の記事については、「橙色矮星系の居住可能性」の概要を参照ください。


ハビタブルゾーン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/16 15:10 UTC 版)

ケプラー16b」の記事における「ハビタブルゾーン」の解説

ケプラー16b表面温度は-100から-70であると推定されている。ケプラー16のハビタブルゾーンは、明るい恒星であるケプラー16A光度から、5500kmから1億600kmであると推定されており、ケプラー16b軌道長半径の値1億500kmは、ハビタブルゾーンの外側の縁に相当するケプラー16bガス惑星なので、地球考えられるような生命存在しにくいと考えられるが、仮に地球サイズ衛星存在すれば、十分な大気を持つことによって生命発生することが可能であるという。テキサス大学アーリントン校のビリー・クォールズらのコンピューター・シミュレーション結果では、ケプラー16誕生後ケプラー16Aのハビタブルゾーンに存在した地球型惑星が、他天体重力影響軌道から外側放り出され移動途中でケプラー16b捕獲され衛星になりうるという。衛星地球質量5分の1より重ければ、衛星公転によるケプラー16b軌道微妙なふらつき検出できるという。 連星系において生命の可能性議論できることは重要である。なぜならば宇宙には単独星は少なくかなりの恒星二重上の連星であるからである。かつては連星系において惑星安定して存在することがなく、したがって生命存在する可能性も低いと考えられてきたが、ケプラー16b発見は、科学者何十年も発見することのできなかった、連星系惑星生命の可能性示唆する重要なマイルストーン」である。

※この「ハビタブルゾーン」の解説は、「ケプラー16b」の解説の一部です。
「ハビタブルゾーン」を含む「ケプラー16b」の記事については、「ケプラー16b」の概要を参照ください。

ウィキペディア小見出し辞書の「ハビタブルゾーン」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ハビタブルゾーン」の関連用語

ハビタブルゾーンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ハビタブルゾーンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
新語時事用語辞典新語時事用語辞典
Copyright © 2024 新語時事用語辞典 All Rights Reserved.
実用日本語表現辞典実用日本語表現辞典
Copyright © 2024実用日本語表現辞典 All Rights Reserved.
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのハビタブルゾーン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのケプラー16(AB)b (改訂履歴)、橙色矮星系の居住可能性 (改訂履歴)、ケプラー16b (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS