エレクトロスプレーイオン化とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > エレクトロスプレーイオン化の意味・解説 

エレクトロスプレーイオン化

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/08/14 04:56 UTC 版)

エレクトロスプレーイオン化(エレクトロスプレーイオンか、: Electrospray ionizationESI)は、質量分析におけるサンプルのイオン化法の一つである。高分子をフラグメント化することなくイオン化できるため、高分子をイオン化する際に特に有用である。


  1. ^ Zeleny, J. (1914). “The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces”. Phys. Rev. 3 (2): 69. Bibcode1914PhRv....3...69Z. doi:10.1103/PhysRev.3.69. 
  2. ^ Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. (1968). “Molecular Beams of Macroions”. J. Chem. Phys. 49 (5): 2240–2249. Bibcode1968JChPh..49.2240D. doi:10.1063/1.1670391. 
  3. ^ Alexandrov, M. L.; L. N. Gall, N. V. Krasnov, V. I. Nikolaev, V. A. Pavlenko, and V. A. Shkurov (1984). Экстракция ионов из растворов при атмосферном давлении - Метод масс-спектрометрического анализа биоорганических веществ [Extraction of ions from solutions at atmospheric pressure - A method for mass spectrometric analysis of bioorganic substances]” (Russian). Doklady Akademii Nauk SSSR 277 (2): 379–383. http://md1.csa.com/partners/viewrecord.php?collection=TRD&recid=N8524706AH. 
  4. ^ Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. (1989). “Electrospray ionization for mass spectrometry of large biomolecules”. Science 246 (4926): 64–71. Bibcode1989Sci...246...64F. doi:10.1126/science.2675315. PMID 2675315. 
  5. ^ Markides, K; Gräslund, A. “Advanced information on the Nobel Prize in Chemistry 2002” (PDF). 2011年8月31日閲覧。
  6. ^ Li, K.Y.; Tu, H.H.; Ray, A.K. (2005). “Charge Limits on Droplets during Evaporation”. Langmuir 21 (9): 3786–3794. doi:10.1021/la047973n. PMID 15835938. http://pubs.acs.org/doi/abs/10.1021/la047973n. 
  7. ^ Kebarle, P.; Verkerk, UH. (2009). “Electrospray: From ions in solution to ions in the gas phase, what we know now”. Mass Spectrom. Rev. 28 (6): 898–917. doi:10.1002/mas.20247. PMID 19551695. 
  8. ^ Iribarne J. V.; Thomson B. A. (1976). “On the evaporation of small ions from charged droplets”. J. Chem. Phys. 64 (6): 2287–2294. Bibcode1976JChPh..64.2287I. doi:10.1063/1.432536. 
  9. ^ Dole M.; Mack L. L.; Hines R. L.; Mobley R. C.; Ferguson L. D.; Alice M. B. (1968). “Molecular beams of macroions”. J. Chem. Phys. 49 (5): 2240–2249. Bibcode1968JChPh..49.2240D. doi:10.1063/1.1670391. 
  10. ^ Emmett MR, Caprioli RM (1994). “Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins”. J. Am. Soc. Mass Spectrom. 5 (7): 605–613. doi:10.1016/1044-0305(94)85001-1. 
  11. ^ Wilm MS, Mann M (1994). “Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?”. Int. J. Mass Spectrom. Ion Proc. 136 (2-3): 167–180. Bibcode1994IJMSI.136..167W. doi:10.1016/0168-1176(94)04024-9. 
  12. ^ Wilm M, Mann M (1996). “Analytical properties of the nanoelectrospray ion source”. Anal. Chem. 68 (1): 1–8. doi:10.1021/ac9509519. PMID 8779426. 
  13. ^ Gibson GT, Mugo SM, Oleschuk RD (2009), “Nanoelectrospray emitters: Trends and perspective”, Mass Spectrom. Rev. 28 (6): 918–936, doi:10.1002/mas.20248, PMID 19479726 
  14. ^ Konermann, L; Douglas, DJ (1998), “Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: Distinguishing two-state from multi-state transitions”, Rapid Commun. Mass Spectrom. 12 (8): 435–442, doi:10.1002/(SICI)1097-0231(19980430)12:8<435::AID-RCM181>3.0.CO;2-F 
  15. ^ Nemes P, Goyal S, Vertes A (2008), “Conformational and Noncovalent Complexation Changes in Proteins during Electrospray Ionization”, Anal. Chem. 80 (2): 387–395, doi:10.1021/ac0714359, PMID 18081323 
  16. ^ Sobott; Robinson (2004), “Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly”, Int. J. Mass Spectrom. 236 (1-3): 25–32, Bibcode2004IJMSp.236...25S, doi:10.1016/j.ijms.2004.05.010 
  17. ^ Garcia, M. C. (2005). “The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry”. J. Chromat. B 825: 111-123. doi:10.1016/j.jchromb.2005.03.041. PMID 16213445. 
  18. ^ Touboul D, Maillard L, Grässlin A, Moumne R, Seitz M, Robinson J, Zenobi R (2009). “How to deal with weak interactions in noncovalent complexes analyzed by electrospray mass spectrometry: cyclopeptidic inhibitors of the nuclear receptor coactivator 1-STAT6”. J. Am. Soc. Mass Spectrom. 20 (2): 303-311. doi:10.1016/j.jasms.2008.10.008. PMID 18996720. 
  19. ^ Czuczy N, Katona M, Takats Z (2009). “Selective detection of specific protein-ligand complexes by electrosonic spray-precursor ion scan tandem mass spectrometry”. J. Am. Soc. Mass Spectrom. 20 (2): 227-237. doi:10.1016/j.jasms.2008.09.010. PMID 18976932. 
  20. ^ Jecklin MC, Touboul D, Bovet C, Wortmann A, Zenobi R (2008). “Which electrospray-based ionization method best reflects protein-ligand interactions found in solution? a comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry”. J. Am. Soc. Mass Spectrom. 19 (3): 332-343. doi:10.1016/j.jasms.2007.11.007. PMID 18083584. 
  21. ^ Rosu F, De Pauw E, Gabelica V (2008). “Electrospray mass spectrometry to study drug-nucleic acids interactions”. Biochimie 90 (7): 1074-1087. doi:10.1016/j.biochi.2008.01.005. PMID 18261993. 


「エレクトロスプレーイオン化」の続きの解説一覧

エレクトロスプレーイオン化

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/20 06:28 UTC 版)

イオン源」の記事における「エレクトロスプレーイオン化」の解説

エレクトロスプレーイオン化では、液体は非常に小さく帯電した通常金属の毛細管通過する。この液体には、分析対象物質である分析対象物質大量溶媒溶解しており、通常分析対象物質よりもはるかに揮発性高くなっている。揮発性の酸、塩基、または緩衝液もこの溶液にしばしば添加されり。検体は、アニオンまたはカチオンの形で溶液中にイオンとして存在する電荷反発するので、液体毛細管から押し出されエアロゾル形成するエアロゾルは、直径約μ小さな液滴です。エアロゾルは、テイラーコーンとこのコーン先端からの噴流形成を含むプロセスによって少なくとも部分的に生成される窒素などの帯電していないキャリアガス使用して液体噴霧し、液滴中の中性溶媒蒸発させる溶媒蒸発すると、分析物分子互いに強制的に接近し互いに反発し液滴破壊する。このプロセスは、荷電分子間の反発クーロン力によって駆動されるため、クーロン分裂呼ばれる分析物溶媒なくなり、裸のイオンになるまで、このプロセス繰り返される観測されるイオンは、プロトン水素イオン)の追加によって作成され、 [ M + H ] + {\displaystyle {\ce {[{M}+H]+}}} [ M + H ] + {\displaystyle {\ce {[{M}+H]+}}} 、またはナトリウムイオンなどの別のカチオンのもの、 [ M + Na ] + {\displaystyle {\ce {[M + Na]+}}} [ M + Na ] + {\displaystyle {\ce {[M + Na]+}}} またはプロトン除去 [ M − H ] − {\displaystyle {\ce {[M - H]^-}}} [ M − H ] − {\displaystyle {\ce {[M - H]^-}}} などの多価イオン [ M + 2 H ] 2 + {\displaystyle {\ce {[{M}+2H]^2+}}} [ M + 2 H ] 2 + {\displaystyle {\ce {[{M}+2H]^2+}}} がよく観察される大きな高分子場合様々な頻度多く電荷状態( [ M + 25 H ] 25 + {\displaystyle {\ce {[M + 25H]^{25+}}}} など)が観察される

※この「エレクトロスプレーイオン化」の解説は、「イオン源」の解説の一部です。
「エレクトロスプレーイオン化」を含む「イオン源」の記事については、「イオン源」の概要を参照ください。

ウィキペディア小見出し辞書の「エレクトロスプレーイオン化」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「エレクトロスプレーイオン化」の関連用語

エレクトロスプレーイオン化のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



エレクトロスプレーイオン化のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのエレクトロスプレーイオン化 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのイオン源 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS