タンパク質工学とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 学問 > 専攻 > 工学 > タンパク質工学の意味・解説 

タンパク質工学

「生物学用語辞典」の他の用語
学問の分野:  ゲノム学  タンパク質工学  体細胞遺伝学  分子系統学  化学  比較ゲノム学  生化学

タンパク質工学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/04/15 12:30 UTC 版)

タンパク質工学(タンパクしつこうがく)は、有用または価値のあるタンパク質を開発するプロセスであり、多くの場合、自然界に存在するアミノ酸配列を変更することによって、人工的なポリペプチドを設計・製造する[1]。タンパク質のフォールディングの理解や、タンパク質の設計原理の認識などに多くの研究が行われている新しい学問分野である。 工業用触媒生体触媒)として多くの酵素の機能向上に利用されている[2]。また、製品・サービス市場において、2017年には1680億米ドルの市場場規模になると推定されている[3]


  1. ^ "Protein engineering - Latest research and news | Nature". www.nature.com. Retrieved 2023-01-24.
  2. ^ "Protein engineering - Latest research and news | Nature". www.nature.com. Retrieved 2023-01-24.
  3. ^ "Speeding Up the Protein Assembly Line". Genetic Engineering and Biotechnology News. 13 February 2015.
  4. ^ Farmer, Tylar Seiya; Bohse, Patrick; Kerr, Dianne (2017). "Rational Design Protein Engineering Through Crowdsourcing". Journal of Student Research. 6 (2): 31–38. doi:10.47611/jsr.v6i2.377. S2CID 57679002
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay Poluri, Krishna Mohan; Gulati, Khushboo (2017) (英語). Protein Engineering Techniques. SpringerBriefs in Applied Sciences and Technology. Springer. doi:10.1007/978-981-10-2732-1. ISBN 978-981-10-2731-4 
  6. ^ Liu, Cassie J.; Cochran, Jennifer R. (2014), Cai, Weibo (ed.), "Engineering Multivalent and Multispecific Protein Therapeutics", Engineering in Translational Medicine, London: Springer, pp. 365–396, doi:10.1007/978-1-4471-4372-7_14, ISBN 978-1-4471-4372-7, retrieved 2021-12-08
  7. ^ Holliger, P.; Prospero, T.; Winter, G. (1993-07-15). “"Diabodies": small bivalent and bispecific antibody fragments.” (英語). Proceedings of the National Academy of Sciences 90 (14): 6444–6448. Bibcode1993PNAS...90.6444H. doi:10.1073/pnas.90.14.6444. ISSN 0027-8424. PMC 46948. PMID 8341653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46948/. 
  8. ^ Brinkmann, Ulrich; Kontermann, Roland E. (2017-02-17). “The making of bispecific antibodies” (英語). mAbs 9 (2): 182–212. doi:10.1080/19420862.2016.1268307. ISSN 1942-0862. PMC 5297537. PMID 28071970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297537/. 
  9. ^ Jäckel, Christian; Kast, Peter; Hilvert, Donald (June 2008). “Protein Design by Directed Evolution”. Annual Review of Biophysics 37 (1): 153–173. doi:10.1146/annurev.biophys.37.032807.125832. PMID 18573077. 
  10. ^ Shivange, Amol V; Marienhagen, Jan; Mundhada, Hemanshu; Schenk, Alexander; Schwaneberg, Ulrich (2009). “Advances in generating functional diversity for directed protein evolution” (英語). Current Opinion in Chemical Biology 13 (1): 19–25. doi:10.1016/j.cbpa.2009.01.019. PMID 19261539. 
  11. ^ a b c d Lutz, Stefan (December 2010). “Beyond directed evolution—semi-rational protein engineering and design”. Current Opinion in Biotechnology 21 (6): 734–743. doi:10.1016/j.copbio.2010.08.011. PMC 2982887. PMID 20869867. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982887/. 
  12. ^ “'Designer Enzymes' Created By Chemists Have Defense And Medical Uses”. ScienceDaily. (2008年3月20日). https://www.sciencedaily.com/releases/2008/03/080319160050.htm 
  13. ^ [Enzyme reactors at Enzyme reactors”. 2012年5月2日時点のオリジナルよりアーカイブ。2013年11月2日閲覧。] Accessed 22 May 2009.
  14. ^ Sharma, Anshula; Gupta, Gaganjot; Ahmad, Tawseef; Mansoor, Sheikh; Kaur, Baljinder (2021-02-17). “Enzyme Engineering: Current Trends and Future Perspectives”. Food Reviews International 37 (2): 121–154. doi:10.1080/87559129.2019.1695835. ISSN 8755-9129. https://doi.org/10.1080/87559129.2019.1695835. 
  15. ^ Kuhlman, Brian; Dantas, Gautam; Ireton, Gregory C.; Varani, Gabriele; Stoddard, Barry L. & Baker, David (2003), “Design of a Novel Globular Protein Fold with Atomic-Level Accuracy”, Science 302 (5649): 1364–1368, Bibcode2003Sci...302.1364K, doi:10.1126/science.1089427, PMID 14631033 
  16. ^ Looger, Loren L.; Dwyer, Mary A.; Smith, James J. & Hellinga, Homme W. (2003), “Computational design of receptor and sensor proteins with novel functions”, Nature 423 (6936): 185–190, Bibcode2003Natur.423..185L, doi:10.1038/nature01556, PMID 12736688 
  17. ^ Khoury, GA; Fazelinia, H; Chin, JW; Pantazes, RJ; Cirino, PC; Maranas, CD (October 2009), “Computational design of Candida boidinii xylose reductase for altered cofactor specificity”, Protein Science 18 (10): 2125–38, doi:10.1002/pro.227, PMC 2786976, PMID 19693930, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2786976 
  18. ^ The iterative nature of this process allows IPRO to make additive mutations to a protein sequence that collectively improve the specificity toward desired substrates and/or cofactors. Details on how to download the software, implemented in Python, and experimental testing of predictions are outlined in this paper: Khoury, GA; Fazelinia, H; Chin, JW; Pantazes, RJ; Cirino, PC; Maranas, CD (October 2009), “Computational design of Candida boidinii xylose reductase for altered cofactor specificity”, Protein Science 18 (10): 2125–38, doi:10.1002/pro.227, PMC 2786976, PMID 19693930, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2786976 
  19. ^ a b Ardejani, MS; Li, NX; Orner, BP (April 2011), “Stabilization of a Protein Nanocage through the Plugging of a Protein–Protein Interfacial Water Pocket”, Biochemistry 50 (19): 4029–4037, doi:10.1021/bi200207w, PMID 21488690 
  20. ^ Chowdhury, Ratul; Ren, Tingwei; Shankla, Manish; Decker, Karl; Grisewood, Matthew; Prabhakar, Jeevan; Baker, Carol; Golbeck, John H. et al. (10 September 2018). “PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore”. Nature Communications 9 (1): 3661. Bibcode2018NatCo...9.3661C. doi:10.1038/s41467-018-06097-1. PMC 6131167. PMID 30202038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131167/. 



タンパク質工学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/17 20:29 UTC 版)

相同組換え」の記事における「タンパク質工学」の解説

相同組換え用いたタンパク質工学(英語版)によって、2つタンパク質由来断片入れ替えたキメラタンパク質開発された。これらの技術は、相同組換えタンパク質三次構造へのフォールディング維持しながら高度の配列多様性導入することを利用する。これはランダム点変異導入など他のタンパク質工学の技術とは対照的であり、ランダム点変異導入ではタンパク質の機能維持される可能性アミノ酸置換増加にしたがって指数関数的に低下する相同組換え技術によって生産されキメラタンパク質は、交換用いられる親鎖は構造的に進化的に保存されたものであるため、フォールディング維持されるこうした相同組換え可能なビルディングブロック」間では、タンパク質立体構造中でのアミノ酸間の物理的接触など、構造的に重要な相互作用保存されている。組換え適した構造的サブユニット同定には、SCHEMA英語版)やstatistical coupling analysisといった計算手法利用される相同組換え利用した技術は、新たなタンパク質エンジニアリングにも利用されている。2007年発表された研究では、イソプレノイド生合成関与する2つ酵素キメラ創出することに成功したイソプレノイドは、ホルモン、視色素ある種フェロモンなどを含む多様な分類群であり、イソプレノイド生合成自然界で最も多様な生合成経路1つである。キメラタンパク質は、元のタンパク質には存在しないイソプレノイド生合成必須の反応触媒する能力獲得したヒト薬剤食品添加物保存料などの外来化合物解毒関与しているシトクロムP450ファミリーのメンバー対し新たな機能付加したキメラ酵素も、組換え用いたタンパク工学によって生産されている。

※この「タンパク質工学」の解説は、「相同組換え」の解説の一部です。
「タンパク質工学」を含む「相同組換え」の記事については、「相同組換え」の概要を参照ください。

ウィキペディア小見出し辞書の「タンパク質工学」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



タンパク質工学と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  タンパク質工学のページへのリンク

辞書ショートカット

すべての辞書の索引

「タンパク質工学」の関連用語

タンパク質工学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



タンパク質工学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
JabionJabion
Copyright (C) 2024 NII,NIG,TUS. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのタンパク質工学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの相同組換え (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS